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- general equations and boundary conditions
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- Couette and Poiseuille stationary flows

- viscous non-stationary interface
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- boundary layer theory

- pressure gradients
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Incompressible viscous flow equations

The Navier-Stokes equations for a viscous incompressible fluid write
Dv _
pﬁzp?—k?-ﬁzp?—?P—l—nAﬁ ?-U:O

We also have boundary conditions at the (moving) domain boundary.
We start from the Rankine-Hugoniot relations (normal to the interface).
(P11 — poiia) -7 = (p1 — p2) S -7

—

P1’171( 1'ﬁ)—
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n — p2 2(_)2'7_1’)—1—:275»’:(p1?71—02?72)§'ﬁ
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Rearranging terms, we have: 01 <171 — ?) ‘1= P2 <v2 — ?) = m

The divergence free condition imposes 1T =1Ug T = ? -1
and the continuity of the stress field follows o111 = oot

Since the stress tensor is proportional to the rate of strain tensor, the transverse
velocity has to be differentiable at the boundary, and therefore at least continuous.

We get the «no-slip» boundary condition: v = ? at the boundary surface S.
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Viscous versus inviscid flows

The two set of equations can be compared in more details.

We consider a rigid body (wall) at rest ? = 0 on a surface S bounding volume V.

Viscous flow Inviscid flow
Dv ? Dv
— = — VP AT — = ?— P
Py =P v + nAY Py =P v
V.5=0 YV .7=0
OnS: v=0 OnS: v-7m=0

Besides the additional stress field, the main difference comes with the boundary
condition.

The transverse velocity can be discontinuous at the wall for an ideal fluid. It is
called the slip condition.

The transverse velocity has to be zero at the wall for a viscous fluid. It is called the
no-slip condition. At the molecular level, it means the particles have to stick to the

wall when they come too close.

Continuum Mechanics 20/05/2013 Romain Teyssier



The Reynolds number

1
We write the Navier-Stokes equation  0;v + (v - ?) U =vAU — ;?p
where we define the viscosity coefficient v = p
We define the dimensionless variables v =9U, = EUL =L p=ppU2
N\ ° vV o~ 1 ~
We obtain the new dimensionless equation 9;0 + (@’ : V) v = i LA@’ — ;Vﬁ
UL

with only one parameter, the Reynolds number |Re =

<y

For small Reynolds numbers, we can neglect the inertial term (17- 3)
and the Navier-Stokes equation becomes a linear equation.
Stationary flows are characterized by 7nAv = ?p

Using ? -v =0, we have Ap =0 + boundary conditions.

Using & = 3 x v, we have A& =0 + boundary conditions.

The velocity field does not depend on the viscosity coefficient !

For large Reynolds number and far away from boundaries, we can neglect the
viscous term and we almost converge back to the ideal fluid limit.
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Viscous planar flows

We consider 2D flows with planar symetry ¥ =v,(x,y,1)e

The divergence free condition writes ? ¥ = 0yv, =0 or v, =v(y,t)

1
The Navier-Stokes equation is just 0;v = u@jv — ;&Bp dyp =0 — p(z,1)
For planar flows, the inertial term vanishes because of the divergence free
constraint.
1
Stationary case: vO v = 0P

Equilibrium between shear stresses and pressure gradient.
Since v depends only on y and p only on X, the pressure gradient is a constant.

It is the free parameter of the flow, together with velocity boundary conditions.

1
We have therefore to solve for the PDE  9;v = 7 2D

with proper boundary conditions.

We can use the superposition principle since it is a linear BVP.
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Planar Couette flow

We want to solve the previous equation between two moving rigid walls.

The boundary conditions are (for example) v(y=0)=0 and v(y=1L)= U
1

The general solutionis v(y) = 5 .py®> + Ay + B and if we insert the BC,
y ([ L?0:p\ y y\] o
—u |- Z(1-2 -
vly) =U [L (QnUoo> L ( L)] _
The family of curves we have obtained 8r |
depends on one parameter i N
o= L0 S
210U~ 0.4F .
For U, = 0, we get the Poisseuille flow ozl ]
L?0:p\ y y :
— _ Z(1-2 -
vw) ( 21) ) L ( L) Of0.5l T 15
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Properties of the Poiseuille flow

L?0,
v(y) = — ( o p) % (1 — %) \LLLNALAARARANAASANG SANARARAARAN

If the pressure gradient is negative, the flow is
traveling to the right. L

L pL3
The mass fluxis m = p/ v(y)dy = —=—0,p

0 127 y |
Oup L [T 71
The vorticity is w, = —0,v = ; (y — 5)
> X

The stress field (force per unit surface) acting on any horizontal layer is

T 52, — n0yucs e L) ¢, _ e
= o€y = N0yve€y — PEy = OxD Y= 5 | € — Py

The Poiseuille and Couette flows are shear flows.

For small Reynolds number ( Re < Re. = 5722 ) the planar Poiseuille flow
is stable.

For high Reynolds number, it becomes unstable (see Kelvin-Helmholtz
instability) and turbulence develops.
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Non-stationary planar boundary layer.
We consider the case for which the pressure gradient vanishes.

The Navier-Stokes equation reads ~ d,v = v9;v
This equation is equivalent to the «heat equation» (v becomes the temperature).

We consider now the «first Stokes problemy:

the wall is impulsively put in motion at velocity Us at time t=0

The boundary conditions are v(y =0,t) = Us and v(y,t) — 0 when y — 400

Scaling properties of the Navier-Stokes equation: I
We scale the variables by ¢ =1{T y=g¢L v= v and get 00 = L2 8§~
If we choose L = VT the problem becomes scale-invariant.

This suggests we choose a solution of the form f(§) where &=

We have d¢ = 5 y — édt so that O,v —f’z—t and 07v = ”5—2

2\/_

2

The equation becomes f"+2¢f =0 andlead to f'=Aexp~¢

The solution is v(y,t) = U (1 —erf(§)) where erf( \/_/ exp™¥ du
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Properties of the first Stokes problem

FIVTN TN N T TV T ] The transverse velocity s diffusing away from

{ the wall due to viscous stresses.
0.8} t=10_|

t=1

o 1 The thickness of the diffusive layer increases
T} with time.
0.4 NG 1 We can define the thickness of the layer by

| v=1%Us which correspondsto { =2 .
0.2 .
003 t=0.00 = The thickness of the boundary layeris |§ = 4v/vt
'O.OI | IO.ZI | IO.4I | IO.BI | IO.B 1.0

v/U
. . Uso —y?/(4vt)
The vorticity profile is w, = —0,v = — ; exp
V%

Initially, the vorticity is a Delta function at the wall. It then diffuses away
from the wall, always confined within the growing boundary layer.

At late time, the vorticity vanishes while the flow follows uniformly the
wall velocity.
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Viscous flow past a sphere

This is also called the «second Stokes problemy. ;
For small Reynolds number stationary flows, we have 1nAv = ?p and ? U=0
We use spherical coordinates.

For symmetry reasons, we have v = v.€. +v€y and &= V x 7= W€

The boundary conditions are for 7 — +00 ¥ — Uy€, = Us (cos 0, — sin 6é)p)
and the no-slip condition on the sphere (r =a )is v =10

1 1 1
We use a lot ? X § == . (%(Sin QB¢)€T — ;&a(?“B(p)e—b -+ ; (aT(TBQ) — (%Br) €¢
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Viscous flow past a sphere
We use the vector potential approach (Helmholtz decomposition) to satisfy
automatically the divergence free condition.

We have F=V x4 and 5=V %@
The symmetry of the flow requires A = Ay€y

The velocity field writes v = rsmeag(sm 0Ay)e, — ;8 (rdg)ep
1 1 1
and the vorticity & = —~ 02(rA¢) + 69(Sin€89(sin 9A¢))> €

We also know from the Nawer-Stokes equation that AW = —? X ? X W =0

We are looking for solutions of the form [rA,(r,0) = f(r)sinf

2 2
The vorticity is —rwy = ( ! f) sin @ = —g(r) sin @ while NS gives ¢" — r_g =0

r2 /" /
" f 8f 8f

The final equation we need to solve is f 2 7“—3 — T 0

With power law functions f(r) =" we have (a+ 1)(a—1)(a—2)(a—4) =0
L 2f f’ , A 2 4

The general solution is [ = —3 €08 oe, — " sin ey with |f(r) = — Br+Cr®+ Dr
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Viscous flow past a sphere

We now impose the boundary conditions.

Uso
For r — +o0, we have v, = 2C cosfbe, — 2C sin ey D = C = -
For r=a,we have f(a) =0 and f'(a)=0 A:i o’ :—Z sl
3
v, = Uy cos @ 1_|_a__3_a
2r3  2r S 3a
3 The vorticity is wy = —Uso 57— sin b
= —Uy sinf 1_a__3_a 2
v > 4r3  A4r
3
Using the Navier-Stokes equation, we have 0,.p = nUx r—a cos 6
Integrating from O to oo, we have p = p,, — nUs B—a cos 6
7“
We now compute the stress field on the sphere @€, = (0,, 019, 0)
3
Orr = —P + N0V, = —P = —Poo + nUoo% cos 6
1 3
Org =1 (—89% + r&a(%)) = —nUoo2— sin 6 The Stokes formula
N @ for the drag force is
F, —/ dgb/ df sin OnU ? b, = 6mnals
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The boundary layer problem
We saw that the Navier-Stokes equation in dimensionless form writes

Dv 1 1
-, — _A_’ i Y g -
Dt p€p+ Re—Y with V-#=0 and #=0 atthe boundary.

For large Reynolds number, the equation converges towards the ideal fluid Euler
equation, but not uniformly.

The main reason is that the Euler equations use a slip condition: ©v-7n =0

A simple analogy:

We want to solve 9, f =0 with xgrfoo flx)=1,

The solution is trivially f(x) =1 and is analogous to a inviscid flow in a half-plane.
We now solve €d=f + 0, f = 0 with the additional constraint f(0) =0

The solution is now f(z) =1 — exp */*

It does not converge uniformly towards 1.

For x <, the flow will never reach the ideal limit.

This thin layer, called the boundary layer, is always present.

It can be ignored only if its properties do not perturb the ideal flow for = > €.
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The boundary layer problem

o
-
|~
>~

—— ,U(y) boundary layer

e
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Boundary layer on a finite plate

For an infinite plate and an impulsive start, we got a non-stationary boundary layer
of thickness ¢ = 4V/vt.
We now consider a finite plate of size L, with upwind velocity Uw..

A
2| u(v)

|

- / >;

The stationary Navier-Stokes equations write for v = (u(x,y),v(z,y))

1
uOyu + v0yu = ——=0yp + VAu
f Oru + Oyv =0
U0,V + v0yv = ——=0yp + VAV
0

with boundary conditions u(z,0) =v(z,0) =0for 0 <ax < L
u — Uy and v — 0 for (z,y) — +o0
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The thin layer approximation

When we move with a fluid element starting at the leading edge of the plate,

we postulate a boundary layer of thickness 6 ~ /vt

where t is the elapsed time since it first passed the edge ¢ = Ui

An approximation of the thickness is therefore (with Re = U, L/v )

5 ~ v 4L xT

Uoo B '\/Re Z

We now estimate what are the leading order terms in the equations.
vL

0
u~Usx o~L y~§~ T From 0,v = —0,u , we get vrszoo<<UOO
<
uOyu + voyu = 5 2D+ V@QL + 8§u)
Usey on Uy on U Use Use
) Ol Ol Olvgy) Ol

u8><—|— v@>{<: —% D + V(%—l—%@

Uz, 0 U2 L U2 6§ 1 U2 §
VO O %) OCF L) 07D
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The thin layer approximation

We have now simplified the previous system to:
1

uO0yu + v0yu = ——0zp + V@Su 0=0yp Ozu 4 Oyv =0
P

p depends only on x: p(z,y) = Poo()

As before, the transverse pressure gradient is a free parameter and is related to the
properties of the external flow at infinity. If the external flow is a potential flow, it
satisfies the Bernoulli relation

1 1
—Poo () + iUfo(x) = constant
p

To satisfy automatically the divergence free condition, we use the stream function

u = Oy v=—0 Y = O(Ux9)

0,0(02,0) = O.0(D0) = v} — ~0upac(a)

Because the finite plate is infinitely thin, we look for self-similar solutions of the form

vx

Uso ()

(@, y) = Uso(2)8(x) f(€) with & = % and §(z) = \/
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The Blasius boundary layer solution

We consider in this case a flow with constant velocity and pressure at infinity.

Duh = UsoS (f —&f)  Opb=Unf & = -

5/ ] 2z .
Opyh = ~Uso g &1" O =Ussf" 00 = Uso g /"
We found the following simple ODE: 2" + £ =0
o = f(0)=0, f(0) =0 and f'(+o0) = 1.

08—
The transverse velocity profile is

The normal velocity profile is
'U<5U7y) — _Uoo5/(f - gf,)

In this case, the thickness is also 44(x)

06—

u/U

04~

02}

00l . ,

0 2 i 6 ;
£=y (U™

The stress field at the wall is given by ? = Opy€y + (—pe(x) + 0yy) €y

The pressure contribution cancels and 0,v =0 and d,v =0 at y =0

F, —/L Oyu(z,0)dz = 2nUs " (0)V Re AL . 5 C)
r = xzon y U\, L = LNU o € x %pUgoL \/E
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Laminar versus turbulent boundary layers

The Blasius solution is also a laminar shear flow.

For large Reynolds numbers, it is unstable (Kelvin-Helmholtz instability for example)
and becomes a turbulent flow.
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Boundary layers with pressure gradients

We are now considering cases for which the velocity at infinity depends on x.

We will be able to study the effect of fluid accelerations or deceleration on the
solution.

/
We consider self-similar velocity profiles such that U (x) = Cz™ % -
1 x
Using Bernoulli, we have also = 0,ps = —C?ma?™ !
1—m A
The thickness new scales as d(z) xxz 2 — 5= me

We have 9,9 =US$ 1+—mf—l_—mgf’ 02, =U @f'—l_—mff"
2x 20 Y T 2x

U U
Oy = f'U 3519:]?"3 3§¢=fm5—2

1
We obtain the Falkner-Skan solution:  m(f')* — %ff” =f"+m
f(0) =0, f'(0) =0 and f'(+o0) = 1.

The solution is solved numerically using shooting techniques.
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Falkner-Skan solutions

72 S L L L B

External potential flows with complex of
potential F(z) = z"

For m=0, we recover the Blasius solution.

For m>0, the flow is accelerating ° ¢
along the wall (flow past a corner). ” 3
The pressure gradient is said to be
favorable and the boundary layer R
is confined to the wall. 1
For m=1, the boundary layer has a 0

constant thickness (stagnation point). 0.0

For m<0, the flow is decelerating and we have an adverse pressure gradient (flow past
an edge). For m=-0.091, f”(0) =0 and there is no more drag force.

For m<-0.091, the flow is reversed (similar to Couette flows) and the boundary layer
separates from the wall. The flow is detached from the wall .

When the flow is detached, the viscous layer increases dramatically and starts to
modify the external flow. Usually, strong turbulence develops.
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Flow separation

For large angle of attack, the flow separates
from the body. Large eddies and vortices
are generated and carry away vorticity,
leaving behind an opposite circulation
around the body.

Flow past the trailing edge: adverse pressure gradients
result in the flow separation. The boundary layer expands
and modify the initial potential flow solution.

The vorticity of the boundary layer is advected away, resulting
in a new potential flow with favorable pressure gradients and
a laminar boundary layer around the body.

E D
‘ -
- b P - m =
A B C
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Turbulence

When turbulence develops, we see velocity
fluctuations both in time and in space.

This chaotic velocity field can be
decomposed into a smooth, average, laminar
field and a fluctuating field, for which only the
statistical properties are known.

/
Ui:‘/;j+vi

true velocity = average velocity + fluctuation

The fluctuation is described by a Probability Density Function (PDF) such as
/f(’U/)dU/ =1 /v’f(v’)dv’ =0 /(v’)Qf(v’)dfv’ = o?

Average quantities can be average in time or space.

We will consider here instead ensemble averages between N independent
realizations. We have the following results for ensemble averages:

v=V V=0 ? =2 0,A=0,A 0, A =0, A
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Reynolds stress and turbulent pressure

1
The Navier-Stokes equation writes  0;v; + (U - e)v- = ——0;p + vAwv; with v

U
Taking the ensemble average of the divergence @ = ? (7 + 7) = ? 7

tells us that the mean flow should also be divergence free.
From ? U= ? 7 + ? ' we get that the fluctuations also follows ? =0

For a divergence free velocity field, we have (v - ?)vi V. (v;0)
The average of the inertial term can be decomposed into 2 terms

@ Vo=V - @0) =V - (ViV)+ V-0 = (V- Y)W+ V 02

The average Navier-Stokes equation 8157 + (‘7 : ?)7 = —;?P + VA7 + ? ‘R

where we introduced a new tensor called the Reynolds stress |R;; = —o;; = —vlv/

/
] 7
2

We have Tr(R) = —02 = —02_ — 02, —0?, Wedefine T=R+ ?1 so Tr(T) =0

.~

1
Using these definitions, we finally get, with Pr = §p02 the turbulent pressure,

OV + (V- V)V = - (P+Pp)+vAV +V - T Tij:%csz.j_gz
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Properties of the Reynolds stress

The Reynolds stress is symmetric because it is based on 2nd order moments.

Like the viscous stress has been interpreted as a momentum flux due to
microscopic forces at the atomic level (surface forces), the Reynolds stress
expresses the momentum transported by eddies and vortices in the flow.

We now want to model the Reynolds stress R or the turbulent shear stress T as a
function of the mean flow properties: the closure problem.

In analogy to Newtonian fluids, where the stress tensor is proportional to the rate
of strain tensor, we introduce the Boussinesq approximation

Tij = vr (0, Vi + 04, Vj)

From kinetic theory, we know that the fluid viscosity is v ~ c;A where cs is the
sound speed and A is the mean free path of the molecules.

The eddy-viscosity model assumes that vr =~ vrf,, where vt is the typical
velocity of vortices and I is called the mixing length. They are free pﬁlrameters of

the theory. The turbulent pressure is usually approximated by Pr = §va

In shear flows, a good approximation is vy = ¢,,,|0,Vz| so only one free
parameter remains, the mixing length.
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Effect of turbulence on laminar flows

We use the mixing length approach for our boundary layer problems.
We assume that the mixing length is proportional to the thickness of the layer.

We consider a (mean) flow that follows the Blasius solution.
vr = 8(x)* [9yu(,0)| = §(x)Us £ (0)

Uso L

vr

Working at x=L, we can compute the turbulent Reynolds number |Repr =

We find Rer ~ 3V Re , therefore much smaller than the laminar value.
Turbulence increases the effective viscosity and associated momentum transport.

Inserting this new Reynolds number into the drag force formulae, we find

Corp = i 4
YT 3 /Rer  3v3Rel/A

The thickness of the boundary layer at x=L will also grow significantly,

to its turbulent value 4

/—Re (ST ~ —\/§R61/4.

from its laminar value 0 ~
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