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- Helmholtz decomposition 

- Divergence and curl theorem

- Kelvin’s circulation theorem

- The vorticity equation

- Vortex dynamics and vortex flow

- Bernoulli theorem and applications 

Outline



Limiting cases: 

1-                 for an incompressible flow. The velocity field is solenoidal or 
divergence free.

2-                   for a potential flow, because in this case the velocity field 
derives from a scalar potential. The velocity is said to be curl free.

The scalar and vector potential are solutions of                      and

with appropriate boundary conditions.

The source terms for these 2 Poisson equations are respectively

           : the divergence of the velocity field

           : the curl of the velocity field

For a continuous and differentiable velocity field, we have the following unique 
decomposition:

�v =
−→∇φ+

−→∇ ×−→
A

∆φ =
−→∇ · �v

−→∇ × �v

−→∇ · �v

−→∇ · �v = 0

∆
−→
A = −−→∇ × �v

−→∇ ·−→A = 0
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Helmholtz decomposition of the velocity field

−→∇ × �v = 0

with Gauge condition



A source (or sink) velocity field is thus 

We have seen in the previous lecture that the variation of a Lagrangian 
volume is given by

dVt

dt
=

�

St

�v · �ndS

−→∇ · �v = Q δ(�x = 0)

�v =
Q

4πr2
�er
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Physical interpretation of the divergence

dVt

dt
=

�

Vt

dx3−→∇ · �v

The rate of change of the specific volume                 is V = 1/ρ 1

V

DV

Dt
=

−→∇ · �v

Using the divergence theorem, we can express the total volume variation 
as the net flux of volume across the outer surface as:

Let’s consider the case of a point source (or sink) of divergence at r=0.

We have a spherically symmetric velocity field around the source. Using 
the divergence theorem, we have: Q = 4πr2vr



A vortex velocity field is thus

Let us consider a vortex line at r=0. 

The vorticity is thus twice the local rotation rate in the fluid.

A vortex is a vorticity line along the axis

−→ω =
−→∇ ×−→

Ω × �r = 2
−→
ΩFor a rigid body motion                           , we have 

We define the vorticity as the following vector field −→ω =
−→∇ × �v

�v = �v0 +
−→
Ω × �r

−→ω =

������

∂yvz − ∂zvy
∂zvx − ∂xvz
∂xvy − ∂yvx

������

�t = −→ω /|−→ω |

Γ =

�

L
�v · d�l =

�

L
v�dl

�v =
Ωz

2πr
�eθ
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Physical interpretation of the curl

In components, we have

We introduce Stoke’s theorem or curl’s theorem. 

We define the circulation Γ as the integral of the 
parallel velocity along a closed contour.

We have the following identity Γ =

�

L
�v · d�l =

�

S
(
−→∇ × �v) · �ndS

−→∇ × �v = Ωz�ez δ(�r = 0)

Using Stoke’s theorem, we have Γ = 2πrvθ = Ωz



We need to add the scalar potential contribution, solving

with the appropriate boundary conditions (see lecture on potential flows). 

We consider a filament of vorticity                                using the curvilinear 
coordinate s.

We know from the Helmholtz decomposition that 

together with the Gauge condition 

The potential vector satisfies the Poisson equation 

−→∇ · �v = 0

∆
−→
A = −�ω

�v(�x) = − 1

4π

�

V

�x− �x�

|�x− �x� |3
× �ω(�x

�
)dx

�3

�v =
−→∇ ×−→

A +
−→∇φ

∆φ = 0

�t = �ez

�er × �ez = −�eθ

�x− �x
�
= r�er + (z − z

�
)�ez

�v(�x) =
Ω

4π

� +∞

−∞

rdz

(r2 + z2)3/2
�eθ =

Ω

2πr
�eθ
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Velocity field induced by a vortex distribution

We consider an incompressible fluid for which 

−→∇ ·−→A = 0

The solution is 

For a vertical filament, we have

�ω(�x
�
) = Ωδ(r = 0)

�v(�x) = − Ω

4π

�

L

�x− �x
�

|�x− �x� |3
× �t(�x

�
)ds

with

This is the Biot-Savart law for vortices.

and



d

dt
Γ(t) =

d

dt

�

Lt

�v · d�x =
d

dt

�

L0

�v(�x(�y, t), t) · (∂�x
∂�y

d�y)

�

L0

�v · d�v =

�
v2

2

�
= 0

d

dt
Γ(t) =

�

L0

D�v

Dt
· (∂�x

∂�y
d�y) +

�

L0

�v · (∂�v
∂�y

d�y) =

�

Lt

D�v

Dt
· d�x

D�v

Dt
=

−→
F − 1

ρ

−→∇P

d

dt
Γ(t) =

�

Lt

−→
F · d�x+

�

St

1

ρ2
−→∇ρ×−→∇P · �ndS

d

dt
Γ = 0
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Kelvin’s circulation theorem

L0

Lt = φ(t,0)(L0)

We consider a closed contour evolving with the flow. We use the inverse 
Lagrangian mapping to compute the time derivative of the circulation.

We now inject the Euler equation for an ideal fluid

If the external force derives from a potential 

and if the fluid is barotropic                           then 

−→
F = −−→∇Φ

1

ρ

−→∇P =
−→∇Π

Lagrange theorem: if initially the vorticity is zero, then it remains zero everywhere.



Helmholtz theorem: vortex lines move with the fluid.

Proof: a line element that moves with the fluid satisfies

Using the identity                                          we have�v ·−→∇�v =
−→∇(

v2

2
) + �ω × �v

∂�ω

∂t
+

−→∇ × (�ω × �v) =
−→∇ ×−→

F +
1

ρ2
−→∇ρ×−→∇P

∂�ω

∂t
+

−→∇ × (�v ·−→∇�v) =
−→∇ ×−→

F −−→∇ × (
1

ρ

−→∇P )

D�ω

Dt
= (�ω ·−→∇)�v − (

−→∇ · �v)�ω +
−→∇ ×−→

F +
1

ρ2
−→∇ρ×−→∇P

D

Dt

�
�ω

ρ

�
=

�
�ω

ρ
·−→∇

�
�v

D

Dt

�
δ��
�
= (δ�� ·−→∇)�v

Continuum Mechanics 15/05/2013 Romain Teyssier

The vorticity equation

D�v

Dt
=

−→
F − 1

ρ

−→∇PWe start with the Euler equation for ideal fluids

Taking the curl leads to 

Using the identity                                         
−→∇ × (�ω × �v) = (

−→∇ · �v)�ω + (�v ·−→∇)�ω − (�ω ·−→∇)�v

we find the vorticity equation:

For a barotropic fluid under gravity, we have



�ω = ωz�ez

Dωx

Dt
= ωz∂zvx

Dωy

Dt
= ωz∂zvy

Dωi

Dt
= ωx∂xvi + ωy∂yvi + ωz∂zvi − (

−→∇ · �v)ωi

Dωz

Dt
= −ωz (∂xvx + ∂yvy)

                              

1

S

DS

Dt
= (∂xvx + ∂yvy)

ωzS = constant
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Vortex dynamics

For a barotropic fluid, the vorticity equation writes in component form:

Let’s consider a vertical vortex line

vortex stretching due to 2D divergencevortex tilting due to shear

                              

The 2D divergence is the rate of change of the section of the vortex tube

For a 2D velocity field, the total vorticity in the vortex tube is conserved.



Multiplying by velocity and defining the specific enthalpy as                   , we have  

D�v

Dt
= −−→∇Φ− 1

ρ

−→∇P

Dρ

Dt
= −ρ

−→∇ · �v D�

Dt
= −P

ρ

−→∇ · �v

h = �+
P

ρ
D

Dt

�
v2

2

�
= −�v ·−→∇Φ− �v

ρ
·−→∇P

D

Dt
(Φ) =

∂Φ

∂t
+ �v ·−→∇Φ

D

Dt
(h) =

1

ρ

∂P

∂t
+

�v

ρ
·−→∇P

D

Dt

�
v2

2
+ Φ+ h

�
=

1

ρ

∂P

∂t
+

∂Φ

∂t

H =
v
2

2
+ Φ+ h
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First Bernoulli Theorem

We start with the Euler equations in Lagrangian form

with equations for the thermodynamical variables 

and

Collecting everything, we have the following relation:

Theorem follows trivially: in a stationary flow, the total enthalpy 
is conserved along streamlines.

Validity: no viscosity, no dissipation (reversible isentropic flow)



We consider a curl free flow                 in a barotropic fluid�v =
−→∇φ

1

ρ

−→∇P =
−→∇Π

−→∇
�
∂φ

∂t
+

v2

2
+ Φ+Π

�
= 0

∂φ

∂t
+

v2

2
+ Φ+Π = C(t)
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Second Bernoulli Theorem

the Euler equation becomes

Using the now well known vector relation �v ·−→∇�v =
−→∇(

v2

2
) + �ω × �v

The theorem follows: 

For a potential flow, we have everywhere in the flow (not only along streamlines):

The constant depends only on time. The flow doesn’t have to be stationary. 

For a curl free incompressible fluid, we have H =
v
2

2
+ Φ+

P

ρ

For a stationary flow, the quantity                             is uniform everywhere.H =
v
2

2
+ Φ+Π



We would like to measure the velocity of the fluid at infinity.

We consider a probe with section AC equal to section ED.

The flow is stationary and incompressible:

Mass conservation implies                           so that

Point B, however, is a stagnation point with             .

We conclude that                              . Using the probe, we measure ∆P = PB − P∞

v∞ =

�
2∆P

ρ
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Application of the Bernoulli Theorem: Pitot tube

Ram pressure

ρ
v2

2
+ P = constant

vASA = vDSD vA = vD = v∞

vB = 0

PB = ρ
v2∞
2

+ P∞

∆PThe velocity is just                         and          is called the ram pressure.

These probes (also called Pitot tube) are used in planes to measure the velocity. 



vA =

�
∆P

ρ�
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We would like to measure the incoming velocity in a pipe.

We modify slightly the section of the pipe around point B.

Mass conservation implies                         .

Bernoulli theorem implies 

Assuming that                           , if we measure        , we have:

vASA = vBSB

ρ
v2B
2

+ PB = ρ
v2A
2

+ PA

SB = SA(1− �) ∆P

This probe is called a Venturi tube.

Application of the Bernoulli Theorem: Venturi tube



For an stationary incompressible fluid, mass conservation implies                         .

If the section decreases, the velocity increases                    .

For a compressible fluid, we now have                            .

The stationary Euler equation gives us                        .

Introducing the sound speed                 , 

combining the 2 equations results in

vS = constant
dv

v
= −dS

S

dv

v

�
1− v2

c2

�
= −dS

S

M =
v

c
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Hugoniot theorem

ρvS = constant
dv

v
+

dρ

ρ
= −dS

S
vdv = −1

ρ
dP

c2 =
dP

dρ

The dimensionless number              is called the Mach number of the flow.

If              , the fluid behaves qualitatively like an incompressible fluid.

If              , it is reversed: the velocity will increase if the section increases.

M < 1

M > 1


