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- Elastic waves

- Seismic applications

- Waves in beams

- Dislocations as topological defects

- Structure and dynamics of dislocations

Outline



For any scalar quantity            , the Lagrangian time derivative writes

                                                                        (chain rule) 

In solid mechanics, we considered only equilibrium states. Now we want 
to study time dependent solutions. 

We still consider a reference equilibrium state, for which           .

We then consider the time-dependent displacement field from this 
reference state            . The velocity field is defined as                        . 

Neglecting gravity, we obtain the following dynamical equation.

In 3-dimensional space, the acceleration is given by 

ρ
d�v

dt
= ρ−→g +

−→∇ · σ

ρ
d2�u

dt2
= (λ+ µ)grad (div�u) + µ∆�u

dα

dt
=

d

dt
[α(t, �x(t))] =

∂α

∂t
+

∂α

∂�x
· �v

ρ
∂2�u

∂t2
= (λ+ µ)grad (div�u) + µ∆�u
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The elastic wave equation

σ = 0

�u(x, t) �v(x, t) =
d�u

dt

α(t, �x)

Dropping the non-linear, high order terms in the displacement field, we get:



Non-trivial solutions have wave speeds                   and 

where we used                                            with

and

We have two types of solutions:

1- Transversal waves for which                and 

2- Longitudinal waves for which               and 

We are looking for plane waves of the form

ρc2 �f �� = (λ+ µ)(�f �� · �e)�e+ µ�f ��

s = �e · �x− ct
∂�u

∂xi
= �f �(s)

∂s

∂xi
= �f �(s)ei

cT
cL

=

�
1− 2ν

2(1− ν)
≤

√
2/2 � 0.7
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Planar wave solutions

�u(t, �x) = �f(�e · �x− ct)

where the unit vector        marks the direction of propagation of the wave.�e

�f · �e = 0

cT =

�
µ

ρ

�f = f�e

cL =

�
2µ+ λ

ρ

Transversal waves are always slower than longitudinal waves.

∂�u

∂t
= �f �(s)

∂s

∂t
= −�f �(s)c

ρc2 �f �� = (λ+ 2µ)�f ��

ρc2 �f �� = µ�f ��



�u =
−→∇φ+

−→∇ ×−→
A

ui =
∂φ

∂xi
+

∂Ak

∂xj
− ∂Aj

∂xk
−→∇ ·−→A = 0

ρ
∂2

∂t2

�−→∇φ
�
+ ρ

∂2

∂t2

�−→∇ ×−→
A
�
= (λ+ 2µ)

−→∇ {∆φ}+ µ
−→∇ ×

�
∆
−→
A
�

ρ
∂2φ

∂t2
= (λ+ 2µ)∆φ ρ

∂2−→A
∂t2

= µ∆
−→
A

�
∆− 1

c2L

∂2

∂t2

�
φ = 0

�
∆− 1

c2T

∂2

∂t2

�
−→
A = 0

∆
�−→∇φ

�
=

−→∇ (∆φ) ∆
�−→∇ ×−→

A
�
=

−→∇ ×
�
∆
−→
A
� −→∇ ·

�−→∇ ×−→
A
�
= 0

Romain TeyssierContinuum Mechanics 22/04/2013

Analogy with electromagnetic waves

We use the Helmholtz decomposition

which reads in components form

with the Gauge condition                   . Using vector calculus, we have 

This is equivalent to the following 2 equations:

We can put these equation in the d’Alembert form

Although different, these are analogous to the electromagnetic waves equations.



where kL and kR are vectors of complex numbers.

If any of the 3 components is imaginary, we have surface or evanescent waves.

If the 3 components are real, we have volume waves.

In the latter case, we can write

We have 2 types of volume waves:

1- Longitudinal waves: P waves, Pressure waves or Primary waves: 

2- Transversal waves: S waves, Shear waves or Secondary waves:

The most general harmonic solution for the previous equations are

φ = φ0 exp
i(ωt−�kL·�r) −→

A =
−→
A 0 exp

i(ωt−�kT ·�r)

�kL = kL�e k2L − ω2

c2L
= 0

�u =
−→∇ ×−→

A = Re
�
−ikT�e×

−→
A 0 exp

i(ωt−kT�e·�r)
�

−→
A 0 · �kT = 0
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Monochromatic plane waves

�u =
−→∇φ = Re

�
−ikL�eφ0 exp

i(ωt−kL�e·�r)
�

Valid for an infinite medium: boundary conditions don’t play any role !

k2T − ω2

c2T
= 0�kT = kT�e −→

−→



−→∇ · �u = k2Lφ0 exp
(...)

�u(t,�r = 0) = Re(
−→
A 0 exp

−iωt)

=
−→
A 1 cos (ωt) +

−→
A 2 sin (ωt)

−→
A 0 =

−→
A 1 + i

−→
A 2

−→
A 1 ⊥ −→

A 2 �−→A 1� = �−→A 2�

−→
A 1 � −→

A 2
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Volume waves

where

Linear polarization

Circular polarization

S waves are polarized



The two potentials write now

We restrict ourselves to waves with  

We consider 

kT,x = kL,x =
ω

c

−→
A =

−→
A 0 exp

kT z expiω(t−x/c)φ = φ0 exp
kLz expiω(t−x/c)

k2L,z = k2L = ω2

�
1

c2
− 1

c2L

�
k2T,z = k2T = ω2

�
1

c2
− 1

c2T

�
c < cT < cL

�kL = kL,x�ex + ikL,z�ez
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Surface waves

Injecting the general solution in the wave equations, we have 2 dispersion relations

These waves are evanescent in the z-direction, they propagate only along x. They 
are localized within a thin layer ∆zL,T � 1/kL,T

The wave velocity c is however still unknown. It will be determined using specific 
surface boundary conditions on the plane z=0.

We are looking for wave solutions propagating along the x direction, with a 
boundary surface at plane z=0.
z

x

y

O

�kT = kT,x�ex + ikT,z�ez

These waves must be trapped near the surface.



uy = −∂Az

∂x
= +i

ω

c
Az

uz =
∂φ

∂z
+

∂Ay

∂x
= kLφ− i

ω

c
Ay

ux =
∂φ

∂x
− ∂Ay

∂z
= −i

ω

c
φ− kTAy
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Surface waves

The displacement field is given by

Displacements along y are called 
«Love waves» while the vertical-
longitudinal waves are called 
«Rayleigh» waves.

Planar waves travel without 
attenuation (no dissipative 
effects). 



ux = 0 uy = i
ω

c
Az uz = 0

� =

������

0 1
2
ω2

c2 Az 0
1
2
ω2

c2 Az 0 i
2
ω
c kTAz

0 i
2
ω
c kTAz 0

������
σ = µ

������

0 ω2

c2 Az 0
ω2

c2 Az 0 iωc kTAz

0 iωc kTAz 0

������

Tr(�) = 0

−→
T = σ




0
0
1



 = µ




0

iωc kTAz

0




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Love waves on a free surface

The displacement field is

We have                  . Love waves are pure shear waves. 

On the free surface at z=0, we have

Imposing T=0 means that the amplitude is zero.

Love waves don’t propagate on a free surface with an homogeneous half-space.

They propagate however in a stratified medium (see later).



Volume changes are due to the longitudinal component

We then use the elastic law                                  and the surface boundary condition

The solution of this equation (together with the dispersion relations) will give 

uy = 0 uz = kLφ− i
ω

c
Ayux = −i

ω

c
φ− kTAy

�xx = −ω2

c2
φ+ i

ω

c
kTAy

�yy = 0

�zz = k2Lφ− i
ω

c
kTAy

�xy = 0 �xz = −i
ω

c
kLφ− 1

2

�
k2T +

ω2

c2

�
Ay

�yz = 0

Tr(�) =

�
k2L − ω2

c2

�
Φ

�
(λ+ 2µ)k2L − λ

ω2

c2

�
φ− 2µi

ω

c
kTAy = 0

1

2

�
k2T + k2

� �
(λ+ 2µ)k2L − λk2

�
− 2µkLkT k

2 = 0
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Rayleigh waves on a free surface
The displacement field is

The strain tensor has the following components:

−i
ω

c
kLφ− 1

2

�
k2T +

ω2

c2

�
Ay = 0

We require the determinant to be zero (non trivial solution), so we have:

k = ω/c

σ = λTr(�)1 + 2µ�



If we define              and                                   , the solution is obtained by solving s =
c

cT
q2 =

c2T
c2L

=
1− 2ν

2(1− ν)

s6 − 8s4 − 8(2q2 − 3)s2 + 16(q2 − 1) = 0

s � 0.862 + 1.14ν

1 + ν
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Rayleigh wave speed

The only physically relevant root is 

Rayleigh waves are slower than S-waves: they are the slowest seismic waves.

For the Earth, we have ν � 0.25

The Rayleigh waves speed is cR � 0.918cT



H

�k1 = k1,x�ex + k1,z�ez

�k2 = k2,x�ex + ik2,z�ez

k1,x = k2,x = k =
ω

c

k1 = k1,z

k2 = k2,z

σ1�n = σ2�n
�u1 = �u2

σ1�n = 0 k2 + k21 =
ω2

c21
k2 − k22 =

ω2

c22
c1 < c < c2
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Love waves in a layer on top of a free surface

z

x

y

O

We are looking for wave solutions propagating along the x direction, with a boundary 
surface at z=0 separating a layer of finite thickness H from an infinite half-plane.

The planar layer has density      and S speed 

while the infinite half space below has      and

ρ1 c1

c2ρ2

Waves are evanescent in the half-space. We must choose

a complex z-component:

In the planar layer, however, we consider fully harmonic waves 

We are looking for propagating solutions of the form
where the z-component of the potential vector write:

for z>0:

for z<0:

Az,1 =
�
A+

1 exp(ik1z) +A−
1 exp(−ik1z)

�
exp(i(ωt− kx))

Az,2 = A2exp(k2z)exp(i(ωt− kx))

Boundary conditions are:

- free surface at z=H:

- contact discontinuity at z=0:

Dispersion relations are:



tan (k1H) =
µ2k2

µ1k1

k21 = ω2

�
1

c21
− 1

c2

�
k22 = ω2

�
1

c2
− 1

c22

�

vg =
∂ω

∂k
�= c
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Love waves in a layer on top of a free surface
Free surface boundary condition at z=H writes: A

+
1 exp(ik1H) = A

−
1 exp(−ik1H)

Contact boundary condition at z=0 writes: µ1ik1
�
A+

1 −A−
1

�
= µ2k2A2

Continuity of the displacement at z=0 is: A+
1 +A−

1 = A2

Looking for non-trivial solutions gives the dispersion relation:

We use a dimensionless speed s = c/c1

For each frequency     , there is a finite 
number of modes            with

ω
cn(ω) n = 0, 1, 2...

n = 1

n = 2

n = 3

0

n=0 is the fundamental mode. It has the 
lowest velocity and the highest energy.

Love’s wave are dispersive waves for 
which the group velocity is



In nature, waves originate from a single point, an earthquake. They propagate around 
this point in a spherical (volume waves) or cylindrical (surface waves) pattern.

The elastic energy of a spherical wave decays as          because                                 .

In cylindrical geometry, it decays as         and the amplitude decays as          .

P-waves are the fastest, followed by S-waves. The amplitude decreases quickly as 
the inverse of the distance. 

Rayleigh and Love waves are the slowest, but they are surface waves, so their 
amplitude decreases slowly. They are the most dangerous waves.
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Seismic waves

Northridge earthquake (1994) Izmit earthquake (1999), recorded in Boston.

surface waves

4πr2µφ2 = constant1/r2

1/r 1/
√
r



µ
dvy
dt

=
dTy

dx
+ µgy

0 =
dM

dx
+ Ty

dω

dx
=

M

EI
ω =

duy

dx

µ
dvx
dt

=
dTx

dx
= 0 ux = 0

vy =
duy

dt

∂2u

∂t2
+

EI

µ

∂4u

∂x4
= g

u(x, t) = Re
�
u0 exp

i(wt−kx)
�
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Elastic waves in elongated structures
We consider the curvilinear dynamical equilibrium equations. We consider only 
vertical displacements and vertical velocities.

We linearize the velocity terms, and dropping the y index we get:

Without external forces, we are looking for solutions of the form

We find the dispersion relation                     with group velocityω2 =
EI

µ
k4 vg(k) =

dω

dk
= 2

�
EI

µ
k

The final solution is found by applying boundary conditions at the beam extremities.



General solutions write u(t, x) =
+∞�

0

un(t) sin (
2πn

L
x)

∂2un

∂t2
+ (ωn)2un = gn(t)

un =
gn

(ωn)2 − ω2
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Elastic waves in elongated structures

We consider a beam with 2 supporting points and an 
external force.

Boundary conditions write                               and                                   (no torque). u(0) = u(L) = 0 u��(0) = u��(L) = 0

Allowed solutions are un(t, x) = un
0 exp

iωnt sin (
2πn

L
x) ωn =

�
EI

µ

�
2πn

L

�2

These are called the normal modes of the beam.

If the forcing is monochromatic,                           , the solution isgn(t) ∝ expiωt

If the external forcing frequency is close to a normal mode frequency, we have a 
resonant response and the amplitude of the wave can be arbitrarily large.

If we apply now a time-dependent external force, we have in the normal mode basis

0
0
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Resonant elastic response

Millennium bridge in London (2000)

Basse-Chaine bridge in Angers (1850)



We obtain                  , although experimentally 

τ = τ0 sin

�
2πx

b

�

τ � τ0

�
2π

b

�
x = µ

x

b
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Theory of dislocations
The idea of dislocations in crystal structures originates from the large difference 
between the Young modulus and the yield strength.

We model the shear stress as a periodic function  

We match our non-linear model to the linear regime

Parameter       is the yield strength required to get an irreversible evolution.τ0

σy ∼ 10−4 to 10−3Eσy =
µ

2π
This remained a mystery for centuries !
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Theory of dislocations
In 1934, Taylor, Orowan and Polanyi proposed independently that defects in the 
crystal structure might explain this puzzle. These little imperfections, mostly linear in 
shape, move through the crystal and trigger plastic deformations.

These topological defects are called dislocations. 
It is possible to shift a whole plane by one atomic 
unit with much less energy: the «carpet analogy».



Romain TeyssierContinuum Mechanics 22/04/2013

Geometry of dislocations

Dislocation in aluminum alloy

Although dislocations are in general of 
arbitrary shapes, they are usually the 
superposition of 2 basics geometries 
that form a basis for dislocations.

Edge dislocations, for which the 
displacement field is 
perpendicular to the defect line.

Screw dislocations, for which 
the displacement field is 
parallel to the defect line.



We consider a linear defect of infinite length, described by its tangent vector    . We 
cut the cylinder vertically and displace the two ridges by a constant vector    .�b

�b ⊥ �t �b � �t

�

C
d�u =

�

C

d�u

ds
ds = �b
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The Volterra construction

Edge dislocation Screw dislocation

�t

is called the Burgers vector of the dislocation.�b

Its length is usually one atomic separation.



n−1�

i=0

(�xi+1 − �xi) = �xn − �x0 = �0 n−1�

i=0

(�xi+1 − �xi) = �xn − �x0 = �b
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The Volterra construction

In a perfect crystal, we have: A dislocation creates a topological 
defect, independent of the path used. 



The solution is:                           with 

Boundary condition: 

The unknown is here               . We have                .

ux = uy = 0

uz(x, y)
−→∇ · �u = 0

∆uz =
1

r

∂

∂r

�
r
∂uz

∂r

�
+

1

r2
∂2uz

∂θ2
= 0

uz(r, θ) =
bθ

2π

rmin � b � 0.2 nm
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Screw dislocation
We find the equilibrium displacement field around a screw dislocation (elastic theory).

We have no displacement in the x and y directions

The Navier equation reads
�

C
duz =

�

C

∂uz

∂θ
dθ = b

The stress tensor is purely deviatoric (pure shear). The elastic energy per unit length is

� =




0 0 0
0 0 b

4πr
0 b

4πr 0





dE

dl
=

1

2

�

S
Tr(σ �)dS = µ

b2

4π

�
dr

r
= µ

b2

4π
ln

�
rmax

rmin

�

The minimum radius corresponds to the core of the dislocation                            
for which the continuum approach breaks down and                              to the 
average distance between 2 dislocations in the crystal.

rmax � 10−4 cm

Standard approximation for the dislocation energy: E � 1

2
µb2L



The stress tensor writes

∆φ = a
∂

∂x
ln r = a

x

r2
r =

�
x2 + y2

σxx =
∂2φ

∂y2
=

a

2

x

r4
�
x2 − y2

�

σyy =
∂2φ

∂x2
=

a

2

x

r4
�
x2 + 3y2

�σxy = − ∂2φ

∂x∂y
=

a

2

y

r4
�
x2 − y2

�

b

�xy =
a

4µ

y

r4
�
x2 − y2

�
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Edge dislocation
2D plain strain problem �u = (ux(x, y), uy(x, y), 0)

Airy’s bi-harmonic function satisfying ∆∆φ = 0

Symmetry along the z axis, with a discontinuity at x=0

Simplest harmonic function antisymmetric wrt the x axis

Trick: find v such as                   and then ∆v = ln r φ = a
∂

∂x
v

Solution:                               so that v =
r2

4
ln r − r2

4
φ =

a

2

�
x ln r − x

2

�

where

Hooke’s law in 2D gives

(plane strain)

x

z

y

�xx =
a

4µ

x

r4
�
(1− 2ν)x2 − (1 + 2ν)y2

�

�yy =
a

4µ

x

r4
�
(1− 2ν)x2 + (3− 2ν)y2

�



The eigenvalues are                                        ,

�

C
dux =

�

C

∂ux

∂θ
dθ = 0

∂uy

∂θ
=

a

4µ
[2(1− ν)− cos 2θ]

a =
µ

(1− ν)π
b

dE

dl
=

a2

4µ
(1− ν)π

�
dr

r
=

µ

1− ν

b2

4π
ln

�
rmax

rmin

�
Eedge =

1

1− ν
Escrew

σ =
a

2r

�
cos θ sin θ
sin θ cos θ

�

� =
1

2µ

�
σ − ν

1 + ν
(Trσ)I

� σ3 = ν (σ1 + σ2) =
a

2r
2ν cos θ

�1,2 =
a

4µr
(cos θ(1− 2ν)± sin θ)

�

C
duy =

�

C

∂uy

∂θ
dθ =

a

µ
π(1− ν) = b
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Edge dislocation

The elastic energy per unit length is

We have

which integrates easily into:

For the other component, we pose                        to getθ = arctan
y

x

Integrating with respect to    givesθ

We now use the boundary conditions:

∂ux

∂x
= �xx =

a

4µ

�
(1− 2ν)

x

r2
− 2

y2x

r4

�

ux =
a

4µ
(1− 2ν) ln r +

a

4µ

y2

r2

uy =
a

2µ
(1− ν)θ − a

4µ

xy

r2

The stress tensor in cylindrical coordinates reads

Using Hooke’s law                                            , we get 

σ1,2 =
a

2r
(cos θ ± sin θ)

The elastic energy density is just
1

2
(σ1�1 + σ2�2)



To remove the core singularity, one idea is to replace the Burgers vector by a

continuous distribution of Burgers «charge» density         such that

The singular case from the Volterra construction is just                        .

We then construct a non-singular 

stress field using a convolution

� +∞

−∞
ρ(x)dx = b

σxx(x) = σV (x) � ρ(x) =
µ

2π(1− ν)

� +∞

−∞

ρ(x�)

x− x� dx
�
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Non-singular dislocation model

In the two previous models, the stress tensor diverges as x, y all tend to zero.

The elastic energy is also infinite, unless one introduces a cut-off radius.

For an edge dislocation, along y=0, we have  

and for a screw dislocation,                      . The singularity at x=0 is due to the

continuous approach, neglecting the effect of the underlying crystal structure.

σxx =
µ

1− ν

b

2πx

ρ(x)

ρV (x) = bδ(x)

ρV (x) ρ(x) σV (x) σ(x)

core size ?

σyz = µ
b

2πx



We now consider a constant external stress field applied to move the line. 

The work required is just 

δ�a

δ�u(�x) = �u(�x− δ�a)− �u(�x) � −∂�u

∂�x
δ�a = −Gδ�a

δW =

�

S

−→
T · δ�udS = −

�

S
σ�n ·Gδ�adS

S = S1 + S2 + S3
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Work required to move a dislocation line

�tds

We consider a infinitesimal dislocation 
line a length ds. We displace it by a 
fixed perpendicular vector      .δ�a

We know from before the displacement 
field u around the dislocation line (edge 
or screw). The difference between the 
initial and the final displacement field is:

We consider a cylindrical volume along the dislocation line. 

This cylinder is cut by the plane containing the initial and final 
dislocation. Its surface is decomposed into 3 main surfaces.

S1

S3

S2



Using Stoke’s theorem, we finally obtain (introducing the line contour C 
bounding the cylindrical surface S)

δW =

�

C
(δ�a× �v) · d�l −

�

S

�−→∇ · �v
�
δ�a · �ndS
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Work required to move a dislocation line

�
Gδ�a

�
·
�
σ�n

�
=

�
σGδ�a

�
· �n

σkiGijδaj = δaj
∂

∂xj
(σkiui) = δaj

∂vk
∂xj

�v = σ�u

−→∇ ×
�−→
A ×−→

B
�
=

−→
A

�−→∇ ·−→B
�
−−→

B
�−→∇ ·−→A

�
+

�−→
B ·−→∇

�−→
A −

�−→
A ·−→∇

�−→
B

�
Gδ�a

�
·
�
σ�n

�
=

�
δ�a ·−→∇

�
�v

−→∇ × (δ�a× �v) = δ�a
�−→∇ · �v

�
−
�
δ�a ·−→∇

�
�v

We now compute the work, using these various steps.

We have first from the dot product and the symmetry of the stress tensor:

Using the component form, 

we can therefore simplify the expression into this: 

We used the fact that the stress tensor is uniform and we introduced              .

We now used the famous vector identity

to get 



δW3 =

�

C3

(δ�a× �v) · d�l

δW2,C = −δW1 − δW3 +

�

C2

(δ�a× �v) · d�l

Romain TeyssierContinuum Mechanics 22/04/2013

Work required to move a dislocation line

S1

S2

We will now compute these 2 terms (a surface 
term and a contour term) for each of the 3 
main surface elements defining our cylinder.

Note that since the dislocation is a topological 
singularity, we need to cut S2 in the mid plane to 
account for the Burgers vector.

�n = �t δ�a ⊥ �tFor S1 and S3, since           and            , the surface term 
vanishes and we have (care with the right-handedness)

δW1 =

�

C1

(δ�a× �v) · d�l

For S2, we first compute the contribution from the contour term.

We see from the diagram that S2 shares a fraction of contour with S1 and S3.

On each side of the mid plane cut, we have 

                                  ,                 , �v
�
0+

�
− �v

�
0−

�
= σ�b d�l+ = �tds d�l− = −�tds

�

C2

(δ�a× �v) · d�l =
�
δ�a× σ�b

�
· �tds



δW = δW1 + δW2,C + δW2,S + δW3 =
�
δ�a× σ�b

�
· �tds

δW = δ�a ·
�
σ�b× �t

�
ds =

−→
F ds · δ�a

−→
F = σ�b× �t
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Work required to move a dislocation line

We now compute the surface term: δW2,S = −
�

S2

�−→∇ · �v
�
δ�a · �ndS

For a screw dislocation with a non-singular core, we have  
���
−→∇ · �v

��� < σmax
b

4πr
so that                                                       as              .|δW2,S | <

���
−→∇ · �v

��� δa2πrds −→ 0 r −→ 0

Collecting all the contributions, we finally have the work required to move the line as

where we defined the Peach-Koehler configuration force (per unit length)

This force is not a true force associated to some interaction. It is just related to the 
energy that is required to move a dislocation over some distance.

This energy comes from a topological rearrangement of the crystal structure.

There is a strong analogy with the Biot-Savart force and magnetic field induced from 
a current loop.



We now compute the elastic energy in a cubic volume containing the cut plane.

Clapeyron’s theorem states that

The normal vectors are just                 so that when the cube vanishes in its vertical

dimension we have

∆(x) = ux(x, 0
+)− ux(x, 0

−)

∆(x) = 0 x > 0

F =
1

2

� +∞

−∞
σxy(x, 0)

�
ux(x, 0

+)− ux(x, 0
−)

�
dx

F =
1

2

� +∞

−∞
σxy(x)∆(x)dx

Romain TeyssierContinuum Mechanics 22/04/2013

Peierls-Nabarro model

x

z

y

cut plane

The displacement field above 
and below the cut plane is 
discontinuous. We define

For a Volterra edge dislocation, we have

                for           and                for∆(x) = b x < 0

Using the same regularization technique, for a non-singular dislocation we can 

define a smoothed displacement jump as

F =
1

2

�

V
Tr

�
σ �

�
dV =

1

2

�

S

−→
T · �udS

�n = ±�ey

∆(x) =

� +∞

x
ρ(x�)dx�



F =
µ

1− ν

b2

4π

� 0

−∞

dx

x

F =
1

2

� +∞

−∞
σxy(x)∆(x)dx =

µ

4π(1− ν)

� +∞

−∞

� +∞

−∞

ρ(x�)∆(x)

x− x� dxdx�

ρ(x)

F =
µ

4π(1− ν)

� +∞

−∞

� +∞

−∞
ρ(x)ρ(x�) log |x− x�|dxdx�
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Peierls-Nabarro model

For a Volterra edge dislocation with              , we have

and the elastic energy                                      is infinite.

σxy =
µ

1− ν

b

2πx
�b = b�ex

σxy(x) =
µ

2π(1− ν)

� +∞

−∞

ρ(x�)

x− x� dx
�Including now the core regularization mechanism,

so that

Integrating by parts, we get

The elastic energy is now finite, but it depends directly on the core density        

under the normalization constraint                           . The energy decreases as the 

dislocation density becomes wider and wider. Ultimately, the dislocation dissipates.

� +∞

−∞
ρ(x)dx = b

In fact, the core density is stabilized by the misfit energy between the upper and lower 

atomic layer wrt to the cut plane. It is modeled using a periodic function of the 

displacement to ensure the confinement of the core. 
φ(∆) = φ0

�
1− cos

2π∆

b

�



δEtot =

� +∞

−∞
δ∆(x)

�
∂φ

∂∆
(∆0) +

µ

2π(1− ν)

� +∞

−∞

ρ0(x�)

x− x� dx
�
�

Etot =

� +∞

−∞
φ(∆(x))dx+

µ

4π(1− ν)

� +∞

−∞

� +∞

−∞
ρ(x)ρ(x�) log |x− x�|dxdx�

µ

2π(1− ν)

� +∞

−∞

∆�
0(x

�)

x− x� dx
� = φ0

2π

b
sin

2π∆0

b

∆0(x) =
b

2
− b

π
arctan

x

ξ
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Peierls-Nabarro model

The total energy of the cut plane is therefore the sum of 2 components:

where the unknown core density satisfies

We use the Variational Principle to find the core density that minimizes the energy.

We write                                        and compute            as∆(x) = ∆0(x) + δ∆(x) δEtot

The energy is minimized if the integrand is uniformly zero. Our misfit energy model

gives us an integro-differential equation found by Peierls and Nabarro

The solution was found by Peierls to be

ρ(x) = −∂∆(x)

∂x



σxy(x) =
µb

2π(1− ν)

x

ξ2 + x2

Emisfit =

� +∞

−∞
φ(∆(x))dx �

�

n∈Z

φ(∆(nb− xd))b
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Peierls-Nabarro potential

We have now an explicit form for the core density ρ(x) =
b

π

ξ

ξ2 + x2

The core size                               is set by the competition between the elastic Lamé

coefficient that tends to spread the dislocation and the misfit potential that tends to 

localize the core. The stress field along the x-axis follows the non-singular solution

In order to account for the crystal structure, we introduce explicitly the atomic lattice

as well as the time-dependent coordinate of the dislocation. We are trying to get a 

dynamical description of the dislocation, beyond the static non-singular core model.

ξ =
µb2

8π2(1− ν)φ0

Using various trigonometric identities, we get Emisfit = 2φ0ξ
2b

�

n∈Z

1

ξ2 + (nb− xd)2



Emisfit = 2φ0ξ
�
1 + 2e−2πξ/b cos

�
2π

xd

b

��

Fd =
µb

π(1− ν)
e−2πξ/b sin

�
2π

xd

b

�

σy =
µ

π(1− ν)
e−2πξ/b � µ

2π
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Peierls-Nabarro potential
�

n∈Z

f(n) =
�

k∈Z

� +∞

−∞
f(x)ei2πkxdxWe now use the Poisson summation method

to write the following expansion Emisfit = 2φ0ξ
�

k∈Z

ei2πk
xd
b e−2π|k ξ

b |

We consider only the leading order terms (k=-1,0,+1) to get finally

We can get the force required to move the dislocation using Fd =
∂

∂xd
Emisfit

This force per unit length is another configuration force. It reads

We now determine the yield strength by requiring that a dislocation of length L 
moves along the entire crystal dimension L to generate a plastic displacement of 
size b. This translates into the relation                               .

Assuming S=L2, we finally get

σySb = max(Fd)L
2

-


