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Maxwell equations in a plasma

Maxwell equations for the evolution of the magnetic field B and the electric field E.

?.B:O ?-3247@ q:Znaqa
%8t§=—€><ﬁ éatﬁJr%?:?XB ?:za:naqaﬁa

8tq+€-?:()

g is the charge density, J is the current density.

The electromagnetic field is tightly coupled to the charge density and the current
density.

They are present in a plasma: a ionized fluid, with mostly charged particles
(electrons and ions). The most common plasma in the universe is the Hydrogen

plasma, with protons of mass mp and charge +e and electrons of mass me and
charge -e.

We decompose the plasma into 2 fluids (electrons and protons).
Each particle is accelerated by the Lorentz force: m,, Dtha S (ﬁ + lﬁa X ﬁ)
C
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Plasma fluid equations

For the electron and proton fluids, we have the following Euler equations:

DUG — _epe ne€ (B + Ue X E) Hellle _)e - 772)

Teq
Pi Dvi — _6171' + n;e (B + 17}7, X B) Hellle _’e - ?72)
Dt C Tei

The last term on the RHS is the friction between electrons and ions due to
electron-ion microscopic collisions.

Because m. < m;, the inertial term in the electron fluid equation is removed
(electrons dynamical equilibrium).

c Nee

Me

where we define the resistivity coefficient 7 = Sy

The proton velocity becomes the reference velocity: it carries most of the mass.

EJr%UxB: n166p6+ 7><§+777

NeEC
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Non-relativistic limit and charge neutrality

We consider non-relativistic flows v < ¢

We perform an order of magnitude analysis on the Maxwell equations.
L
From the previous equation E ~ —117 X B ,weget I~ B~ "B

C C cl
In the Maxwell equation lﬁtﬁ + 4—7T7 = ? X § , we have:
C C
1 E L?> B . B dmr
Eatﬁ_CT_C2TQZ while ?xﬁ_f. 77:€x§

From this, we get ? : 7 =0 and 0;,q = 0.

This is consistent with the additional approximation of charge neutrality,

which is valid for length scales larger than the Debye length.

[kgT.
L>M\p = nB€2

We get ¢ < nee and M. =7,
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The non-ideal MHD equations

Injecting the electric field equation into the ion Euler equation gives:

o2V Sy 4 pi)+ 2 7 B

Dt
together with the magnetic field and current denS|ty equations

B =—cV x E @?IQXB

where the electric field in the general case is given by

1 1
?pe 7 §+n7{
Ne€C
induction term / o
Ohmic dissipation

thermoelectric effect Hall effect

The is no general rule to remove those non-ideal terms.

We must check a posteriori.
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Generation of magnetic fields

For very weak magnetic fields, like in the early universe, the dominant non-ideal
term in the electric field equation is the electron pressure gradient.

E— 117><§+ ! ?pe

c NeE€

The induction equation &eﬁ =V xE

becomes B+ Y x (B x )= ——Vn. x Vp.

2
nie

The vorticity equation we have derived for an ideal fluid reads

0w 1
a—C:Jr x(cﬁxﬁ):F?px?P
In both cases, the field is generated when pressure and density gradients are

misaligned. For a barotropic evolution, no field is generated.

What is striking here is that both fields are evolving in a tightly coupled manner. If
they are both initially zero, they subsequently evolve proportionally to each other.

3: cmy

e

Continuum Mechanics 2011 19/05/11



Ideal MHD equations

In the ideal MHD limit, the electric field is given by f = —117 X §
C

and the magnetic field evolves according to the induction equation:
&gﬁ —V x (U X ﬁ)

with the divergence-free constraint: ? : § =0

The mass conservation is the same as for the fluid equations
Dp
Dt
The Euler equation differ from the fluid’s one by the Lorentz force

p%:—€p+i(€X§)X§

In case we have an isothermal or barotropic fluid, the system is closed by the
equation of state p(p). Otherwise, we have to add the energy equation

+p€ v=20

pr——;ﬁ v

with the fluid Equation of State:  |p = p(p, €)
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Magnetic flux conservation

A flux tube is defined as a cylindrical surface tangent to the field lines.

Divergence theorem : ﬁ -ndS + ﬁ -ndS = / ? : ﬁdV =0
Sl S2 Vv

We have along the flux tube: / B. dS = ¢ = constant
S

In the Sun, magnetic tubes are rising buoyantly above the surface (magnetic arches)
and sometimes are ejected (Coronal Mass Ejection), causing intense solar eruptions.
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The «frozen-in» theorem

We now follow the surface element as it evolves in
time and space from S1 = S(t) to S2 = S(t + dt)

UAL
We use the cylindrical volume swept by the surface
element. The cylinder vertical surface is S3 = L(t)|v]dt %ﬁt’ At)
—¢1(t + At) + g2(t + At) + ¢35 =0

Since ? 3 = 0 at all times, we have

v
The flux variation is Zib — lim P2(t + At) — ¢1(1) /

dt At—0 , AAtt ,
so we get dp _ . o1t + AL — di(t) — ¢3
dt  At—0 At

The first term on the RHS is just 6t§ -ndS
S1
The second termis ¢3 = B - idS ~ B. (t x ¥)dlIAt
53 L(t)
Geometrically, § (t x (7 x B t so that we get

t'x
¢3:/ v><§ qd ?x vxﬁ)dSAt
L(t) S1

E: Magnetic field lines are frozen in the
— = [&ﬁ — ? X (U X B)} dS =0  plasma flow. This property is similar
dt _ Js, to the dynamics of vortex tubes.
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Magnetic pressure and magnetic tension

The Lorentz force writes 7 7 ﬁ where the current is ? — i? X B

4
The force can be written as 47T? ? ( ) <§ ?) §
We use curvilinear coordinates along the field lines so that ﬁ — Bt

Wehave(§ 3)? B —(Bi) = 8(32)5+B—2ﬁ

2 R
Finally, the total force actlng on the fluid element is given by
Dv 2pB\ -
P = €(p+p3) + (Ospp) T + ( o ) n
2
where pp = o is the magnetic pressure.

The first term on the RHS acts on the fluid as an isotropic pressure, similar to the gas
pressure, but whose relative magnitude is controlled by the 3 parameter

P 8mp
/B p— p— 2
PB B

The third term on the RHS is analogous to a tension force 1" = 2pp perpendicular to
the field lines and works against flow motions to restore small curvature.

It is called magnetic tension.
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The Maxwell stress tensor

The Lorentz force writes 7 7 ﬁ where the current is ? ¢ ? B

A7
The force can be written as 47T? -V ( ) <§ 6) B
Using the relation ? (Bxﬁ) = B, (? : ﬁ) + (§ : ?) B
we can write the Lorentz force as ? = ? ﬁ
where we introduce the Maxwell tensor defined as

1 32
M@']’ — 47‘(‘ (B B 2 51.7)

Note that the Maxwell tensor is symmetric.

The Euler equation for ideal MHD can thus be written in conservative form as

0,(p7) + V - (077 + PT) YV M=0

? .M is the Maxwell stress field, the magnetic force per unit area acting on the fluid.
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Ideal MHD equation in 1D

In one dimension, the equations write in conservative form (we use 411=1 here):

Op+ 0x(pve) =0
B2
O (pvz) + On(pvy + P+ — — B}) =0

2
Ot (pvy) + Oz (pvyzvy — By By) =0
Ot(pvy) + 0z (pvzv, — B B,) =0
B, = constant

0¢By + 0y (vs By —vyBy) =0

0B, + 0 (v B, —v,B;) =0
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Ideal MHD equation in 1D

We now write the isothermal MHD equations in quasi-linear form o, + j&cW =0

Otp + V3 0pp + pOrv, = 0
2 B B

i p p
0
B,
v, +0,0,0, — —0, B, =0

0
0t By + 1,0, By + By0,vy — By0zvy =0

B, +v,0,B, + B,0,v, — B,0,v, =0

Vgp P 0 0 0 0
© y, 0 0 B L
_ 0 B.
Wehave A=| > 0 % 0 =% 5
0 0 0 v 0 -
0O B, —B; 0 Vg 0
| 0 B, -B; 0 0 Uy |
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MHD waves

We consider now a reference equilibrium state Wy = (p°,v2, ), v, By, BY)

x) y? zZ

that we perturb slightly with W = W, + §W and é6W = (dp, dv,, dv,, 6v,,dB,,6B,)
The waves equation is given by [0;(0W) + ioax(avv) =0

The wave speeds are given by the eigenvalue decomposition det (Z) — )\T) =0

We have 7 eigenvalues ordered from left-going waves to right-going waves

Uu—cr<u—c,<u—cs<u<utcs<utcg<utcy
B2 ,
The Alfvén waves have waves speed 2 =" They are transverse waves with no
pressure and density variations. p

The fast magnetosonic waves are longitudinal waves with pressure and density
variations correlated with magnetic fields variations.

1 1 B2
¢ = 5(a® +c2) + 5/(a + 2)? — dac, =t

The slow magnetosonic waves are also longitudinal waves, but pressure and
density variations are anti-correlated with magnetic field variations.
!

1
c; = §(a2 + ci) — 5\/(a2 +¢2)? — 4(1203’3j
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The Friedrichs diagram
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Alfvén waves

We now consider a reference state at rest vg = 0 and we restrict ourselves to

incompressible perturbations §p = P = v, = 0.
We work in the frame where the x-axis is along the f|eId lines BO BS =0

The previous system simplifies into Ot (671 ) — —8 5§
at((SBJ_ — :13 x _’J_) — O
where 07, = (dvy,dv,) and 5§L = (6B, 0B,)

Looking for plane waves solution 6§77, = & exp’(F=2=" 5§ — §0L exp(kaz—wt)

we obtain the dispersion relation for Alfvén waves w? =c k”

1 _i&ﬂ
BYO T g,

or anti-correlated with transverse velocity perturbations,

We have so that transverse magnetic perturbations are correlated

depending on the direction of propagation w = *c.k)

Alfvén waves are analogous to waves along a string with tension.
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Alfvén waves observed in the Sun corona
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Non-ideal MHD equations

Including non-ideal effects in the previous equations boils down to 2 main physical
ingredients (we restrict ourselves to incompressible fluids).

1- including fluid viscosity 0ij = —poij + N(0z,v; + O, v;)
2- including Ohmic dissipation £ — — S5 x B + 15 J
C

The Navier-Stokes equation becomes %: = —1319 + VAT + i? X §
p pc

The induction equation becomes &53 —V x (U x ﬁ) + I/BA§

The Reynolds number Re = anL/u was introduced to estimate the importance
— — UOO H UOO
of the inertial term (7 - e)v ~ — compared to the viscous stress vAT ~ vy

The magnetic Reynolds number Rep = Us.L/vp can be defined to compare the

B . L B
induction term ? X (U X ﬁ) ~ UT to magnetic resistivity VBA§ ~ VBT

To weight the relative importance of the 2 dissipative processes, we introduce the

magnetic Prandtl number b Rep v viscous diffusion rate
T p— p— p—
Usually, Prp <1 B Re VR magnetic diffusion rate
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Non-ideal Alfvén waves

We reconsider the incompressible case The linearized equations become:

0,(671) — —a (6B 1) = vA(55))

0,68 1) — BY9,(55,) = vgA(SB 1)
and the wave dispersion relation is now more complicated
(w+ ik*v)(w + ik*vp) = 2 k?

Solving for this second order polynomial gives

k2(v—vp)?  ov+vp
w = icak\/l — Ic2 — 1k 5

The second term on the RHS is a damping term, as expected.

The propagation speed is also reduced by non-ideal effects.

For strong magnetic resistivity, the right-going Alfvén wave becomes unstable above a

critical wave number k. =2c,/vp 1

Y

or below a critical scale given by L c, Rep

On small scales, the fluid approximation breaks down: collisionless plasma regime.
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