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- The Euler equations

- Systems of conservation laws

- The advection equation

- Linear systems and hyperbolic systems

- The Bürger’s equation

- Riemann invariants

- Shock relations

- The Riemann problem

Outline



A system of 3 conservation laws

The vector of conservative variables
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The Euler equations in conservative form



A non-linear system of PDE (quasi-linear form)

The vector of primitive variables

We restrict our analysis to perfect gases
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The Euler equations in primitive form
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The isothermal Euler equations

Conservative form with conservative variables

Primitive form with primitive variables

a is the isothermal sound speed



General system of conservation laws with F flux vector.

Examples:

1- Isothermal Euler equations 

2- Euler equation

3- Ideal MHD equations
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Systems of conservation laws



We define the Jacobian of the flux function as:

The system writes in the quasi-linear (non-conservative) form

We define the primitive variables

and the Jacobian of the transformation

The system writes in the primitive (non-conservative) form

The matrix A is obtained by

The system is hyperbolic if A or J have positive eigenvalues.
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Primitive variables and quasi-linear form



Scalar (one variable) linear (u=constant) 

partial differential equation (PDE)

Initial conditions: 

Define the function:

Using the chain rule, we have:

    is a Riemann Invariant along the characteristic curves defined by
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The advection equation

x

t
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The isothermal wave equation

We linearize the isothermal Euler equation around some equilibrium state.

Using the system in primitive form, we get the linear system:

where the constant matrix has 2 real eigenvalues and 2 eigenvectors

The previous system is equivalent to 2 independent scalar linear PDEs.

         (        ) is a Riemann invariant along characteristic curves moving 
with velocity              (          ) 
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Riemann problem for isothermal waves

Initial conditions are defined by 2 semi-infinite regions with pieceweise 
constant initial states                       and

x

t

Left state Right state

Mixed state

“Star” state is obtained using the 2 Riemann invariants.



Romain TeyssierComputational Astrophysics 2009

The adiabatic wave equation

We define the adiabatic sound speed:

The system is equivalent to the 3 independent scalar PDEs:

       ,          and         are 3 Riemann invariants along characteristic curves 
moving with velocity           ,            and     .
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Riemann problem for adiabatic waves

Initial conditions are defined by 2 semi-infinite regions with pieceweise 
constant initial states                                  and                                 .

x

t

Left state Right state

Left “star” state: (-,0,+)=(L,R,R) and right “star” state: (-,0,+)=(L,L,R).

2 mixed states



Scalar non-linear PDE                                with initial data

Isothermal Euler equation with vanishing sound speed (a=0)

Bürger’s equation in conservative form

Characteristic curve          defined by

Defining                               , we have   

                       is a Riemann Invariant along characteristic lines.
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The Bürger’s equation

x

t



Implicit solution: 

                                                       gives

Solution diverges at finite time

Discontinuities appear in the flow; uniqueness of the solution is lost.

Search for weak solutions of the flow with an entropy condition.
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Shock formation



Case 1: 

Formation of a shock with velocity 

Solution: If                  then                         else

Initial conditions are defined by 2 semi-infinite regions with pieceweise 
constant initial states        and       .
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Riemann problem for Bürger’s equation

x

t
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Shock speed and the Rankine-Hugoniot relation

x

t

x1 x2

t1

t2

Integral form of the conservation law

Shock relation: 

Bürger’s equation:                                                 gives 

St
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Rarefaction wave

x

t

Case 2: 

Characteristics are diverging: a rarefaction wave fills the gap.

Solution: If                  then  

               If                             then 

               If                  then

Another solution: a rarefaction shock ?



We know from kinetic theory that the Euler equations are derived under the 
LTE approximation: viscosity and conductivity are first-order non-LTE effects. 

Goal: solve Bürger’s equation with viscosity source term.

The entropy solution is the solution with

Hopf-Cole transform:                               we get 

Solution of the heat transfer equation

with initial condition

We finally get the viscosity solution
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Vanishing viscosity solution



Initial conditions are defined by 2 semi-infinite regions with pieceweise 
constant initial states        and       .

For y<0:                                            and for y>0: 

When               , the Gaussian converges towards a delta-function

and the viscosity solution converges towards

where            is the position of the minimum of the function defined by:

For y<0                                      and for y>0 

Exercise: show that the vanishing-viscosity solution is unique, and is either 
a compression shock or a rarefaction wave.
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Riemann problem for vanishing viscosity
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Riemann invariants for propagating waves
Define the 3 differential forms:

These are Riemann invariants along the characteristic curves (u+a, u-a, u)

Exercise: using                                                        and the Euler system in 
primitive form, show that the previous forms are invariants along their 
characteristic curve.

Right-going waves satisfy                                                    0

Left-going waves satisfy                                                       0

Entropy waves satisfy                                                           0
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Left-going rarefaction wave

The entropy is conserved across the fan

x

t

0 across the fan, which gives

Writing                               we get 
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Right-going shock wave

x

t

Because we have a discontinuity, Riemann invariants are not valid anymore: 
we use Rankine-Hugoniot shock relations

One parameter (shock speed) family, fully specified by the right-state.

Exercise: show that for a stationary shock, we get                          = constant

and
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Contact discontinuity

x

t

Both Riemann invariants and Rankine-Hugoniot relations gives:

but

Characteristic are moving parallel to each other.
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The Sod shock tube
Analytical solution: we match the pressure and the velocity at the tip 
of the rarefaction wave with the pressure and velocity after the shock.
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The Sod shock tube
Space-time diagram of mass densitytime

position
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Conclusion

- Hyperbolic systems of conservation laws

- Propagation of waves and formation of shocks

- Vanishing-viscosity solution and weak solutions

- Exact solutions to various Riemann problems
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Next lecture: Hydrodynamics 3 

Exact solution to the Riemann problem are used to design numerical schemes.

Fundamental property: self-similarity with respect to variable x/t 

Toro, E.F., “Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical 
Introduction ”, 2nd Edition, Springer


