
Continuum Mechanics 25/06/2013 Romain Teyssier

Continuum Mechanics

Lecture 6

Waves in Fluids

Prof. Romain Teyssier

http://www.itp.uzh.ch/~teyssier 



Continuum Mechanics 25/06/2013 Romain Teyssier

- Sound waves 

- Jeans instability

- Shallow water equations

- Gravity waves

- Rayleigh-Taylor and Kelvin-Helmholtz instabilities

- Quasi-linear waves and shock formation

- Shock waves and Rankine-Hugoniot relations

Outline



We consider the reference equilibrium state                               everywhere in space.

Waves are small disturbances of this equilibrium state

We use the fluid equation in one dimension without gravity source term. 

In conservative form, they write
∂tρ+ ∂x (ρv) = 0

∂t (ρv) + ∂x
�
ρv2 + P

�
= 0

∂tρ+ v∂xρ+ ρ∂xv = 0

∂tv + v∂xv +
1

ρ
∂xP = 0

ρ(x, t) = ρ0 + δρ(x, t) with δρ � ρ0

v(x, t) = v0 + δv(x, t) with δv � v0 and c0
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Sound waves

We assume a barotropic EoS P = P (ρ)

Far from any discontinuities, we can also use the quasi-linear form:

ρ = ρ0 and v = v0



We are looking for monochromatic planar wave solutions:

∂t(δρ) + v0∂x(δρ) + ρ0∂x(δv) = 0

δρ = ∆ρ expi(kx−ωt) δv = ∆v expi(kx−ωt)

∂t(δv) + v0∂x(δv) +
c20
ρ0

∂x(δρ) = 0

ik
c20
ρ0

∆ρ+ (−iω + ikv0)∆v = 0

(−iω + ikv0)∆ρ+ ikρ0∆v = 0

(ω − kv0)
2 − k2c20 = 0
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Sound waves

We linearize the quasi-linear form, dropping high-order terms.

where we have used the definition of the sound speed c2 = P �(ρ)

We obtain the following linear system for the amplitudes:

In order to have a non vanishing solution, the determinant must be zero.

We obtain the dispersion relation for sound waves:

The velocities of sound waves are v =
ω

k
= v0 ± c0



The previous linear system of partial differential equations can be written as

                              where the vector of unknowns is W = (δρ, δv)T

A =

�
v0 ρ0
c20
ρ0

v0

�
∂tW +A∂xW = 0

δα+ =
1

2

�
δρ+

ρ0
c0

δv

�

δα− =
1

2

�
δρ− ρ0

c0
δv

�

∂t(δα
+) + (v0 + c0)∂x(α

+) = 0 ∂t(δα
−) + (v0 − c0)∂x(α

−) = 0

       are conserved quantities along their corresponding characteristic 
curves: they are called Riemann invariants. 
δα±

dx

dt

±
= (v0 ± c0)

λ± = v0 ± c0
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Riemann invariants and characteristics

The matrix A is given by                              . The eigenvalues are 

and the eigenvectors components are given by

Since the matrix is diagonal in the eigenvector 
basis, we have :

We define the characteristic curves 
(different from the trajectories) as:

Given the initial conditions at t=0, we can reconstruct the final solution by combining 
Riemann invariants along each crossing characteristic (in this case straight lines).



We drop the constant 4πG from now on:

Momentum conservation:

ρ = ∆Φ = −−→∇ ·−→F

ρFx = −
�−→∇ ·−→F

�
Fx = −−→∇ ·

�
Fx

−→
F
�
+
�−→
F ·−→∇

�
Fx

∂xFx = −∂2
xxΦ = ∂xFx

∂yFx = −∂2
xyΦ = ∂xFy

∂zFx = −∂2
xzΦ = ∂xFz

ρFx = −−→∇ ·
�
Fx

−→
F
�
+
−→
F ∂x

−→
F = −−→∇ ·

�
Fx

−→
F
�
+ ∂x

���
−→
F
���
2

2

∂ρ�v

∂t
+
−→∇ ·

�
ρ�v ⊗ �v + P1 +

−→
F ⊗−→

F − F 2

2
1

�
= 0

∂jFi = −∂ijΦ

Continuum Mechanics 25/06/2013 Romain Teyssier

Self-gravitating fluids

∆Φ = 4πGρ with
−→
F = −−→∇Φ

The fluids equation in conservative form in presence of gravity write:
∂ρ

∂t
+
−→∇ · (ρ�v) = 0

∂ρ�v

∂t
+
−→∇ · (ρ�v ⊗ �v) +

−→∇P = ρ
−→
F

In a self-gravitating fluid, the gravitational potential follow the Poisson equation

For each component,  we have

We then use the relations

Finally, we have

The tidal tensor

is symmetric



For long wavelength,              small perturbations grow exponentially fast.

so ω is purely imaginary and                          → Instability ! 

For short wavelength,               we have propagating waves with

We get the following dispersion relation

∂t(δρ) + ρ0
−→∇ · (δ�v) = 0

∂2
t (δρ) = −ρ0

−→∇ · (∂t(δ�v)) = c20∆(δρ) + ρ0∆(δΦ) = c20∆(δρ) + 4πGρ0(δρ)

k < kJ

δρ ∝ exp±|ω|tω2 < 0
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Jeans instability

We consider an equilibrium state with ρ = ρ0, Φ = 0 and v = 0

In this infinite medium, the Poisson equation has to be modified ∆Φ = 4πG (ρ− ρ0)

The perturbed state satisfies ∆(δΦ) = 4πG(δρ)

The linearized continuity equation is 

The Euler equation becomes ∂t(δ�v) +
c20
ρ0

−→∇(δρ) +
−→∇(δΦ) = 0

Taking the partial time derivative of the continuity equation leads to

We are looking for plane wave solution δρ = ∆ρ expi(kx−ωt)

ω2 = c20k
2 − 4πGρ0 = c20(k

2 − k2J)

where we have introduce the Jeans length kJ =
2π

λJ
=

�
4πGρ0
c20

v ≤ c0k > kJ



control volume

∂

∂t
(hv) +

∂

∂x

�
v2h+ g

h2

2

�
= 0

∂

∂t

� x2

x1

� h

0
ρdxdz =

∂

∂t
(ρh∆x) = −ρ (v2h2 − v1h1)
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Shallow water equations

In the water layer of varying thickness h(x,t) and constant density ρ, the 
pressure is given by hydrostatic equilibrium p(x, z) = p0 + ρg (h(x, t)− z)

∆x = x2 − x1 h1 � h2 � h(x, t)

∂

∂t
(h) +

∂

∂x
(vh) = 0

Using momentum conservation on the same control volume, we have

In air, we have p=p0 and ρ=0.

We write mass conservation in integral form in the control volume with 

                       and                             , assuming               andvz = 0 vx(x, z, t) = v(x, t)
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Tsunami modeling using shallow water eq.

http://kingkong.amath.washington.edu/clawpack/

http://kingkong.amath.washington.edu/clawpack/
http://kingkong.amath.washington.edu/clawpack/


We add to this the boundary condition at the bottom

We consider the equilibrium state                    and 

−→∇ · �v = 0 −→ ∆φ = 0∂tφ(x, z, t) +
v2

2
+ gz +

p(x, z, t)

ρ0
= C(t)

∂tη(x, t) + vx∂xη(x, t) = vz
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Gravity waves

z = η(x, t)
z = 0

z = −H x

z

sea level

ground

air

water

η(x, t) = 0

In air, we have              and in water,                        .

Using the second Bernoulli theorem, using                           we have in the volume:

p = p0 p = p0 − ρ0gz

�v(x, z, t) =
−→∇φ

�v(x, z, t) = 0

and

vz(z = −H) = 0

and the kinematic boundary condition at the top

Incompressible fluid dynamics in deep water under constant gravity.



where the fluid velocity is                and  

�r(t) = (x(t), η(x(t), t)) �v(t) = (x�, ∂tη + x�∂xη)

�v(t) · �n = (vx, vz) · �n (vx, vz) �n =
(−∂xη, 1)�
1 + ∂xη2

∂tη + vx(x, η, t)∂xη = vz(x, η, t)
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Kinematic condition on a free surface 

For an incompressible inviscid fluid, we have to solve a Poisson equation with a 
boundary condition on the outer surface                .

When the outer surface is fixed, both the location and the normal vector are 
function of space only. This results in a Neumann BC for the potential.

For a free surface that moves, this is more complicated. 

�v · �n = 0

z = η(x, t)

�n

A point on the free surface has position and velocity given by

The BC writes (no vacuum between the fluid and the free surface):

The final kinematic boundary condition writes



The upper BC gives us the second relation

for which the general solution is

∂tη(x, t) = vz(x, 0, t) = ∂zφ(x, 0, t)

φ(z) = φ+ exp+kz +φ− exp−kz

ω
2 = gk

exp+kH − exp−kH

exp+kH +exp−kH
= gk tanh (kH)
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Gravity waves

We linearize the previous set of equations:
At the upper surface, we have ∂tφ(x, 0, t) + gη(x, t) +

p0
ρ0

= C(t)

and

At the bottom, we have ∂zφ(x,−H, t) = 0

We are looking for propagating waves in the x direction
φ(x, z, t) = φ(z) expi(kx−ωt)

The Poisson equation in the volume writes φ��(z) = k2φ(z)

The lower BC gives us the first relation φ+ exp−kH −φ− exp+kH = 0

η(x, t) = A expi(kx−ωt)

k
�
φ+ − φ−� = −iωA

Bernoulli relation at the upper BC gives us 

where we absorbed the constants in the velocity potential.

−iω
�
φ+ + φ−� = −gA

The dispersion relation writes

�



∂t(δv) + g∂x(δh) = 0
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Gravity waves

Two interesting limiting cases:

1- Deep water: 

2- Shallow water:

kH � 1 and kH � 1

H � 1/k ω =
�

gk

H � 1/k

vg =
dω

dk
=

1

2

ω

k
ω = k

�
gH v =

�
gH

We use the shallow water equations to derive directly the second result.

We linearize the quasi-linear form: ∂t(δh) +H∂x(δv) = 0
�

ω
2 = k

2(gH)

In shallow waters, the speed increases as the square root of the depth.

Close to the shore, waves tend to 
decelerate. Peaks decelerate slower than 
the troughs. They tend to catch up. At the 
shore, the trough stops, while the next peak 
still travels fast: the wave is breaking.

See «formation of a shock wave».



The boundary conditions for the velocity field are

and at z=0 we have                                       and                                     .

We also impose pressure continuity at the interface               and from Bernoulli:

2 semi-infinite incompressible fluids separated by an horizontal interface.

�v1 =
−→∇φ1

�v2 =
−→∇φ2

−→∇ · �v2 = 0 = ∆φ2

−→∇ · �v1 = 0 = ∆φ1

∂tφ1 +
v21
2

+ gη +
p1
ρ1

= C1 ∂tφ2 +
v22
2

+ gη +
p2
ρ2

= C2

p1 = p2

φ1 = φ1(z) exp
i(kx−ωt) φ2 = φ2(z) exp

i(kx−ωt) η = A expi(kx−ωt)
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Rayleigh-Taylor instability

ρ1

ρ2

g
z = η(x, t)

z = 0

z

x

In the 2 separate volume, we have

As usual, we linearized these equations and look for planar wave solutions:

∂tη + vx,1∂xη = vz,1 ∂tη + vx,2∂xη = vz,2

�v → 0 when z → ±∞



φ1(z) = φ1 exp
−kz φ2(z) = φ2 exp

+kz

ρ1 (∂tφ1 + gη) = ρ2 (∂tφ2 + gη)

∂tη = ∂zφ1 = ∂zφ2

−iωA = −kφ1 = +kφ2 ρ1(−iωφ1 + gA) = ρ2(−iωφ2 + gA)

ω2 =
ρ2 − ρ1
ρ2 + ρ1

gk

ρ2 > ρ1 ρ1 � ρ2
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Rayleigh-Taylor instability
The Poisson equation in each domain is                     and 

The unique solutions that satisfy the velocity BC at infinity are

φ��
1 = k2φ1 φ��

2 = k2φ2

Linearizing the Bernoulli equations and imposing equal pressures give:

where we have absorbed the 2 constants C1 and C2 in the velocity potentials.

Linearizing the 2 interface kinematic conditions gives:

We use the planar wave solutions in the previous equations to get the system:

The dispersion relation follows:

If               , we obtain stable gravity waves in deep water (especially if                )

If               , the perturbation is unstable. ρ2 < ρ1
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Rayleigh-Taylor instability



η(x, t) = A exp i(kx−ωt)

vx,1 → U1 when z → +∞ vx,2 → U2 when z → −∞

∂tη + U2∂xη = ∂zφ2

(−iω + ikU1)A = −kφ1

(−iω + ikU2)A = +kφ2ρ1(−iω + ikU1)φ1 = ρ2(−iω + ikU2)φ2

ρ1∂tφ1 + ρ1U1∂xφ1 = ρ2∂tφ2 + ρ2U2∂xφ2

ω = k

�
ρ1U1 + ρ2U2

ρ1 + ρ2
± i

√
ρ1ρ2

ρ1 + ρ2
|U1 − U2|

�

φ1(x, z, t) = φ1 exp
−kz exp i(kx−ωt)

φ2(x, z, t) = φ2 exp
+kz exp i(kx−ωt)

�v2 =
−→∇φ2 + U2�ex
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Kelvin-Helmholtz instability
We consider exactly the same set-up as for the RT instability, except that gravity is 
absent and the boundary conditions at infinity are different (shearing flow). 

The planar wave solutions are now

The boundary conditions at the interface are now more complicated.

The kinematic conditions are linearized as ∂tη + U1∂xη = ∂zφ1

and

Pressure equilibrium and Bernoulli relations (absorbing the constants) give

Using the plane wave solutions, we find the system

The dispersion relation is:

�v1 =
−→∇φ1 + U1�ex
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Kelvin-Helmholtz instability



The 2 quantities                                                   and  

P = ρc20

α−(x, t) = v(x, t)− c0 ln ρ(x, t)

∂tα
− + (v − c0)∂xα

− = 0

dx+

dt
= v(x+(t), t) + c0

dx−

dt
= v(x−(t), t)− c0

dx0

dt
= v(x0(t), t)

v(x, t) =
α+(x1) + α−(x2)

2
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Quasi-linear waves and Riemann invariants

∂tρ+ v∂xρ+ ρ∂xv = 0 ∂tv + v∂xv +
1

ρ
∂xP = 0

The 1D isothermal fluid equation in quasi-linear form write:

with

α+(x, t) = v(x, t) + c0 ln ρ(x, t)

satisfy                                             and                                           .∂tα
+ + (v + c0)∂xα

+ = 0

They are Riemann invariants along the characteristic curves:

Characteristic curves are different than the fluid trajectories:

At any point in space-time (x,t), we can compute the fluid velocity as:

where x1 and x2 are the starting points in the initial conditions of the 2 characteristics.

What happens if two «right-going» characteristics cross at the same point ?

                                             → formation of a shock.



The solution blows out at the finite time                     → formation of the shock.

We consider the general initial condition            .

The solution is given by the implicit equation 

Taking the time derivative leads to                                               and

∂tv + v∂xv = 0

∂tv + ∂x
v2

2
= 0
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A simple non-linear example: Burger’s equation

Burger’s equation writes in quasi-linear form as 
and in conservative form as

In this case, characteristic curves are equal to the trajectories and the velocity is 
the Riemann invariant. It follows that characteristic curves are straight lines.

v0(x)

v(x, t) = v0(x− v(x, t)t)

∂tv = (−v + t∂tv) v
�
0(x− vt) ∂tv = −v

v�0
1 + tv�0

t = − 1

v�0



These are conservation laws connecting the upstream and downstream regions.

∂tU + ∂xF (U) = 0

F2 − F1 = S(U2 − U1)

t1

t2

� t2

t1

� x2

x1

(∂tU + ∂xF ) dxdt = U2(x2 − x1)− U1(x2 − x1) + F2(t2 − t1)− F1(t2 − t1) = 0
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Shock waves and the Rankine-Hugoniot relations
Shock waves are discontinuities propagating in the flow that arise naturally from 
characteristic crossings and non-linear waves steepening.

We consider here the 1D case (perpendicular to the shock surface).

x

t

The fluid equations write in conservative form:

We use a small enough control volume around the moving discontinuity (speed S) so 
that the flow quantities can be considered as homogeneous (x1=St1 and x2=St2).

x1 x2



The shock relations lead to                                              or

We have now in the frame of the shock:

Change of variables : 
ρ2w2 − ρ1w1 = 0

ρ2w
2
2 − ρ1w

2
1 + ρ2c

2
0 − ρ1c

2
0 = 0

r = 1 and r = M2

ρ2 = M2ρ1

w2 =
1

M2
w1
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Rankine-Hugoniot relations
Burger’s equation:                                   the shock speed is U = v and F =

v2

2
S =

v1 + v2
2

Isothermal shocks: U = (ρ, ρv) and F = (ρv, ρv2 + ρc20)

Mass conservation: ρ2v2 − ρ1v1 = S(ρ2 − ρ1)

Momentum conservation: ρ2v
2
2 − ρ1v

2
1 + ρ2c

2
0 − ρ1c

2
0 = S(ρ2v2 − ρ1v1)

w1 = v1 − S w2 = v2 − S

We define the compression ratio                 and the Mach number r =
ρ2
ρ1

M =
w1

c0

r2 − r(M2 + 1) +M2 = 0

Rankine-Hugoniot relations are a one-parameter (S) family of solutions.
The shock speed is usually determined using boundary conditions downstream.



      We have at the wall of the sink            .

RH relations are:

We define the height ratio             .

We have

For            , 

We assume that we have a wall boundary condition on the left             and            .

We don’t know the shock speed yet. We have                                          with 

Since             , we have                  which leads to                               .

Among the 2 solutions, only one is physically admissible : compressive wave.

w2 =
1

M2
w1

−h1v
2
1 +

1

2
gh2

2 −
1

2
gh2

1 = S(−h1v1)

F =
v1√
gh1

Continuum Mechanics 25/06/2013 Romain Teyssier

Examples of shock waves solutions

ρ2 = M2ρ1 M =
w1

c0

v2 = 0

v2 = 0 S = −w2 S2 − v1S − c20 = 0

S =
1

2

�
v1 +

�
v21 + 4c20

�

v1 < 0

For a strong shock                    , we have                                                                          S � c20
|v1|

(|v1| � c0) ρ2 =
|v1|2

c20
ρ1

Shock wave on a wall for an isothermal ideal fluid.

Hydraulic jump: shallow water. v2 = 0

−h1v1 = S(h2 − h1)

r =
h2

h1

Froude number

r3 − r2 − r(1 + 2F 2) + 1 = 0

F � 1 r �
√
2F S �

�
gh1

2


