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Outline

- Sound waves

- Jeans instability

- Shallow water equations

- Gravity waves

- Rayleigh-Taylor and Kelvin-Helmholtz instabilities
- Quasi-linear waves and shock formation

- Shock waves and Rankine-Hugoniot relations
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Sound waves

We use the fluid equation in one dimension without gravity source term.

In conservative form, they write
Otp + 0z (pv) =0
O (pv) + 0, (pv° + P) =0
We assume a barotropic EoOS P = P(p)

Far from any discontinuities, we can also use the quasi-linear form:
815/0 + Uﬁmp + paxv =0

1
O +v0,v + —0,P =0
0

We consider the reference equilibrium state p = po and v = vy everywhere in space.

Waves are small disturbances of this equilibrium state
p(z,t) = po + dp(z,t) with dp < po
v(z,t) = vg + dv(x,t) with dv < vy and ¢
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Sound waves

We linearize the quasi-linear form, dropping high-order terms.
0¢(0p) + vo0x(dp) + po0z(dv) =0
2
8, (50) + 100 (60) + ;—0(933(5p) —0
0
where we have used the definition of the sound speed ¢* = P’'(p)

We are looking for monochromatic planar wave solutions:
5/0 _ Ap expi(kx—wt) i(kx—wt)

We obtain the following linear system for the amplitudes:

ov = Avexp

(—iw + ikvy)Ap + ikpgAv = 0
2

ikC—OAp + (—iw + ikvg)Av =0
Po

In order to have a non vanishing solution, the determinant must be zero.

We obtain the dispersion relation for sound waves:

(w— kvg)? — k?c2 =0

yn w
The velocities of sound waves are v = = Vo = ¢o
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Riemann invariants and characteristics

The previous linear system of partial differential equations can be written as

oW + A9, W = 0 where the vector of unknowns is W = (§p, dv)”

v
The matrix Ais given by A = ( cg PO > . The eigenvalues are A\* = v + ¢
PO

: 1
and the eigenvectors components are given by dat = 5 (5,0 + @(5@)
Co

1
Since the matrix is diagonal in the eigenvector Jda™ = 5 (5p — @&v)
basis, we have : co

O¢(6at) + (vo + cp)Ox(at) =0 Ot(6a™ ) + (vg — ¢9)0x(a™) =0

We define the characteristic curves d_xi — (vo % c0)
(different from the trajectories) as: at Vo

sa™T are conserved quantities along their corresponding characteristic
curves: they are called Riemann invariants.

Given the initial conditions at t=0, we can reconstruct the final solution by combining
Riemann invariants along each crossing characteristic (in this case straight lines).
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Self-gravitating fluids

The fluids equation in conservative form in presence of gravity write:

8t+€ (pt) =0
8,0@_'_? (p¥ @ ) +€P-p?

In a self-gravitating fluid, the gravitational potential follow the Poisson equation
AD = 47Gp with F = -V d
We drop the constant 411G from now on: p = A® = —3 - ?

For each component, we have pF, = — <€ - ?) F, = —? - (Fx?) + (? - ?) F.

We then use the relations 0, F, = —907,® = 0, F, The tidal tensor
Oy Fy = —02,& = 0, F, Opks = 0@
IS symmetric
0. F, = _82,2(1) = O:F; )?|

Finally, we have pF, = —V - (Fﬁ) L Fo,F =-V. (F. ?) + 0,

: — 2=
Momentum conservation: 8pv -+ ? (,0?7@ v+ P1+ ? ® ? — 71) =0
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Jeans instability

We consider an equilibrium state with p=pp, ® =0and v =0
In this infinite medium, the Poisson equation has to be modified A® = 47G (p — po)
The perturbed state satisfies A(0®) = 47G(dp)

The linearized continuity equation is  9;(dp) + po€ (00) =0

The Euler equation becomes 0 (07) + po ? (6p) + 3 0P) =0
0

Taking the partial time derivative of the continuity equation leads to
D2(3p) = —po¥ - (9:(57)) = AA(Sp) + poA(58) = A (5p) + 47 Cipo(Sp)

We are looking for plane wave solution d§p = Apexp?F*—«t)

We get the following dispersion relation |w? = c5k* — 4G pg = ci(k* — k3)

: 2m A Gpg
where we have introduce the Jeans length k; = — =

)\J 6(2)
For short wavelength, £ > k; we have propagating waves with v < ¢

For long wavelength, £ < k; small perturbations grow exponentially fast.

+|wl|t

w® <0 sowis purely imaginary and &p o exp — Instability !

Continuum Mechanics 25/06/2013 Romain Teyssier



Shallow water equations

/ control volume

In the water layer of varying thickness h(x,t) and constant density p, the

pressure is given by hydrostatic equilibrium

p(z, z) = po + pg (h(z,t) — 2)

In air, we have p=po and p=0.

We write mass conservation in integral form in the control volume with

Az = x5 — 21 and hy ~ hy ~ h(z,t), assuming v, =0 and vz(z,z,t) = v(z,1)

a CCQh,
— dzdz =
i ., J, e

0 0

gy (phAx) = —p (voho — v1h1) P

(h)+(%(vh):0

Using momentum conservation on the same control volume, we have
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Tsunami modeling using shallow water eq.

Surface at 0.40 hours
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http://kingkong.amath.washington.edu/clawpack/
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Gravity waves

Incompressible fluid dynamics in deep water under constant gravity.

air ¢

=01 geq level

water

2 = — Hppeeee > x ground

We consider the equilibrium state n(z,t) =0 and o(z,z,t) =0
In air, we have p = py and in water, p = po — pog=.
Using the second Bernoulli theorem, using 9(x, 2,t) = ?cﬁ we have in the volume:

2
t
8t¢(a;,z,t)+v—+gz+m:0(t) and V.-5=0 — Ap =0

2 PO
We add to this the boundary condition at the bottom v,(* = —-H) =0

and the kinematic boundary condition at the top  On(x,t) + v, 0.m(x,t) = v,
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Kinematic condition on a free surface

For an incompressible inviscid fluid, we have to solve a Poisson equation with a

boundary condition on the outer surface v -7 = 0.

When the outer surface is fixed, both the location and the normal vector are
function of space only. This results in a Neumann BC for the potential.

For a free surface that moves, this is more complicated.

#

A point on the free surface has position and velocity given by
r(t) = (x(t),n(x(t), 1)) (t) = (2", 0m + 2'0xn)

The BC writes (no vacuum between the fluid and the free surface):
—0n, 1
U(t) - i = (vg,v.) - i where the fluid velocity is (vz,v.) and 7 = (=01, 1)
1+ 0.n?

The final kinematic boundary condition writes

atn + Vg (ZC, 1, t)aaﬁn — Uy (IE, 1, t)
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Gravity waves

We linearize the previous set of equations:

At the upper surface, we have 0:¢(z,0,t) + gn(z,t) + % = C(t)
0

and 0Omn(x,t) = v, (x,0,t) = 0.¢(x,0,1)

At the bottom, we have 0,¢(x,—H,t) =0

n(x,t) _ AeXpi(kx—wt)

We are looking for propagating waves in the x direction .
g propag g { ¢($,Z,t) _ ¢(Z> esz(kx—wt)

The Poisson equation in the volume writes ¢ (z) = k*¢(2)
for which the general solution is  ¢(z) = ¢+ exp™* +¢~ exp™**

The lower BC gives us the first relation ot exp FH —¢p~ expTFH =0
The upper BC gives us the second relation k (c,b+ — qb_> = —iwA

Bernoulli relation at the upper BC gives us —iw (¢™ + ¢~ ) = —gA

where we absorbed the constants in the velocity potential.
FRH _ oxp—FH
= = gk tanh (kH)

exp

The dispersion relation writes  |[w? = gk

expTFH + exp—F
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Gravity waves

Two interesting limiting cases: kH < 1 and kH > 1
dw 1w

1- Deep water: H>1/k w=+/gk vg =
2- Shallow water: H < 1/k  w=ky/gH v=/gH

2 k

We use the shallow water equations to derive directly the second result.

We linearize the quasi-linear form: { O¢(6h) + HO,(6v) =0
0t (0v) + g0, (6h) =0

w? = k*(gH)

In shallow waters, the speed increases as the square root of the depth.

Close to the shore, waves tend to
decelerate. Peaks decelerate slower than
the troughs. They tend to catch up. At the .
shore, the trough stops, while the next peak 1 h, 7

still travels fast: the wave is breaking.

See «formation of a shock wavey.
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Rayleigh-Taylor instability

2 semi-infinite incompressible fluids separated by an horizontal interface.

A

e =nx,t)
9
P2 > T
In the 2 separate volume, we have o, = ?gbl ? U1 =0=A¢;

?72:€¢2 3-62:O:A¢2
The boundary conditions for the velocity field are v — 0 when z — o0

and at z=0 we have O +v;10:n =v,1 and O+ vz 20, =V, 2.

We also impose pressure continuity at the interface p1 = p2 and from Bernoulli:
2

2
v v
O+ Ly g+ L0 B+ 24+ 22—,
2 p1 2 P2

As usual, we linearized these equations and look for planar wave solutions:

O1 = ¢1(z) eXpi(kx—wt) by = ¢2(Z) eXpi(k::c—wt) n = Aexpi(kx—wt)
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Rayleigh-Taylor instability

The Poisson equation in each domain is ¢7 = k°¢1 and ¢ = k*¢s

The unique solutions that satisfy the velocity BC at infinity are
¢1(2) = prexp ™ @a(2) = dpexp T

Linearizing the Bernoulli equations and imposing equal pressures give:
p1 (Ocp1 + gn) = p2 (Ord2 + gn)
where we have absorbed the 2 constants C4 and C: in the velocity potentials.

Linearizing the 2 interface kinematic conditions gives: 9;n = 0.¢1 = 0.¢2

We use the planar wave solutions in the previous equations to get the system:

—iwA = —k¢1 = +kd2  pi(—iwer + gA) = pa(—iwgs + gA)

2 _ P2~ P1 gk
P2 + P1
If P2 > p1, we obtain stable gravity waves in deep water (especially if p1 < p2)

The dispersion relation follows: |w

If p2 < p1,the perturbation is unstable.
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Rayleigh-Taylor instability
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Kelvin-Helmholtz instability

We consider exactly the same set-up as for the RT instability, except that gravity is
absent and the boundary conditions at infinity are different (shearing flow).

vz,1 — Ui when z — 400 Vg2 — Uz when z — —o0
The planar wave solutions are now  #1(7, z,t) = ¢1 exp % exp (k=)
U] = ?gbl +U,e, b (x, 2, 1) = B2 exp +kz esz’(kx—wt)
Uy = ?cﬁz + Use, n(zx,t) = Aexpi(kx_wt)
The boundary conditions at the interface are now more complicated.
The kinematic conditions are linearized as  9;n + U107 = 9.¢1
and  Oin + Uy0,m = 0, ¢
Pressure equilibrium and Bernoulli relations (absorbing the constants) give
p10101 + p1U10:01 = p20i92 + p2U20, 02

Using the plane wave solutions, we find the system (—iw +tkU;)A = —k¢

pl(—iw + ZkUl)qbl = pg(—z’w + ZkU2)¢2 (—iw + ZkUQ)A = +koo
U U \/
The dispersion relationis: |[w =k (’01 L P2l 4 VL2 Uy — U2]>
P1 t P2 P1 t P2
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Kelvin-Helmholtz instability
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Quasi-linear waves and Riemann invariants

The 1D isothermal fluid equation in quasi-linear form write:
1
Oip + v0zp + pOyv =0 OV + v0,v + ;(‘%P =0 with P = pcg
The 2 quantities o™ (z,t) = v(x,t) + coInp(z,t) and o (x,t) = v(x,t) — coIn p(x, t)
Satisfy 8t04+ + (’U + Co)ax()é+ =0 and O:a + (?J — 00)81.04_ =0.

They are Riemann invariants along the characteristic curves:

dxt dr~ _
— = v(z(t),t) +co — =v(x” (t),t) — co 0
Characteristic curves are different than the fluid trajectories: o v(z¥(t),t)

dt

At any point in space-time (x,t), we can compute the fluid velocity as:
at(xy) +a (22)

2
where x1 and x2 are the starting points in the initial conditions of the 2 characteristics.

v(x,t) =

What happens if two «right-going» characteristics cross at the same point ?

— formation of a shock.
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A simple non-linear example: Burger’s equation

Burger’s equation writes in quasi-linear formas 0;v + v0,v =0
2

and in conservative form as B,v + (%% — 0

In this case, characteristic curves are equal to the trajectories and the velocity is
the Riemann invariant. It follows that characteristic curves are straight lines.

We consider the general initial condition vo(z).

The solution is given by the implicit equation  v(x,t) = vo(z — v(z, t)t)
Vo

Taking the time derivative leads to 0;,v = (—v + t9;v) vy(x — vt) and |O;v = U ol
0]

The solution blows out at the finite time ¢ = — — formation of the shock.
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Shock waves and the Rankine-Hugoniot relations

Shock waves are discontinuities propagating in the flow that arise naturally from
characteristic crossings and non-linear waves steepening.

We consider here the 1D case (perpendicular to the shock surface).

Il

The fluid equations write in conservative form: 0,U + 0, F(U) =0

—> ~

We use a small enough control volume around the moving discontinuity (speed S) so
that the flow quantities can be considered as homogeneous (x1=St1 and x2=St»).

tz )
/ / <atU-|—axF)d$dt:Ug(l’g—ml)—Ul(l'g—581)-|—F2<t2—t1)—F1(t2—t1):O
t1 1

Fy — Fy = S(Uy — Uy)

These are conservation laws connecting the upstream and downstream regions.
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Rankine-Hugoniot relations

2 V1 + v
Burger's equation: U =v and F' = % the shock speedis S = : 5 2

Isothermal shocks: U = (p, pv) and F = (pv, pv? + pc?)

Mass conservation: p2v2 — p1v1 = S(p2 — p1)

Momentum conservation: p2v3 — p1vi + pacg — picg = S(pava — p1v1)
Change of variables : wy =v; — S wo = vy — S

We have now in the frame of the shock: powsy — prwy = 0

paw; — prwi + pacg — prcg =0

We define the compression ratio r = % and the Mach number M = %1
The shock relations lead to 7° — r(M? +1)+ M? =0 or r=1and r = M?
p2 = M?py
W — %wl

Rankine-Hugoniot relations are a one-parameter (S) family of solutions.
The shock speed is usually determined using boundary conditions downstream.

Continuum Mechanics 25/06/2013 Romain Teyssier



Examples of shock waves solutions

Shock wave on a wall for an isothermal ideal fluid.

We assume that we have a wall boundary condition on the left v5 =0and v; < 0.

1
We don’t know the shock speed yet. We have p2 = M?p1 wy = le with M = %
0

Since v2 =0, we have S = —ws whichleadsto 5% — ;S —c3 = 0.

Among the 2 solutions, only one is physically admissible : compressive wave.

1
S = 5 <vl +\/v%+4cg)

2 2
For a strong shock ([v1] > co) , we have S~ 0 ,, — @pl

|U1\ o

Hydraulic jump: shallow water. We have at the wall of the sink v2 = 0.

F ;’}' " RH relations are: —hjv, = S(hy — hy)
," o’ *

1 1
—hyvi + 59@ - §gh% = S5(—h1v1)  Froude number
h

We define the height ratio r = —. =4

3 2 2 i Vghi
We have r° —r* —r(1+2F*)4+1=0

h

For F>> 1, r~+2F S ~ 971
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