Continuum Mechanics
Lecture 3

Elastic waves and dislocations

Prof. Romain Teyssier

http://www.itp.uzh.ch/~teyssier

FER ETH

e [ %9 . ., - .

& 2% & U niversitat ZU”Ch Eidgendssische Technische Hochschule Ziirich
| ﬂ/ Swiss Federal Institute of Technology Zurich

Continuum Mechanics 22/04/2013 Romain Teyssier



Outline

- Elastic waves

- Seismic applications

- Waves in beams

- Dislocations as topological defects

- Structure and dynamics of dislocations

Continuum Mechanics 22/04/2013 Romain Teyssier



The elastic wave equation

In 3-dimensional space, the acceleration is given by

dv _

p— =09 + V.7

In solid mechanics, we considered only equilibrium states. Now we want
to study time dependent solutions.

We still consider a reference equilibrium state, for which @ = 0.

We then consider the time-dependent displacement field from this ;-
reference state (x,t). The velocity field is defined as  ¥(z,t) =

E.
Neglecting gravity, we obtain the following dynamical equation.
d*i o -
Py = (A + p)grad (diva) + pAd
For any scalar quantity «(t, %), the Lagrangian time derivative writes
L e ae)] = 22+ 225 (chainru
- = e —
at a0 ot oz ¢ (chainrule)
Dropping the non-linear, high order terms in the displacement field, we get:
2 —
p% = (A + p)grad (divad) + pAu
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Planar wave solutions

We are looking for plane waves of the form u(t, ¥) = f(e?- T — ct)

where the unit vector ¢ marks the direction of propagation of the wave.
2f (A +w)(f" - e+ pf”
f( Je; with s=¢&-Z—ct

and s i —f’(s)c

8_’

We have two types of solutions:

1- Transversal waves for which f e=0and pc f f

2- Longitudinal waves for which f = f& and pc®f” = (A + 2u) f”

. : 14 20+ A
Non-trivial solutions have wave speeds cr = ; and cp =

P
C_T:\/l_QV </2/2~0.7

CrL, 2(1 —I/)

Transversal waves are always slower than longitudinal waves.
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Analogy with electromagnetic waves

We use the Helmholtz decomposition u = ?cﬁ + ? X Z
. : op  0A, 0A;

which reads in components form U; = + —
Ox;  Oxz;  Oxy

with the Gauge condition ? : Z = 0. Using vector calculus, we have
A(%ﬁ)—? (A®) (? Z)—? (AZ) ?-WXZ):O
p8t2 {%ﬁ}ﬂ)a 2 {? X} A+ 20V {AG) + 4V x {AZ}

This is equivalent to the following 2 equations:

82 02 A
P = A t2mAs pS = uad

We can put these equation in the d’Alembert form

(A_ia_2)¢:0 (A_iai)Z:o

¢ Ot? 2. Ot2

Although different, these are analogous to the electromagnetic waves equations.
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Monochromatic plane waves

The most general harmonic solution for the previous equations are
¢ — Qb() eXpi(Wt_kL'F) X = ZQ expi(Wt_ET'F) XO . ET =0

where kL and kr are vectors of complex numbers.

If any of the 3 components is imaginary, we have surface or evanescent waves.

If the 3 components are real, we have volume waves.

In the latter case, we can write kp = kré  — k% — w—2 =0
C
B 3 2
kL = ]CL(B — k% — — =90
We have 2 types of volume waves: c2

1- Longitudinal waves: P waves, Pressure waves or Primary waves:
U = ?Qb = Re (—ZkL€¢O eXpi(Wt_kLg"F)>
2- Transversal waves: S waves, Shear waves or Secondary waves:

U = ? « A = Re (—ikTé’x Zo expi(“’t_kTg’F))

Valid for an infinite medium: boundary conditions don'’t play any role !
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P-wave

[- Compressions —I

Volume waves

? = k2 ¢y expl)

Undisturbed medium

‘_. Dilatations —‘

i

Direction of wave propagaticn

S-wave

[

Doube Amplitude

+—Wavelength=——p

Direction of wave propagation

S waves are polarized
A

u(t,7=0) = Re(zo exp” ")
= Zl cos (wt) + Zg sin (wt)
where ZO = Zl + @'22

Linear polarization

Ay | 4,

Circular polarization

A LA, Ay =4
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Surface waves

We are looking for wave solutions propagating along the x direction, with a
boundary surface at plane z=0.

i These waves must be trapped near the surface.

We consider kr = kr o€, + ikp &, k= ki z€x +ikp €,

[l L] w
We restrict ourselves to waves with k7, = kL . = -

9, —

Injecting the general solution in the wave equations, we have 2 dispersion relations
1 1 1 1
ki, =ki=w’ (———2> k7, = k7 = w? <———2> c<cr<ecr
The two potentials write now ¢ = ¢o exp™* exp™(*=#/) 1 _ A exphT? expi@(t=/¢)

These waves are evanescent in the z-direction, they propagate only along x. They
are localized within a thin layer Azp r ~1/kr

The wave velocity ¢ is however still unknown. It will be determined using specific
surface boundary conditions on the plane z=0.

Continuum Mechanics 22/04/2013 Romain Teyssier



Surface waves

Love wave
5 ',':,,’I.
4 ;"..‘ _ ¢ z’ ¢ A
A o ¢ f 1 ,/r / /“,u‘
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Z ]
f u
h 2
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Rayleigh wave
‘ : - ! L Fi
T . Ll et Leddied |
AR ey,
- : r . '-IIA ',A‘AA'AAAAIJAI‘JA
t A B
= Y < 4
o -~ ,L‘ - -
A - - -

Direction of wave propagation

The displacement field is given by

_d¢p 04,  w
ux_ﬁx_ 0z Zc¢ b Ay
0A, ,
Yy = ox :+Z%Az
_0¢p 0A, W
4= 3z+ Ox = kLo ZcAy

Displacements along y are called
«Love waves» while the vertical-
longitudinal waves are called
«Rayleigh» waves.

Planar waves travel without
attenuation (no dissipative
effects).
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Love waves on a free surface

oy
The displacement field is u, =0 uy = z;Az u, =0

0 lo 4, 0 B 0 “rA,
e=|lea 0 ieppA, T=Epl LA, 0 i%krA,
0 %%k A, 0 0 Lk A 0
We have Tr(é) = 0. Love waves are pure shear waves.
0 0
On the free surface at z=0, we have ? =c| 0 | =u i<krA,
1 0

Imposing T=0 means that the amplitude is zero.
Love waves don’t propagate on a free surface with an homogeneous half-space.

They propagate however in a stratified medium (see later).
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Rayleigh waves on a free surface
The displacement field is u, = —i—¢ —krd, u, =0 u,=kpp—i—4,
The strain tensor has the following components: ,
€Crp = —i—j¢+ i%kTAy €xy = 0 €rr = —’i%kL¢ — % (k% ~+ QC)—Q) A,
€yy =0 €yz =0
€2 = k20 — i%kTAy
Volume changes are due to the longitudinal component Tr(€) = (k% — w—2) P

We then use the elastic law & = )\Tr(E)T + 2ue and the surface boundary condition
W 1/ 5 w?
2
((A +2u)k7 — Aw—2> 6 — 2pi—krAy =0
C C

We require the determinant to be zero (non trivial solution), so we have:
1

5 (k7 + k%) {(N + 2u)k] — Mk*} — 2ukpkrk® = 0

The solution of this equation (together with the dispersion relations) will give k= w/c
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Rayleigh wave speed

_ C 9 c% 1 —2v o , ,
If we define s = — and ¢° = & = ————, the solution is obtained by solving
cT ¢ 2(1-v)

s9 —8s* —8(2¢° —3)s* +16(¢* —1) =0

. . 0,96 ;
The only physically relevant root is S R

0.862 + 1.14v 0,94
S ~
1 + v 0'92-_.......§ ...........

For the Earth, we have v >~ 0.25 0.9

The Rayleigh waves speed is |cg >~ 0.918cr|

0,86
o 01 02 03 0,4v0.5

Rayleigh waves are slower than S-waves: they are the slowest seismic waves.
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Love waves in a layer on top of a free surface

We are looking for wave solutions propagating along the x direction, with a boundary
surface at z=0 separating a layer of finite thickness H from an infinite half-plane.

The planar layer has density p1 and S speed ¢

t Yy IH while the infinite half space below has p2 and ¢2
/ Waves are evanescent in the half-space. We must choose
O/ » r  acomplex z-component: kg = ko z€r + tka L€,
In the planar layer, however, we consider fully harmonic waves k; = k1,2€x + k1 .€;

W
We are looking for propagating solutions of the form k1, = k2, =k = —

C
where the z-component of the potential vector write:
forz>0: A, = (Airexp(iklz) + AT exp(—iki2)) exp(i(wt — kz)) k1= ki,

forz<0: A, 5 = Asexp(kaz)exp(i(wt — kx)) ko = k2.,
Boundary conditions are: Dispersion relations are:
_ 2 2
- free surface at z=H: &7 =0 k2 4 k2 = w_2 k2 k2 = w_2
- contact discontinuity at z=0: o1 = 021 c <1 = ’
i = il ! :
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Love waves in a layer on top of a free surface

Free surface boundary condition at z=H writes: Afexp(ik1H) = AT exp(—ik1H)

Contact boundary condition at z=0 writes: priky (A7 — A7) = pokaAs
Continuity of the displacement at z=0 is: AT + AT = Ay
k
Looking for non-trivial solutions gives the dispersion relation: [tan (ki H) = 52]:
1]

1 1 1 1
k2: 2 _— — — k‘2: 2 _ — — 10.0 T T T oo T Tt
- (gma) B (G

We use a dimensionless speed s = c/c;

For each frequency w, there is a finite

number of modes c,(w) with n=0,1,2...

n=0 is the fundamental mode. It has the
lowest velocity and the highest energy.

Love’s wave are dispersive waves for
which the group velocity is

8&) 0.1 R I B R A L
,Ug — # c 1.0 1.2 1.4 1.6 1.8 2.0
ok

Love wave speed s=c/c,
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Seismic waves

In nature, waves originate from a single point, an earthquake. They propagate around
this point in a spherical (volume waves) or cylindrical (surface waves) pattern.

The elastic energy of a spherical wave decays as 1/ r? because 4mr°u¢® = constant .
In cylindrical geometry, it decays as 1/r and the amplitude decays as 1/+/r.

P-waves are the fastest, followed by S-waves. The amplitude decreases quickly as
the inverse of the distance.

Rayleigh and Love waves are the slowest, but they are surface waves, so their
amplitude decreases slowly. They are the most dangerous waves.

= w BIAralpursotorinnan ,“-IS.L:‘! I.\‘\’l_” ."'-z'-'l.\.f||l"‘-'|l'|'| | ". | H‘
: ' |I il " lll || ||I
r—\ ' I‘ “\_\ I minye

) | N surface waves
- | 1 . '
-~[_ =t \< | i P
Northridge earthquake (1994) ——— |zmit earthquake (1999), recorded in Boston.
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Elastic waves in elongated structures

We consider the curvilinear dynamical equilibrium equations. We consider only
vertical displacements and vertical velocities.

dv dl’
— = T . =0
W T de !
dv, dT _ duy
W T a M T
M
dx de ~ EI dz
We linearize the velocity terms, and dropping the y index we get:
0%u  EI 0%

ot? i pu Ox? —J
Without external forces, we are looking for solutions of the form

u(x,t) = Re (uO expi(wt_kx)>

2

d Bl
We find the dispersion relation w* = 7/64 with group velocity v, (k) ~

= — =24/—k
dk L4

The final solution is found by applying boundary conditions at the beam extremities.
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Elastic waves in elongated structures

| | We consider a beam with 2 supporting points and an
N vvvvvvvvvvvvvvvvey /N external force.

Boundary conditions write «(0) =«(L) =0 and «”(0) =u"(L) =0 (no torque).

. (27m$> . EI (2mn\°
e w _—
L L L

Allowed solutions are  u"(t,x) = ug exp’

27m
General solutions write u(t, ) Zu sin (=)

These are called the normal modes of the beam

If we apply now a time-dependent external force, we have in the normal mode basis
a2un
ot? n

If the forcing is monochromatic, g¢"(t) o exp’* , the solution is uy = (wn)io_ =

+ (@2 = " (1)

If the external forcing frequency is close to a normal mode frequency, we have a
resonant response and the amplitude of the wave can be arbitrarily large.
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Resonant elastic response

' 4 Millennium bridge in London (2000)

Catastrophe du Poat suspeads, acloell

Angers

-t
o
2355

Basse-Chaine bridge in Angers (1850)
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Theory of dislocations

The idea of dislocations in crystal structures originates from the large difference

between the Young modulus and the yield strength.

T
— e

00006060606666666¢

00006006606 066666
CO0O0O0OOGOOO006G0 6060060066060 60666¢
N000OOOOCOOCO660 0600660666066 666
000000 OOOGOO00 1000006000666 666¢
COO0OOOOOOEOO0 0600000606066 6066¢
COOO0OOOOOOOO0 ¢00600006060606066¢

—

2
We model the shear stress as a periodic function 7 = 7sin (%)

Parameter 7o is the yield strength required to get an irreversible evolution.

We match our non-linear model to the linear regime r ~ 7, <2—7T) xr = p%

b

We obtain |0, = Zﬁ , although experimentally o, ~ 107% to 107°F
T

This remained a mystery for centuries !
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Theory of dislocations

In 1934, Taylor, Orowan and Polanyi proposed independently that defects in the
crystal structure might explain this puzzle. These little imperfections, mostly linear in
shape, move through the crystal and trigger plastic deformations.

- ->
\
}
2 < { .
L1
— > —
<« - ey -
\
9
- : :
These topological defects are called dislocations. o S .

It is possible to shift a whole plane by one atomic — &
unit with much less energy: the «carpet analogy». : :
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N ,' Screw dislocations, for which
| the displacement field is
parallel to the defect line.

Geometry of dislocations

Although dislocations are in general of
arbitrary shapes, they are usually the
superposition of 2 basics geometries
that form a basis for dislocations.

Edge dislocations, for which the

displacement field is
perpendicular to the defect line.
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The Volterra construction

We consider a linear defect of infinite length, described by its tangent vector t. We
cut the cylinder vertically and displace the two ridges by a constant vector b.

Edge dislocation Screw dislocation
bLlt bl ¢
b is called the Burgers vector of the dislocation.
: : : jé du = }I{ —ds —b
Its length is usually one atomic separation.
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The Volterra construction

CL‘[) - xn x:l b x6

o o o o o e o o o o

[ ] ] @ s @ e o o ®

[ ® ® e e ® o o o o

[ e ® ® ® ® @ © @

® ® ® ® o, © ® e o
In a perfect crystal, we have: A dislocation creates a topological
n—1 defect, independent of the path used.
Z<fi+1 — fz) = fn — _)0 =0 n—1 ~
1=0 Z(fH_l — fl) = fn — f() =b

1=0
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Screw dislocation
We find the equilibrium displacement field around a screw dislocation (elastic theory).

/ = \ We have no displacement in the x and y directions u, = u, =0
\/ -~

v Nap— / The unknown is here wu.(x,y). We have? i=0.
b4’“"&\.w —____:,_./ _ _ 10 ( 3uz> N 1 0%u,

Au, = — — —
The Navier equation reads Awu 5 r 5 2 902 0

ou,,
1/ .. Boundary condition: ]{ du, = j{ do = b
|| e 0 0 0
N b0 _
A ¥ The solutionis: u,(r,0) = — with e=| 0 0 -
X Q1 0 b 467“
4rr

The stress tensor is purely deviatoric (pure shear). The elastic energy per unit length is

dEl. 1 — - b? dr b? r
- Tr(Z 2)d v = _1 max
dl 2/5 Ho €)dS = e e ( )

The minimum radius corresponds to the core of the dislocation Prmin b~ 0.2 nm
for which the continuum approach breaks down and 7,42 =~ 10~* cm to the
average distance between 2 dislocations in the crystal.

1
Standard approximation for the dislocation energy: |E ~ —pub*L

2
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Y

&b A go|ytion:

X h

The stress tensor writes o, =

Oyy

Hooke’s law in 2D gives €. =

(plane strain)
€yy
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Edge dislocation

0

2D plain strain problem @ = (uz(z,y), uy(z,y),0)
Airy’s bi-harmonic function satisfying AA¢ =0
Symmetry along the z axis, with a discontinuity at x=0

X
_ — _ 2 2
a—Inr = ar2 where 7r=+vz°+y

Simplest harmonic function antisymmetric wrt the x axis

B A¢ =

ox 5
Trick: find v such as Av = Inr and then qb:a%v
7"2 T2 a X
v="-Inr— - so that ¢=§<x1nr—§)
0%’ ax ,, 5
_Te_ar e
Oy? 27“4( )J _ 0% ¢ :ﬁ£<x2_y2>
¢ azx ,, 5 i oxdy  2r?
o2 apA W)
a I ¢
_@T_‘l _(1—2V):I;2—(1—|—2y)y2]
a I r
= gt (=207 + (3= 20)y7]
a Yy
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Edge dislocation

Ol a x Y2
= €3y = 1—2v)= — 22~
We have ——= =¢ ~ 1 ( V) 2 ra
which integrates easily into:  |u, = (1 —2v)Inr + &y_
441 41 72
For the other component, we pose 0 = arctan% to get 65;?’ = f 2(1 — v) — cos 20
]
: : : (1 ) a Ty
U —v)— ——
Integrating with respect to 9 gives [uy = 2 1172
We now use the boundary conditions: o= —"

O, (1 —v)m
]{dux ]{udezo j{duy j{a“yde—ﬁu—u) b
(4

= ¢ sinf
The stress tensor in cylindrical coordinates reads ¢ = - [ cosy s ]

. 2r | sind acos@
The eigenvalues are 01,2 = o (cos@ £sinb), o3 = v (01 +03) = —2vcosb
_ 1 /= _ =
Using Hooke’s law € = o (E 1T V(TrE)I), we get €12 = f;r (cosB(1 — 2v) £ sin6)
1 1
. P - Eedge — —Escrew
The elastic energy density is just 5 (o1€1 + 02€2) 1—v

The elasti it length i e _ a” —(1—-v) dr p b In (e
— V)T =
e elastic energy per unit length is i 1 e

Tmin
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Non-singular dislocation model

In the two previous models, the stress tensor diverges as x, y all tend to zero.

The elastic energy is also infinite, unless one introduces a cut-off radius.

b
For an edge dislocation, along y=0, we have o,, = a
b 1 —v2mx
and for a screw dislocation, o,. = u—— . The singularity at x=0 is due to the

2mx
continuous approach, neglecting the effect of the underlying crystal structure.

To remove the core singularity, one idea is to replace the Burgers vector by a

+oo
continuous distribution of Burgers «charge» density p(x) such that/ p(x)dzr =
i

).

The singular case from the Volterra construction is just pv (z) = bd

We then construct a non-singular +00 /
J Ozz(x) = oy (x) % p(x) = a / plz )/dac’
stress field using a convolution 2m(l—v) J_ o T —2
4% (SC) &G, P (x) l“'\O-V (.CU) f‘\‘\
‘Icore size ? B \ I N |
1 | R i N
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Work required to move a dislocation line

g We consider a infinitesimal dislocation
) line a length ds. We displace it by a
fixed perpendicular vector déa .

We know from before the displacement
field u around the dislocation line (edge
or screw). The difference between the

initial and the final displacement field is:

(%) = U(T — 6@) — U(T) ~ _OUsa G
0x
sa We consider a cylindrical volume along the dislocation line.

This cylinder is cut by the plane containing the initial and final
dislocation. Its surface is decomposed into 3 main surfaces.

S=51+52+53
We now consider a constant external stress field applied to move the line.

The work required is just W = / T . §idS = — / o7 - Goads
S S
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Work required to move a dislocation line

We now compute the work, using these various steps.

We have first from the dot product and the symmetry of the stress tensor:
(Goa) - (77) = (7Goa) -7
. 0 (9’Uk
Using the component form, 04;Gij0a; = da;— (okiu;) = da;—
ﬁxj 8xj
we can therefore simplify the expression into this:
(Goa) - (77) = (93 V)&
We used the fact that the stress tensor is uniform and we introduced ¥ = 4 .
We now used the famous vector identity

€><(Zxﬁ):Z(?-B)—§(€-Z)+(§-?)Z—(Zﬁ)§
to get ?x(aaxﬁ):aa(?a)—(aaﬁ)a

Using Stoke’s theorem, we finally obtain (introducing the line contour C
bounding the cylindrical surface S)

5W:/(5axa).df—/(€-a)5a.ﬁds
C S
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Work required to move a dislocation line

We will now compute these 2 terms (a surface
term and a contour term) for each of the 3
main surface elements defining our cylinder.

singularity, we need to cut S2 in the mid plane to
account for the Burgers vector.

For S1 and S3, since 7 =t and G L ¢, the surface term
vanishes and we have (care with the right-handedness)

,‘J, S — — T = g 7
1 T/ oW, = / (6a x v) - dl OW3 = / (6a x v) - dl
/ Cl C3

For S2, we first compute the contribution from the contour term.

We see from the diagram that S2 shares a fraction of contour with S1 and S3.

SWaor = —6Wy — 6Ws + / (6@ x ¥) - di’
Ca

On each side of the mid plane cut, we have
7(0Y) =7 (07) =3b,di* =#ds, dI~ = —#ds

/Cz(5d’xz7)-df: (Mxﬁg)-&is
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Work required to move a dislocation line

We now compute the surface term: 0W5 g = —/ (? *) oa - ndS

b
For a screw dislocation with a non-singular core, we have ‘? ‘ < Omax ——

mr
so that [0Ws s| < ‘6 ‘5a2m‘ds—>0 as r — 0.

Collecting all the contributions, we finally have the work required to move the line as
SW = 6Wi + 6Wa.c + 6Wa s + 6W;5 = (55 x %E) - #ds
oW = - (7bx ) ds = Fds- oa
where we defined the Peach-Koehler configuration force (per unit length)

?z?gxf

This force is not a true force associated to some interaction. It is just related to the
energy that is required to move a dislocation over some distance.

This energy comes from a topological rearrangement of the crystal structure.

There is a strong analogy with the Biot-Savart force and magnetic field induced from
a current loop.
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Peierls-Nabarro model

Y A The displacement field above
and below the cut plane is
< discontinuous. We define
i — A(w) =t (#,07) = ua(,07)
/ For a Volterra edge dislocation, we have
x Vs

- }’;-.

A(x) =b for x < 0 and A(z) = 0forz > 0

Using the same regularization technique, for a non-singular dislocation we can
+oo
define a smoothed displacement jump as  A(xz) = / p(z")dz’

X

We now compute the elastic energy in a cubic volume containing the cut plane.
1 — 1
Clapeyron’s theorem states that F' = 5/ Tr (7 €)dV = 5/ T . @ds
% S

The normal vectors are just 7 = ¢, so that when the cube vanishes in its vertical
. . 1 [T
dimension we have F = 5 / Oay(2,0) (ug(2,07) — uy(x,07)) da

—

1 [T
F = 5/_00 Ozy(T)A(z)dz
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Peierls-Nabarro model

S b
For a Volterra edge dislocation with b = be,, , we have 04, = ] a s
N _
and the elastic energy F = p b dz is infinite.
1 —vdnr x
p e p(a)
Including now the core regularlzatlon mechanlsm Ty (T dz’
27‘(’ 1 — 1/) x —
L A(x)d e d dz’
F=— - =
so that 2/_Ooay()()a: 1_y/ / . dadz
4+ o0 + o0
Integrating by parts, we get / / "Nlog |x — 2’ |dxd’
47‘(’ 1 — V)

The elastic energy is now finite, but |’£Ldepends directly on the core density p(x)

under the normalization constraint/ p(x)dx =b. The energy decreases as the

dislocation density becomes wider and wider. Ultimately, the dislocation dissipates.

In fact, the core density is stabilized by the misfit energy between the upper and lower

atomic layer wrt to the cut plane. It is modeled using a periodic function of the

displacement to ensure the confinement of the core.

Continuum Mechanics 22/04/2013
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Peierls-Nabarro model

The total energy of the cut plane is therefore the sum of 2 components:

+o00 +o0 +o0
Eiot = / o(A(x))dx + 7 1 / / log |z — 2'|dzxds’

oo (@

83:'
We use the Variational Principle to find the core density that minimizes the energy.

We write A(x) = Ag(x) + 0A(x) and compute dE;,; as

SE,. — /_:O SA(x) [32<A0) 27r(1u_ y /_:O iOEI;),dx’]

where the unknown core denS|ty satisfies = —

The energy is minimized if the integrand is uniformly zero. Our misfit energy model

gives us an integro-differential equation found by Peierls and Nabarro

oo A1 (1
L Ap(x’) ,, 2w . 2mAy
27T(1—u)/_oo x—x’dx_%bsm b
. . b b x
The solution was found by Peierls to be |Ao(z) = 5 rctan 3
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Peierls-Nabarro potential
b ¢

We have now an explicit form for the core density p(z) = oy
b2
The core size £ = a is set by the competition between the elastic Lamé
87’(‘2(1 - V)¢0
coefficient that tends to spread the dislocation and the misfit potential that tends to

localize the core. The stress field along the x-axis follows the non-singular solution
(@) = A2
zy\L) =
7oy on(l — v) €2 + 22

In order to account for the crystal structure, we introduce explicitly the atomic lattice

as well as the time-dependent coordinate of the dislocation. We are trying to get a
dynamical description of the dislocation, beyond the static non-singular core model.

+oo
Emisﬁt:/ d$NZ¢ b_$d)

- neZz
1

Using various trigonometric identities, we get FEmnistit = 2¢0¢ b§ € ¥ (nb—24)2
— x4
neZ
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Peierls-Nabarro potential

400 _
We now use the Poisson summation method Z f(n) = Z / f(x)e?m e dy

nez keZ "

. . . ok ®d _or|kE
to write the following expansion  Enissie = 2608 Y ™ e 27|k |
kez

We consider only the leading order terms (k=-1,0,+1) to get finally

Eristit = 200& (1 + 27276/ o <27T%d>)

: : : : 0
We can get the force required to move the dislocation using Fj :-aTEmiSﬁt
d

This force per unit length is another configuration force. It reads

Fy = 'Lb—be_%g/b sin (27Tﬁ>
(1l —v) b

We now determine the yield strength by requiring that a dislocation of length L
moves along the entire crystal dimension L to generate a plastic displacement of
size b. This translates into the relation o,5b = max(F,)L>

M e—27r€/b < ﬁ

Assuming S=L?, we finally get |0y = (1 —7) o
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