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- The Godunov Method

- Second-order scheme with MUSCL

- Slope limiters and TVD schemes

- Characteristics tracing and 2D slopes.

- Adaptive Mesh Refinement

Outline
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The time average flux function is 
computed using the self-similar 
solution of the inter-cell Riemann 
problem: 

Godunov scheme for hyperbolic systems
The system of conservation laws

is discretized using the following 
integral form: 

This defines the Godunov flux:

Advection: 1 wave, Euler: 3 waves, MHD: 7 waves

Piecewise constant 
initial data



Romain TeyssierComputational Astrophysics 2009

Higher Order Godunov schemes

Bram Van Leer

Godunov method is stable but very diffusive. It was 
abandoned for two decades, until…  
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Second Order Godunov scheme

x

 ui

 ui+1Piecewise linear 
approximation of the solution: 

The linear profile introduces a length scale: the 
Riemann solution is not self-similar anymore:

The flux function is approximated using a predictor-corrector scheme: 

The corrected Riemann solver has now predicted states as initial data: 
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Predictor Step for the advection equation
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The predicted states are computed 
using a Taylor expansion in space 
and time:

Second order predicted states are the new initial conditions for 
the Riemann solver:

The corrected flux function is the upwind predicted state:
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Modified equation for the second order scheme

Taylor expansion in space and time up to third order:

We obtain a dispersive term as leading-order error.

Von Neumann analysis says the scheme is stable for C<1.
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Summary: the MUSCL scheme for systems

Compute second order predicted states using a Taylor expansion:

Update conservative variables using corrected Godunov fluxes 

{

{
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Monotonicity preserving schemes
We use the central finite difference approximation for the slope:

In this case, the solution is oscillatory, and therefore non physical.

Second order linear scheme.

 first 
order

 second 
order

Oscillations are due to the non monotonicity of the numerical scheme.

A scheme is monotonicity preserving if:

- No new local extrema are created in the solution

- Local minimum (maximum) non decreasing (increasing) function of time.

Godunov theorem: only first order linear schemes are monotonicity preserving ! 
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Slope limiters
Harten introduced the Total Variation of the numerical solution:

Harten’s theorem: a Total Variation Diminishing (TVD) scheme is 
monotonicity preserving. 

Design non-linear TVD second order scheme using slope limiters: 

 where the slope limiter is a non-linear function satisfying:
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No local extrema

We define 3 local slopes: left, right and central slopes

and

x

 ui

 ui+1

 ui-1

  New maximum !

For all slope limiters: 
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The minmod slope

x
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 ui-1

Linear reconstruction is monotone at time tn

Minmod slope limiting is never truly second order !
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The moncen slope
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 ui+1
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Extreme values must be bounded by the initial average states.
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The superbee slope

Predicted states must be bounded by the initial average states.

TVD constraint is preserved by the Riemann solver.

The Courant factor now enters the slope definition.
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 The ultrabee slope

Use the final state to compute the slope limiter.

Upwind Total Variation constraint.

Strict Total Variation preserving limiter.
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Summary: slope limiters

 first order

 minmod  moncen

 superbee  ultrabee
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Summary: slope limiters

MinMod is the only monotone slope limiter before the Riemann solver !

Superbee and Ultrabee must not be used for non-linear systems !

MonCen can be used, but with care: the characteristics tracing method. 

x

 ui

 ui+1

The previous analysis is valid only for the advection equation.

Non-linear systems: the wave speeds depend on the initial states (L and R). 
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Non-linear systems: characteristics tracing.

x

 ui

 ui+1 Non-linear Riemann problems: waves speeds 
depend on the input states.

TVD schemes are not necessary monotone.

Modify the predictor step according to the local 
Riemann solution: Piecewise Linear Method 
(PLM) and Piecewise Parabolic Method (PPM).

If

          else

If

             else
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2D slope limiter for unsplit schemes

Surech, Ambady, “Positivity Preserving Schemes in Multidimensions”, SIAM J. Sci. 
Comput., 22, 1184-1198 (2000).

If 1D slope limiters are used, 2D schemes may 
become oscillatory.

Predicted states involve 2D neighboring cells.

2D moncen slope: corner values must be 
bounded by the 8 neighboring initial values.



Romain TeyssierComputational Astrophysics 2009

Beyond second order Godunov schemes ?

Smooth regions of the flow
More efficient to go to higher order.
Spectral methods can show exponential convergence.
More flexible approaches: use ultra-high-order shock-
capturing schemes: 4th order scheme, ENO, WENO, 
discontinuous Galerkin and discontinuous element methods

Discontinuity in the flow
More efficient to refine the mesh, since higher order schemes 
drop to first order.
Adaptive Mesh Refinement is the most appealing approach.

What about the future ?
Combine the 2 approaches.
Usually referred to as “h-p adaptivity”.
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Adaptive Mesh Refinement
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Patch-based versus tree-based
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A few AMR codes in astrophysics

ENZO: Greg Bryan, Michael Norman…

ART: Andrey Kravtsov, Anatoly Klypin

RAMSES: Romain Teyssier

NIRVANA: Udo Ziegler

AMRVAC: Gabor Thot and Rony Keppens

FLASH: The Flash group (PARAMESH lib)

ORION: Richard Klein, Chris McKee, Phil Colella

PLUTO: Andrea Mignone (CHOMBO lib, Phil Colella)

CHARM: Francesco Miniati (CHOMBO lib, Phil Colella)

ASTROBear: Adam Frank…
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Cell-centered variables are updated level by level using linked lists.

Cost = 2 integer per cell.

Optimize mesh adaptation to complex flow geometries, but CPU overhead 
compared to unigrid can be as large as 50%.

2 type of cell:    - “leaf” or active cell

- “split” or inactive cell

Graded Octree structure

Fully Threaded Tree (Khokhlov 98).
Cartesian mesh refined on a cell by cell basis.
octs: small grid of 8 cells
Pointers (arrays of index)
• 1 parent cell
• 6 neighboring parent cells
• 8 children octs
• 2 linked list indices
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Step 1: mesh consistency

if a split cell contains at least one split or 
marked cell, then mark the cell with flag = 1 
and mark its 26 neighbors

Step 2: physical criteria

quasi-Lagrangian evolution, Jeans mass

geometrical constraints (zoom)

Truncation errors, density gradients…

Step 3: mesh smoothing

apply a dilatation operator (mathematical 
morphology) to regions marked for 
refinement → convex hull

Compute the refinement map: flag = 0 or 1

Refinement rules for graded octree
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Berger & Oliger (84), Berger & Collela (89)

Prolongation (interpolation) to finer levels

- fill buffer cells (boundary conditions)

- create new cells (refinements)

Restriction (averaging) to coarser levels

- destroy old cells (de-refinements)

Flux correction at level boundary

Godunov schemes and AMR

Careful choice of interpolation variables (conservative or not ?)

Several interpolation strategies (with RT P = I) :

- straight injection

- tri-linear, tri-parabolic reconstruction
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Godunov schemes and AMR

Buffer cells provide boundary conditions for the underlying numerical 
scheme. The number of required buffer cells depends on the kernel of 
the chosen numerical method. The kernel is the ensemble of cells on 
the grid on which the solution depends.

- First Order Godunov: 1 cell in each direction

- Second order MUSCL: 2 cells in each direction

- Runge-Kutta or PPM: 3 cells in each direction

Simple octree AMR requires 2 cells maximum. For higher-order 
schemes (WENO), we need to have a different data structure (patch-
based AMR or augmented octree AMR). 
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Time integration: single time step or recursive sub-cycling

- froze coarse level during fine level solves (one order of accuracy down !)

- average fluxes in time at coarse fine boundaries

Adaptive Time Stepping
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The AMR catastrophe

First order scheme: 

Second order scheme:

At level boundary, we loose one order of accuracy in the modified equation.

First order scheme: the AMR extension is not consistent at level boundary.

Second order scheme: for α=1.5, AMR is unstable at level boundary.

Solutions: 1- refine gradients, 2- enforce first order, 3- add artificial diffusion

Assume a and C>0.
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Shock wave propagating through level boundary
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Sod test with HLLC first order 

128 cells
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Sod test with HLLC and MinMod 

128 cells
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Sod test with HLLC and MonCen 

128 cells
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Sod test with HLLC and AMR 

153 cells
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Complex geometry with AMR
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Particle-Mesh on AMR grids:
Cloud size equal to the local mesh 
spacing

Poisson solver on the AMR grid
Multigrid or Conjugate Gradient
Interpolation to get Dirichlet boundary 
conditions (one way interface)

Cosmology with AMR

Quasi-Lagrangian mesh evolution: 
roughly constant number of particles 
per cell

Trigger new refinement when n > 
10-40 particles. The fractal dimension 
is close to 1.5 at large scale 
(filaments) and is less than 1 at small 
scales (clumps).
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Code is freely available http://irfu.cea.fr/Projets/Site_ramses

RAMSES: a parallel graded octree AMR
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Conclusion

- Second-order in space and time with predictor-corrector: MUSCL

- Dispersive error term in the Modified Equation

- MinMod and MonCen slope limiters (+ characteristics tracing ?)

- 2D slope limiting for unsplit 2D schemes

- Patch-based versus Tree-based AMR

- AMR looses one order of accuracy at level boundary

- Refinement strategy and h/p adaptivity ?

Next lecture: Hands on RAMSES


