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Outline

- Helmholtz decomposition

- Divergence and curl theorem

- Kelvin’s circulation theorem

- The vorticity equation

- Vortex dynamics and vortex flow

- Bernoulli theorem and applications
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Helmholtz decomposition of the velocity field

For a continuous and differentiable velocity field, we have the following unique
decomposition:

U = €¢ + ? X Z with Gauge condition ? : Z =0
The scalar and vector potential are solutions of A¢ = ? -v and AZ = —? X U
with appropriate boundary conditions.
The source terms for these 2 Poisson equations are respectively

V. : the divergence of the velocity field

? x U : the curl of the velocity field

Limiting cases:

1- ? - = 0 for an incompressible flow. The velocity field is solenoidal or
divergence free.

2- ? x v = 0 for a potential flow, because in this case the velocity field
derives from a scalar potential. The velocity is said to be curl free.
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Physical interpretation of the divergence

We have seen in the previous lecture that the variation of a Lagrangian

volume is given by d
—jizzh/‘chﬁi?-ﬁ
dt v,
The rate of change of the specific volume V =1/p is %% — ? T

Using the divergence theorem, we can express the total volume variation
as the net flux of volume across the outer surface as:

avi _ / 7. 7dS

dt s,

Let’s consider the case of a point source (or sink) of divergence at r=0.
V.5=Q 87 =0)

We have a spherically symmetric velocity field around the source. Using
the divergence theorem, we have: Q = 4nrv,

Q .

67“
Arr?

A source (or sink) velocity field is thus |t =
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Physical interpretation of the curl

We define the vorticity as the following vector field @ = V x &

In components, we have W= vy — Oyv,

For a rigid body motion 7 = @ + (I x 7, we have & —V xxi=20
The vorticity is thus twice the local rotation rate in the fluid.

A vortex is a vorticity line along the axis i = W /||

We introduce Stoke’s theorem or curl’s theorem.

We define the circulation I' as the integral of the I — / 7.4l = / ondl
parallel velocity along a closed contour. L L |

We have the following identity |I' = / 7-dl = /(? x ¥) - ndS
L S

Let us consider a vortex line at r=0. ? x = €,€e, §(r=0)
Using Stoke’s theorem, we have [' = 27rvg = €,

A vortex velocity field is thus v =
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Velocity field induced by a vortex distribution

This is the Biot-Savart law for vortices.

We consider an incompressible fluid for which ? T=0
We know from the Helmholtz decomposition that & = 3 « A + ?qﬁ
together with the Gauge condition ? - Z =0

The potential vector satisfies the Poisson equation AZ = —W

The solution is / E it &(7)da'®

X — .CI?
We need to add the scalar potentlal contribution, solving A¢ =0

with the appropriate boundary conditions (see lecture on potential flows).

We consider a filament of vort|C|ty oz ) 95( 0) using the curvilinear
coordinate s. g7 .,
X t(x )ds
|x —

/

For a vertical filament, we have 7 -7 =ré, 4+ (z — 2 )&, with =¢.

Q /+°° rdz Q and €, X ée, = —¢p

U(SE):E oo (7"2—1—22)3/269 27r7°
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Kelvin’s circulation theorem

L

0

Li = ¢¢,0y(Lo)

We consider a closed contour evolving with the flow. We use the inverse
Lagrangian mapping to compute the time derivative of the circulation.

d d [ . . d [ . O
T =4 / pdr= g [ w0 (G

d Dv | 0F ov Dv 0?2
—I'(t — d v d — - d¥ J-do= | —| =
i =), pr GGyt T /LO Gy =] o /LO” av [2] ’

We now inject the Euler equation for an ideal fluid g—: = 7 — 1?13

:/L . dx+/ ~Vpx VP-ids

If the external force derives from a potential £ = —?Cb

and if the fluid is barotropic 19]3 = ?H then %r — 0
p

Lagrange theorem: if initially the vorticity is zero, then it remains zero everywhere.
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The vorticity equation

We start with the Euler equation for ideal fluids g—: = ? — 1€P
P

Taking the curl leads to % + ? X (V- ?17) = ? « F — ? X (1€P)
p

U2

Using the identity v - ?ﬁ = ?(?) + & X U we have

@—i— (W x V) ? ?—i— 2€px§P

ot
Using the identity V' x (@ x 7) = (V DB+ (T V)G — (@ V)T
we find the vorticity equation:
3 1
%‘: GV (V -5+ Y x7+?€px€P

For a barotropic fluid under gravity, we have D (4 — W : ? T
Dt \ p p
Helmholtz theorem: vortex lines move with the fluid.

Proof: a line element that moves with the fluid satisfies % (5[) — (60 - ?)6
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Vortex dynamics

For a barotropic fluid, the vorticity equation writes in component form:
Dwi
Dt

Let’s consider a vertical vortex line & = w.é,

= Wy O0yV; + wyOyv; + w,0,v; — (? - U)wj

D(.Ux L Dwy Dwz
Dt o wzﬁsz Dt — wzﬁzvy Dt = —W; (axvx + 819/09)
vortex tilting due to shear vortex stretching due to 2D divergence

The 2D divergence is the rate of change of the section of the vortex tube
1 DS

gﬁ = ((%vx -+ 5’yvy)

For a 2D velocity field, the total vorticity in the vortex tube is conserved.

w,S = constant
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First Bernoulli Theorem

Dv 1
We start with the Euler equations in Lagrangian form F?Z = —?cb — ;?P

with equations for the thermodynamical variables
D
L v I De  Pg
Dt Dt p
Multiplying by velocity and defining the specific enthalpy as h = ¢ + r , we have

2(”—3:—6-?@—%?13 '

U

Dt \ 2
D 0P D 10P v
d 2@ =215V —=m)=-12.Vp

an Dt( ) ot v ? Dt() p ot p
Collecting everything, we have the following relation:

D [ v? 10P 09

i ) ——

Dt<2+ +h) oot ot

2
Theorem follows trivially: in a stationary flow, the total enthalpy H = % +d+h

is conserved along streamlines.

Validity: no viscosity, no dissipation (reversible isentropic flow)
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Second Bernoulli Theorem

We consider a curl free flow v = ?gb in a barotropic quid ?P ?H
Using the now well known vector relation % = ? 7 Q X U

2
the Euler equation becomes 9 (a—f + =+ P+ H) =0

The theorem follows:

For a potential flow, we have everywhere in the flow (not only along streamlines):

ol0)
a+—+@+ﬂ C()

The constant depends only on time. The flow doesn’t have to be stationary.

2
For a stationary flow, the quantity H = % + ® 4 II is uniform everywhere.

2 P
For a curl free incompressible fluid, we have [H = v 4+ d 4+ —

2 p
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Application of the Bernoulli Theorem: Pitot tube

o

. Ram pressure

We would like to measure the velocity of the fluid at infinity.

We consider a probe with section AC equal to section ED.
2
The flow is stationary and incompressible: p% + P = constant

Mass conservation implies v454 = vpSp sothat va = vVp = vV
Point B, however, is a stagnatlon point with vg = 0.

We conclude that Pg = pT + P . Using the probe, we measure AP = Pg — P

2AP
The velocity is just [voo = T and AP is called the ram pressure.

These probes (also called Pitot tube) are used in planes to measure the velocity.
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Application of the Bernoulli Theorem: Venturi tube

We would like to measure the incoming velocity in a pipe.

We modify slightly the section of the pipe around point B.

Mass conservation implies va54 = vBSp .
2 2

Bernoulli theorem implies ,0073 + Pp = ,0%4 + Py
Assuming that Sp = Sa(1 —€), if we measure AP, we have:
AP
VA — —
pE

This probe is called a Venturi tube.
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Hugoniot theorem

For an stationary incompressible fluid, mass conservation implies vS = constant .

If the section decreases, the velocity increases dv _ _dS :

v S
For a compressible fluid, we now have pvS = constant .

d d dS
dv  dp __dS

v 0 S 1
The stationary Euler equation gives us vdv = ——dP.
. , dP P
Introducing the sound speed ¢ = —,
o _ _ dp dv v? dS
combining the 2 equations results in o 1 - 2 )T g

The dimensionless number M = % is called the Mach number of the flow.
If M <1, the fluid behaves qualitatively like an incompressible fluid.

If M > 1, itis reversed: the velocity will increase if the section increases.

v<C vV=_C V>C
e e
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