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- general equations and boundary conditions 

- planar viscous flows

- Couette and Poiseuille stationary flows

- viscous non-stationary interface

- viscous drag on a sphere

- boundary layer theory

- pressure gradients

- turbulence

Outline



The divergence free condition imposes 

and the continuity of the stress field follows

Since the stress tensor is proportional to the rate of strain tensor, the transverse 
velocity has to be differentiable at the boundary, and therefore at least continuous.

We get the «no-slip» boundary condition:                at the boundary surface S.

Rearranging terms, we have:

The Navier-Stokes equations for a viscous incompressible fluid write
−→∇ · �v = 0

(ρ1�v1 − ρ2�v2) · �n = (ρ1 − ρ2)
−→
S · �n

ρ
D�v

Dt
= ρ

−→
F +

−→∇ · σ = ρ
−→
F −−→∇P + η∆�v

ρ1�v1 (�v1 · �n)− σ1�n− ρ2�v2 (�v2 · �n) + σ2�n = (ρ1�v1 − ρ2�v2)
−→
S · �n

ṁ (�v1 − �v2) =
�
σ1 − σ2

�
�n
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Incompressible viscous flow equations

We also have boundary conditions at the (moving) domain boundary.

We start from the Rankine-Hugoniot relations (normal to the interface).

ρ1
�
�v1 −

−→
S
�
· �n = ρ2

�
�v2 −

−→
S
�
· �n = ṁ

�v1 · �n = �v2 · �n =
−→
S · �n

σ1�n = σ2�n

�v =
−→
S



ρ
D�v

Dt
= ρ

−→
F −−→∇P + η∆�v ρ

D�v

Dt
= ρ

−→
F −−→∇P

−→∇ · �v = 0
−→∇ · �v = 0

�v · �n = 0�v = 0
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Viscous versus inviscid flows

The two set of equations can be compared in more details. 

We consider a rigid body (wall) at rest              on a surface S bounding volume V.
−→
S = 0

Viscous flow Inviscid flow

On S: On S:

Besides the additional stress field, the main difference comes with the boundary 
condition.

The transverse velocity can be discontinuous at the wall for an ideal fluid. It is 
called the slip condition.

The transverse velocity has to be zero at the wall for a viscous fluid. It is called the 
no-slip condition. At the molecular level, it means the particles have to stick to the 
wall when they come too close. 



with only one parameter, the Reynolds number

For small Reynolds numbers, we can neglect the inertial term 

and the Navier-Stokes equation becomes a linear equation.

Stationary flows are characterized by

Using                 , we have                + boundary conditions.

Using                     , we have                 + boundary conditions. 

The velocity field does not depend on the viscosity coefficient !

For large Reynolds number and far away from boundaries, we can neglect the 
viscous term and we almost converge back to the ideal fluid limit. 

∂t�v +
�
�v ·−→∇

�
�v = ν∆�v − 1

ρ

−→∇p

ν =
η

ρ

p = p̃ρU2
∞

Re =
U∞L

ν

−→∇ · �v = 0
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The Reynolds number

We write the Navier-Stokes equation
where we define the viscosity coefficient

We define the dimensionless variables �v = ṽU∞ �x = x̃Lt = t̃
L

U∞

We obtain the new dimensionless equation ∂t̃ṽ +
�
ṽ · ∇̃

�
ṽ =

ν

U∞L
∆̃ṽ − 1

ρ
∇̃p̃

�
�v ·−→∇

�
�v

∆p = 0

�ω =
−→∇ × �v ∆�ω = 0

η∆�v =
−→∇p



Equilibrium between shear stresses and pressure gradient.

Since v depends only on y and p only on x, the pressure gradient is a constant.

It is the free parameter of the flow, together with velocity boundary conditions.

We have therefore to solve for the PDE                         

with proper boundary conditions.

We can use the superposition principle since it is a linear BVP.

For planar flows, the inertial term vanishes because of the divergence free 
constraint. 

Stationary case:                                 

The Navier-Stokes equation is just

The divergence free condition writes                               or 
−→∇ · �v = ∂xvx = 0
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Viscous planar flows

We consider 2D flows with planar symetry �v = vx(x, y, t)�ex

vx = v(y, t)

∂yp = 0 → p(x, t)∂tv = ν∂2
yv −

1

ρ
∂xp

ν∂2
yv =

1

ρ
∂xp

∂2
yv =

1

η
∂xp



The general solution is                                                and if we insert the BC, 

We want to solve the previous equation between two moving rigid walls.

The boundary conditions are (for example)                           and 

v(y) =
1

2η
∂xpy

2 +Ay +B

v(y) = U∞

�
y

L
−

�
L2∂xp

2ηU∞

�
y

L

�
1− y

L

��

C =
L2∂xp

2ηU∞

U∞ = 0

v(y) = −
�
L2∂xp

2η

�
y

L

�
1− y

L

�
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Planar Couette flow

v(y = 0) = 0 v(y = L) = U∞

The family of curves we have obtained 

depends on one parameter

For               , we get the Poisseuille flow 



ωz = −∂yv =
∂xp

η

�
y − L

2

�

−→
T = σ�ey = η∂yv�ex − p�ey = ∂xp

�
y − L

2

�
�ex − p�ey
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Properties of the Poiseuille flow

v(y) = −
�
L2∂xp

2η

�
y

L

�
1− y

L

�

If the pressure gradient is negative, the flow is 
traveling to the right.

ṁ = ρ

� L

0
v(y)dy = −ρL3

12η
∂xpThe mass flux is

The vorticity is

The stress field (force per unit surface) acting on any horizontal layer is

The Poiseuille and Couette flows are shear flows.

For small Reynolds number (                             ) the planar Poiseuille flow 
is stable. 

For high Reynolds number, it becomes unstable (see Kelvin-Helmholtz 
instability) and turbulence develops.

Re < Rec = 5722

L



The equation becomes                                 and lead to

We have                              so that                         and  

This suggests we choose a solution of the form           where 

If we choose                    the problem becomes scale-invariant. 
We scale the variables by                                                and get 

We consider now the «first Stokes problem»: 

the wall is impulsively put in motion at velocity          at time t=0

The boundary conditions are                                and v(y, t) → 0 when y → +∞

t = t̃T y = ỹL ∂t̃ṽ =
νT

L2
∂2
ỹ ṽv = ṽ

L

T
L =

√
νT

ξ =
y

2
√
νt

f �� + 2ξf � = 0 f � = A exp−ξ2

v(y, t) = U∞ (1− erf(ξ)) erf(ξ) =
2√
π

� ξ

0
exp−u2

du
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Non-stationary planar boundary layer.
We consider the case for which the pressure gradient vanishes.

The Navier-Stokes equation reads ∂tv = ν∂2
yv

This equation is equivalent to the «heat equation» (v becomes the temperature).

U∞

v(y = 0, t) = U∞

Scaling properties of the Navier-Stokes equation:

f(ξ)

dξ =
ξ

y
dy − ξ

2t
dt ∂2

xv = f �� ξ
2

y2
∂tv = −f � ξ

2t

The solution is                                           where



The thickness of the diffusive layer increases 
with time. 

We can define the thickness of the layer by                                                                 

                   which corresponds to           . 

The transverse velocity is diffusing away from 
the wall due to viscous stresses.

ξ = 2
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Properties of the first Stokes problem

v = 1%U∞

δ = 4
√
νtThe thickness of the boundary layer is

The vorticity profile is ωz = −∂yv = − U∞√
πνt

exp−y2/(4νt)

Initially, the vorticity is a Delta function at the wall. It then diffuses away 
from the wall, always confined within the growing boundary layer. 

At late time, the vorticity vanishes while the flow follows uniformly the 
wall velocity.



The boundary conditions are for

and the no-slip condition on the sphere (          ) is  

This is also called the «second Stokes problem».

For small Reynolds number stationary flows, we have                      and 

We use spherical coordinates. 

For symmetry reasons, we have                              and 

−→∇ · �v = 0

r → +∞

r = a

�v → U∞�ez = U∞ (cos θ�er − sin θ�eθ)

−→∇ ×−→
B =

1

r sin θ
∂θ(sin θBφ)�er −

1

r
∂r(rBφ)�eθ +

1

r
(∂r(rBθ)− ∂θBr)�eφ
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Viscous flow past a sphere

η∆�v =
−→∇p

�v = vr�er + vθ�eθ �ω =
−→∇ × �v = ωφ�eφ

�v = 0

We use a lot



The general solution is                                             with

With power law functions                   we have 

We are looking for solutions of the form

�v =
−→∇ ×−→

A
−→
A = Aφ�eφ

�ω =
−→∇ × �v

�v =
1

r sin θ
∂θ(sin θAφ)�er −

1

r
∂r(rAφ)�eθ

−→ω = −1

r

�
∂2
r (rAφ) +

1

r
∂θ(

1

sin θ
∂θ(sin θAφ))

�
�eφ

f(r) = rα (α+ 1)(α− 1)(α− 2)(α− 4) = 0

f(r) =
A

r
+Br + Cr2 +Dr4
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Viscous flow past a sphere

We use the vector potential approach (Helmholtz decomposition) to satisfy 
automatically the divergence free condition.

We have                       and 

The symmetry of the flow requires

The velocity field writes

and the vorticity

We also know from the Navier-Stokes equation that 

rAφ(r, θ) = f(r) sin θ

The vorticity is                                                              while NS gives−rωφ =

�
f �� − 2f

r2

�
sin θ = −g(r) sin θ g�� − 2g

r2
= 0

The final equation we need to solve is f ���� − 4f ��

r2
+

8f �

r3
− 8f

r4
= 0

�v =
2f

r2
cos θ�er −

f �

r
sin θ�eθ

∆−→ω = −−→∇ ×−→∇ ×−→ω = 0



We now compute the stress field on the sphere

Using the Navier-Stokes equation, we have

Integrating from 0 to     , we have 

For           , we have                 and 

For                 , we have �v∞ = 2C cos θ�er − 2C sin θ�eθ

r = a

vθ = −U∞ sin θ

�
1− a3

4r3
− 3a

4r

�
vr = U∞ cos θ

�
1 +

a3

2r3
− 3a

2r

�

σ�er = (σrr,σrθ, 0)

σrθ = η

�
1

r
∂θvr + r∂r(

vθ
r
)

�
= −ηU∞

3

2a
sin θ

Fz = 6πηaU∞

σrr = −p+ η∂rvr = −p = −p∞ + ηU∞
3

2a
cos θ

Fz =

� 2π

0
dφ

� π

0
dθ sin θηU∞

3a

2
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Viscous flow past a sphere
We now impose the boundary conditions.

r → +∞ D = 0 C =
U∞
2

f(a) = 0 f �(a) = 0 A =
1

4
U∞a3 B = −3

4
U∞a

ωφ = −U∞
3a

2r2
sin θ

∞
∂rp = ηU∞

3a

r3
cos θ

p = p∞ − ηU∞
3a

2r2
cos θ

The vorticity is 

The Stokes formula 
for the drag force is 



D�v

Dt
= −1

ρ

−→∇p+
1

Re
∆�v

−→∇ · �v = 0 �v = 0
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The boundary layer problem
We saw that the Navier-Stokes equation in dimensionless form writes

with                     and               at the boundary.

For large Reynolds number, the equation converges towards the ideal fluid Euler 
equation, but not uniformly. 

The main reason is that the Euler equations use a slip condition: �v · �n = 0

A simple analogy: 

We want to solve                  with                           . 

The solution is trivially                  and is analogous to a inviscid flow in a half-plane.

We now solve                              with the additional constraint 

The solution is now 

It does not converge uniformly towards 1.

For             the flow will never reach the ideal limit. 

This thin layer, called the boundary layer, is always present. 

It can be ignored only if its properties do not perturb the ideal flow for  

∂xf = 0 lim
x→+∞

f(x) = 1

f(x) = 1

�∂2
xf + ∂xf = 0 f(0) = 0

f(x) = 1− exp−x/�

x ≤ �,

x > �.



U∞
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The boundary layer problem

boundary layer



For an infinite plate and an impulsive start, we got a non-stationary boundary layer

of thickness                   .

We now consider a finite plate of size L, with upwind velocity       .

δ = 4
√
νt

�v = (u(x, y), v(x, y))

u(x, 0) = v(x, 0) = 0 for 0 ≤ x ≤ L

u → U∞ and v → 0 for (x, y) → +∞

∂xu+ ∂yv = 0
u∂xu+ v∂yu = −1

ρ
∂xp+ ν∆u

u∂xv + v∂yv = −1

ρ
∂yp+ ν∆v
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U∞

Boundary layer on a finite plate

The stationary Navier-Stokes equations write for 

with boundary conditions



δ �
�

νx

U∞
=

4L√
Re

�
x

L

v ∼ δ

L
U∞ � U∞

O(
U2
∞
L

) O(
U2
∞
L

) O(ν
U∞
L2

) O(ν
U∞
δ2

)

O(
U2
∞
L

δ

L
) O(

U2
∞
L

δ

L
) O(

U2
∞
L

L

δ
) O(

U2
∞
L

δ

L

1

Re
) O(

U2
∞
L

δ

L
)

u∂xu+ v∂yu = −1

ρ
∂xp+ ν(∂2

xu+ ∂2
yu)

u∂xv + v∂yv = −1

ρ
∂yp+ ν(∂2

xv + ∂2
yv)
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The thin layer approximation

When we move with a fluid element starting at the leading edge of the plate,

we postulate a boundary layer of thickness                 

where t is the elapsed time since it first passed the edge

An approximation of the thickness is therefore (with                       )

δ �
√
νt

t � x

U∞
Re = U∞L/ν

We now estimate what are the leading order terms in the equations.

                                                     From                     , we get u ∼ U∞ x ∼ L ∂yv = −∂xu

O(
U2
∞
L

)

y ∼ δ �
�

νL

U∞



∂xu+ ∂yv = 0

1

ρ
p∞(x) +

1

2
U2
∞(x) = constant

u = ∂yψ v = −∂xψ ψ = O(U∞δ)

ψ(x, y) = U∞(x)δ(x)f(ξ) with ξ =
y

δ(x)
and δ(x) =

�
νx

U∞(x)

u∂xu+ v∂yu = −1

ρ
∂xp+ ν∂2

yu 0 = ∂yp

∂yψ(∂
2
xyψ)− ∂xψ(∂

2
yψ) = ν∂3

yψ − 1

ρ
∂xp∞(x)
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The thin layer approximation

We have now simplified the previous system to:

p depends only on x: 

As before, the transverse pressure gradient is a free parameter and is related to the 
properties of the external flow at infinity. If the external flow is a potential flow, it 
satisfies the Bernoulli relation

p(x, y) = p∞(x)

To satisfy automatically the divergence free condition, we use the stream function

Because the finite plate is infinitely thin, we look for self-similar solutions of the form



∂xψ = U∞δ� (f − ξf �) ∂yψ = U∞f �

∂2
xyψ = −U∞

δ�

δ
ξf �� ∂2

yψ = U∞
1

δ
f �� ∂3

yψ = U∞
1

δ2
f ���

δ� =
1

2x
δ

2f ��� + ff �� = 0

f(0) = 0, f �(0) = 0 and f �(+∞) = 1.

u(x, y) = U∞f �(ξ)

4δ(x)

v(x, y) = −U∞δ�(f − ξf �)

−→
T = σxy�ex + (−pe(x) + σyy)�ey

∂xv = 0 and ∂yv = 0 at y = 0

Fx =

� L

x=0
η∂yu(x, 0)dx = 2ηU∞f ��(0)

√
Re Cx =

Fx
1
2ρU

2
∞L

=
4f ��(0)√

Re
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The Blasius boundary layer solution

We consider in this case a flow with constant velocity and pressure at infinity.

We found the following simple ODE:

The transverse velocity profile is

In this case, the thickness is also 

The normal velocity profile is

The stress field at the wall is given by

The pressure contribution cancels and 
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Laminar versus turbulent boundary layers

The Blasius solution is also a laminar shear flow. 

For large Reynolds numbers, it is unstable (Kelvin-Helmholtz instability for example) 
and becomes a turbulent flow. 

Re−1/2

Re−1/4



∂xψ = Uδ

�
1 +m

2x
f − 1−m

2x
ξf �

�

∂2
yψ = f ��U

δ
∂yψ = f �U ∂3

yψ = f ��� U

δ2

∂2
xyψ = U

�
m

x
f � − 1−m

2x
ξf ��

�

m(f �)2 − m+ 1

2
ff �� = f ��� +m
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Boundary layers with pressure gradients

We are now considering cases for which the velocity at infinity depends on x.

We will be able to study the effect of fluid accelerations or deceleration on the 
solution.

We consider self-similar velocity profiles such that 

Using Bernoulli, we have also

The thickness new scales as

U∞(x) = Cxm

1

ρ
∂xp∞ = −C2mx2m−1

δ(x) ∝ x
1−m

2
δ�

δ
=

1−m

2x

U �

U
=

m

x

We have

We obtain the Falkner-Skan solution:

f(0) = 0, f �(0) = 0 and f �(+∞) = 1.

→

→

The solution is solved numerically using shooting techniques.



External potential flows with complex 
potential 

For m=0, we recover the Blasius solution.

For m<0, the flow is decelerating and we have an adverse pressure gradient (flow past 
an edge). For m=-0.091,                   and there is no more drag force. 

For m<-0.091, the flow is reversed (similar to Couette flows) and the boundary layer 
separates from the wall. The flow is detached from the wall . 

When the flow is detached, the viscous layer increases dramatically and starts to 
modify the external flow. Usually, strong turbulence develops.

F (z) = zm
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Falkner-Skan solutions

f ��(0) = 0

For m>0, the flow is accelerating 
along the wall (flow past a corner).   
The pressure gradient is said to be 
favorable and the boundary layer 
is confined to the wall.

For m=1, the boundary layer has a 
constant thickness (stagnation point). 
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Flow separation

For large angle of attack, the flow separates 
from the body. Large eddies and vortices 
are generated and carry away vorticity, 
leaving behind an opposite circulation 
around the body.

Flow past the trailing edge: adverse pressure gradients 
result in the flow separation. The boundary layer expands 
and modify the initial potential flow solution. 

The vorticity of the boundary layer is advected away, resulting 
in a new potential flow with favorable pressure gradients and 
a laminar boundary layer around the body.



�
f(v�)dv� = 1

�
v�f(v�)dv� = 0

�
(v�)2f(v�)dv� = σ2

vi = Vi + v�i

v� = 0 v�2 = σ2 ∂xA = ∂xA ∂tA = ∂tAv = V
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Turbulence

When turbulence develops, we see velocity 
fluctuations both in time and in space.

This chaotic velocity field can be 
decomposed into a smooth, average, laminar 
field and a fluctuating field, for which only the 
statistical properties are known.

true velocity = average velocity + fluctuation 

The fluctuation is described by a Probability Density Function (PDF) such as

Average quantities can be average in time or space. 

We will consider here instead ensemble averages between N independent 
realizations. We have the following results for ensemble averages:



where we introduced a new tensor called the Reynolds stress

Taking the ensemble average of the divergence 

tells us that the mean flow should also be divergence free.

From                                      , we get that the fluctuations also follows

−→∇ · �v =
−→∇ ·

�−→
V + �v�

�
=

−→∇ ·−→V = 0

−→∇ · �v =
−→∇ ·−→V +

−→∇ · �v�

(�v ·−→∇)vi =
−→∇ · (vi�v) =

−→∇ · (ViVj) +
−→∇ · v�iv�j = (�V ·−→∇)Vi +

−→∇ · σ2
ij

∂t
−→
V + (�V ·−→∇)

−→
V = −1

ρ

−→∇P + ν∆
−→
V +

−→∇ ·R

Tij =
σ2

3
δij − σ2

ij∂t
−→
V + (�V ·−→∇)

−→
V = −1

ρ

−→∇(P + PT ) + ν∆
−→
V +

−→∇ · T
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Reynolds stress and turbulent pressure

The Navier-Stokes equation writes                                                         with ∂tvi + (�v ·−→∇)vi = −1

ρ
∂ip+ ν∆vi

−→∇ · �v = 0

−→∇ · �v� = 0

For a divergence free velocity field, we have (�v ·−→∇)vi =
−→∇ · (vi�v)

The average of the inertial term can be decomposed into 2 terms

The average Navier-Stokes equation

Rij = −σ2
ij = −v�iv

�
j

We have Tr(R) = −σ2 = −σ2
xx − σ2

yy − σ2
zz We define                          soT = R+

σ2

3
1 Tr(T ) = 0

Using these definitions, we finally get, with                     the turbulent pressure,PT =
1

3
ρσ2



Tij = νT
�
∂xjVi + ∂xiVj

�
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Properties of the Reynolds stress

The Reynolds stress is symmetric because it is based on 2nd order moments.

Like the viscous stress has been interpreted as a momentum flux due to 
microscopic forces at the atomic level (surface forces), the Reynolds stress 
expresses the momentum transported by eddies and vortices in the flow.

We now want to model the Reynolds stress R or the turbulent shear stress T as a 
function of the mean flow properties: the closure problem.

In analogy to Newtonian fluids, where the stress tensor is proportional to the rate 
of strain tensor, we introduce the Boussinesq approximation

From kinetic theory, we know that the fluid viscosity is                  where cs is the 
sound speed and λ is the mean free path of the molecules.

The eddy-viscosity model assumes that                      where vT is the typical 
velocity of vortices and lm is called the mixing length. They are free parameters of 
the theory. The turbulent pressure is usually approximated by 

In shear flows, a good approximation is                             so only one free 
parameter remains, the mixing length.

ν � csλ

νT � vT �m

vT = �m |∂yVx|
PT =

1

3
ρv2T



νT = δ(x)2 |∂yu(x, 0)| = δ(x)U∞f ��(0)

(Cx)T � 4

3
√
ReT

=
4

3
√
3Re1/4
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Effect of turbulence on laminar flows

We use the mixing length approach for our boundary layer problems.

We assume that the mixing length is proportional to the thickness of the layer.

We consider a (mean) flow that follows the Blasius solution.

Working at x=L, we can compute the turbulent Reynolds number 

We find                         , therefore much smaller than the laminar value.

Turbulence increases the effective viscosity and associated momentum transport.

Inserting this new Reynolds number into the drag force formulae, we find

ReT =
U∞L

νT
ReT � 3

√
Re

The thickness of the boundary layer at x=L will also grow significantly, 

from its laminar value                  to its turbulent value                         .δ � 4√
Re

δT � 4√
3Re1/4


