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Maxwell equations for the evolution of the magnetic field B and the electric field E.
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Maxwell equations in a plasma

q is the charge density, J is the current density.

The electromagnetic field is tightly coupled to the charge density and the current 
density. 

They are present in a plasma: a ionized fluid, with mostly charged particles 
(electrons and ions). The most common plasma in the universe is the Hydrogen 
plasma, with protons of mass mp and charge +e and electrons of mass me and 
charge -e.

We decompose the plasma into 2 fluids (electrons and protons).
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Plasma fluid equations

For the electron and proton fluids, we have the following Euler equations:

The last term on the RHS is the friction between electrons and ions due to 
electron-ion microscopic collisions. 

Because                 , the inertial term in the electron fluid equation is removed 
(electrons dynamical equilibrium). 

me � mi
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E +

1

c
�ve ×
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−→
J

where we define the resistivity coefficient η =
me

nee2τei

The proton velocity becomes the reference velocity: it carries most of the mass. 



From this, we get                    and             .

This is consistent with the additional approximation of charge neutrality,

which is valid for length scales larger than the Debye length.

We get                   and 

In the Maxwell equation                                            , we have:

We consider non-relativistic flows 

We perform an order of magnitude analysis on the Maxwell equations.

From the previous equation                         , we get 
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Non-relativistic limit and charge neutrality
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The non-ideal MHD equations

Injecting the electric field equation into the ion Euler equation gives:

together with the magnetic field and current density equations

where the electric field in the general case is given by

4π

c

−→
J =

−→∇ ×−→
B

induction term

thermoelectric effect Hall effect
Ohmic dissipation

The is no general rule to remove those non-ideal terms. 

We must check a posteriori.
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Generation of magnetic fields

For very weak magnetic fields, like in the early universe, the dominant non-ideal 
term in the electric field equation is the electron pressure gradient.

The induction equation 

becomes

The vorticity equation we have derived for an ideal fluid reads

In both cases, the field is generated when pressure and density gradients are 
misaligned. For a barotropic evolution, no field is generated.

What is striking here is that both fields are evolving in a tightly coupled manner. If 
they are both initially zero, they subsequently evolve proportionally to each other.
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Ideal MHD equations
In the ideal MHD limit, the electric field is given by

and the magnetic field evolves according to the induction equation:

−→
E = −1

c
�v ×−→

B

The mass conservation is the same as for the fluid equations

The Euler equation differ from the fluid’s one by the Lorentz force

In case we have an isothermal or barotropic fluid, the system is closed by the 
equation of state p(ρ). Otherwise, we have to add the energy equation

with the fluid Equation of State:
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Magnetic flux conservation 

A flux tube is defined as a cylindrical surface tangent to the field lines.

Divergence theorem :

We have along the flux tube:
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In the Sun, magnetic tubes are rising buoyantly above the surface (magnetic arches) 
and sometimes are ejected (Coronal Mass Ejection), causing intense solar eruptions. 
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The «frozen-in» theorem

dφ

dt
= lim

∆t→0

φ2(t+∆t)− φ1(t)

∆t

We now follow the surface element as it evolves in 
time and space from                    to
We use the cylindrical volume swept by the surface 
element. The cylinder vertical surface is  
Since                  at all times, we have 

−→∇ ·−→B = 0

S3 = L(t)|�v|dt

S2 = S(t+ dt)

−φ1(t+∆t) + φ2(t+∆t) + φ3 = 0

S1 = S(t)

The flux variation is

so we get
dφ

dt
= lim

∆t→0

φ1(t+∆t)− φ1(t)− φ3

∆t

The first term on the RHS is just
�

S1

∂t
−→
B · �ndS

The second term is φ3 =

�

S3

−→
B · �ndS �

�

L(t)

−→
B · (�t× �v)dl∆t

Geometrically,                                          so that we get
−→
B · (�t× �v) = (�v ×−→

B ) · �t

Magnetic field lines are frozen in the 
plasma flow.  This property is similar 
to the dynamics of vortex tubes. 



We use curvilinear coordinates along the field lines so that 
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Magnetic pressure and magnetic tension

The Lorentz force writes                          where the current is −→
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Finally, the total force acting on the fluid element is given by

where                   is the magnetic pressure. 

The first term on the RHS acts on the fluid as an isotropic pressure, similar to the gas 
pressure, but whose relative magnitude is controlled by the β parameter

pB =
B2

8π

The third term on the RHS is analogous to a tension force                 perpendicular to 
the field lines and works against flow motions to restore small curvature. 

It is called magnetic tension.



             is the Maxwell stress field, the magnetic force per unit area acting on the fluid.
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The Maxwell stress tensor
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Using the relation                                                                  , 
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where we introduce the Maxwell tensor defined as

The Euler equation for ideal MHD can thus be written in conservative form as

Note that the Maxwell tensor is symmetric.

−→∇ · M



∂tρ+ ∂x(ρvx) = 0

∂t(ρvy) + ∂x(ρvxvy −BxBy) = 0

∂t(ρvz) + ∂x(ρvxvz −BxBz) = 0

Bx = constant

∂tBy + ∂x(vxBy − vyBx) = 0

∂tBz + ∂x(vxBz − vzBx) = 0

∂t(ρvx) + ∂x(ρv
2
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2
−B2
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Ideal MHD equation in 1D

In one dimension, the equations write in conservative form (we use 4π=1 here):
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Ideal MHD equation in 1D
We now write the isothermal MHD equations in quasi-linear form ∂tW +A∂xW = 0

We have



The Alfvén waves have waves speed                 . They are transverse waves with no 
pressure and density variations.

The fast magnetosonic waves are longitudinal waves with pressure and density 
variations correlated with magnetic fields variations.

The slow magnetosonic waves are also longitudinal waves, but pressure and 
density variations are anti-correlated with magnetic field variations.

The waves equation is given by

that we perturb slightly with                          and 
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MHD waves
We consider now a reference equilibrium state W0 = (ρ0, v0x, v

0
y, v

0
z , B

0
y , B

0
z )

δW = (δρ, δvx, δvy, δvz, δBy, δBz)W = W0 + δW

∂t(δW ) +A0∂x(δW ) = 0

The wave speeds are given by the eigenvalue decomposition

We have 7 eigenvalues ordered from left-going waves to right-going waves
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The Friedrichs diagram

parallel to B

perpendicular to B

fast
Alfvén
slow



We now consider a reference state at rest               and we restrict ourselves to 
incompressible perturbations                                .

We work in the frame where the x-axis is along the field lines 

The previous system simplifies into

where                              and  
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Alfvén waves
v0x = 0

δρ = δP = δvx = 0

Looking for plane waves solution 

we obtain the dispersion relation for Alfvén waves

B0
y = B0

z = 0

We have                            so that transverse magnetic perturbations are correlated 

or anti-correlated with transverse velocity perturbations, 

depending on the direction of propagation   

Alfvén waves are analogous to waves along a string with tension.

ω = ±cak�
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Alfvén waves observed in the Sun corona



The Reynolds number                           was introduced to estimate the importance

of the inertial term                            compared to the viscous stress
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Non-ideal MHD equations
Including non-ideal effects in the previous equations boils down to 2 main physical 
ingredients (we restrict ourselves to incompressible fluids).

1- including fluid viscosity

2- including Ohmic dissipation

The Navier-Stokes equation becomes

The induction equation becomes

σij = −pδij + η(∂xivj + ∂xjvi)
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To weight the relative importance of the 2 dissipative processes, we introduce the 
magnetic Prandtl number 
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=
ν

νB
=
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magnetic diffusion rateUsually, 



The second term on the RHS is a damping term, as expected. 

The propagation speed is also reduced by non-ideal effects.

For strong magnetic resistivity, the right-going Alfvén wave becomes unstable above a 
critical wave number 

or below a critical scale given by

On small scales, the fluid approximation breaks down: collisionless plasma regime. 
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Non-ideal Alfvén waves
We reconsider the incompressible case. The linearized equations become:

and the wave dispersion relation is now more complicated

Solving for this second order polynomial gives

kc = 2ca/νB


