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- Finite difference approximation

- The Modified Equation

- The Upwind scheme

- Von Neumann Analysis

- The Godunov Method

- Riemann solvers

- 2D Godunov schemes 
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HS of CL

  System of conservation laws

- Vector of conservative variables

- Flux function

   Integral form
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Finite difference scheme

Finite difference approximation of the advection equation
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The Modified Equation

Taylor expansion in time up to second order

Taylor expansion in space up to second order

The advection equation becomes the advection-diffusion equation

Negative diffusion coefficient: the scheme is unconditionally unstable
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The Upwind scheme

 a>0: use only upwind values, discard downwind variables

Taylor expansion up to second order:

Upwind scheme is stable if C<1, with
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Von Neumann analysis

Fourier transform the current solution:

Evaluate the amplification factor of the 2 schemes.

Fromm scheme: 

Upwind scheme: 

 ω>1: the scheme is unconditionally unstable 

 ω<1   if C<1: the scheme is stable under the Courant condition.
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The advection-diffusion equation

Finite difference approximation of the advection equation:

Central differencing unstable:

Upwind differencing is stable:  

Smearing of initial 
discontinuity:

“numerical diffusion”

 Thickness increases

 as  
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The Godunov method
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Finite volume scheme

Finite volume approximation of the advection equation:

Use integral form of the conservation law:

Exact evolution of volume averaged quantities:

Time averaged flux function:
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Godunov scheme for the advection equation

 The time averaged flux function:

 is computed using the solution of the Riemann problem defined

 at cell interfaces with piecewise constant initial data.

x

 ui

 ui+1

For all t>0:

The Godunov scheme for the advection equation is identical to 
the upwind finite difference scheme.
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The time average flux function is 
computed using the self-similar 
solution of the inter-cell Riemann 
problem: 

Godunov scheme for hyperbolic systems
The system of conservation laws

is discretized using the following 
integral form: 

This defines the Godunov flux:

Advection: 1 wave, Euler: 3 waves, MHD: 7 waves

Piecewise constant 
initial data
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Riemann solvers

Exact Riemann solution is costly: involves Raphson-Newton 
iterations and complex non-linear functions.

Approximate Riemann solvers are more useful.

Two broad classes:

- Linear solvers

- HLL solvers
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Linear Riemann solvers

Define a reference state as the arithmetic average or the Roe average

Evaluate the Jacobian matrix at this reference state. 

Compute eigenvalues and (left and right) eigenvectors

Non-linear flux function with a linear diffusive term.

 where

The interface state is obtained by combining all upwind waves

A simple example, the upwind Riemann solver:
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Riemann problem for adiabatic waves

Initial conditions are defined by 2 semi-infinite regions with piecewise 
constant initial states                                  and                                 .

x

t

Left state Right state

Left “star” state: (-,0,+)=(R,L,L) and right “star” state: (-,0,+)=(R,R,L).

2 mixed states
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Approximate the true Riemann fan by 2 waves and 1 intermediate state:

HLL Riemann solver

x

t

UL UR

U*

Compute U* using the integral form between SLt and SRt

Compute F* using the integral form between SLt and 0.
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Other HLL-type Riemann solvers

Lax-Friedrich Riemann solver:

HLLC Riemann solver: add a third wave for the contact (entropy) wave.

x

t

UL UR

U*
L

SL SR
S*

U*
R

See Toro (1997) for details.
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Sod test with the Godunov scheme 

Lax-Friedrich Riemann solver

128 cells
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Sod test with the Godunov scheme 

HLLC Riemann solver

128 cells
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Sod test with the Godunov scheme 

Exact Riemann solver

128 cells
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Multidimensional Godunov schemes

2D Euler equations in integral (conservative) form

Flux functions are now time and space average.

2D Riemann problems interact along cell edges:

Even at first order, self-similarity does not apply to the 
flux functions anymore.

Predictor-corrector schemes ? 
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Perform 1D Godunov scheme along each direction in sequence.

X step:

Y step:

Change direction at the next step using the same time step.
Compute Δt, X step, Y step, t=t+Δt Y step, X step t=t+Δt

Courant factor per direction: 

Courant condition:

Cost: 2 Riemann solves per time step.
Second order based on corresponding 1D higher order method.

Directional (Strang) splitting



Runge-Kutta scheme
Predictor step using the Godunov 
scheme and Δt/2.
Flux functions computed using 1D 
Riemann problem at time tn+1/2 in 
each normal direction.
4 Riemann solves per step.
Courant condition: 

Corner Transport Upwind
Predictor step in transverse direction 
only using the 1D Godunov scheme.
Flux functions computed using 1D 
Riemann problem at time tn+1/2 in 
each normal direction.
4 Riemann solves per step.
Courant condition:
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Unsplit schemes

Godunov scheme
No predictor step.
Flux functions computed using 1D 
Riemann problem at time tn in each 
normal direction.
2 Riemann solves per step.
Courant condition:
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The Godunov scheme for 2D advection

Perform a 2D unsplit conservative update

Solve 1D Riemann problem at each face

We get the following first-order linear scheme

Modified equation for 2D advection equation (exercise):

Differential form has 2 positive eigenvalues if:

and
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CTU scheme for 2D advection

Solve 1D Riemann problem at each face using transverse predicted states

Predicted states are obtained in each direction by a 1D Godunov scheme.

during t/2

We get the following first-order linear scheme

Diffusion term in the modified equation is now (exercise):
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Advection of a square with Godunov scheme
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Advection of a square with Godunov scheme
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Second-order Godunov scheme
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Conclusion

- Upwind scheme for stability

- Modified equation analysis and numerical diffusion

- Godunov scheme: self-similarity of the Riemann solution 

- Riemann solver: wave-by-wave upwinding

- Multiple dimensions: predictor-corrector scheme

- Need for higher-order schemes 

Next lecture: Hydrodynamics 4 


