

ISR: DM and Camera

Robert Lupton, Princeton University LSST Pipeline/Calibration Scientist

2020-08-19

Introduction

The LSST camera has an interesting set of features that we need to understand, characterise, and then remediate or correct.

Introduction

The LSST camera has an interesting set of features that we need to understand, characterise, and then remediate or correct.

This requires a collaboration between the camera and DM.

The LSST camera has an interesting set of features that we need to understand, characterise, and then remediate or correct.

This requires a collaboration between the camera and DM. Fortunately this exists; a semi-random selection of names includes:

- DM: Andrés Plazas, Merlin Fisher-Levine, Chris Waters, ...
- Camera: Jim Chiang, Aaron Roodman, Seth Digel, Adam Snyder, Yousuke Utsumi, ...
- ComCam: Brian Stalder, Kevin Reil, ...
- UC Davis: Craig Lage, Tony Tyson, ...

The LSST camera has an interesting set of features that we need to understand, characterise, and then remediate or correct.

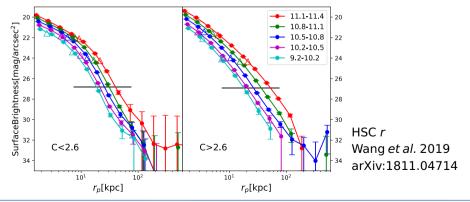
This requires a collaboration between the camera and DM. Fortunately this exists; a semi-random selection of names includes:

- DM: Andrés Plazas, Merlin Fisher-Levine, Chris Waters, ...
- Camera: Jim Chiang, Aaron Roodman, Seth Digel, Adam Snyder, Yousuke Utsumi, ...
- ComCam: Brian Stalder, Kevin Reil, ...
- UC Davis: Craig Lage, Tony Tyson, ...
- *E.g.* in writing this talk I used Andrés's page

https://confluence.lsstcorp.org/display/DM/Sensor+Characterization+and+ISR which
is informed by discussions at the SAWG and Camera Verification meetings

$$N_{\text{photon}} = rac{15.09}{R} \left(rac{S_{
u}}{\mu \text{Jy}}
ight) \left(rac{t}{ ext{s}}
ight) \left(rac{A}{m^2}
ight)$$

In a 30s Rubin exposure, a 1μ Jy source produces *c*. 3000 counts; 1 ADU/pixel is *c*. 29.1 AB asec⁻².



$$V_{photon} = \frac{15.09}{R} \left(\frac{S_{\nu}}{\mu Jy}\right) \left(\frac{t}{s}\right) \left(\frac{A}{m^2}\right)$$

In a 30s Rubin exposure, a 1μ Jy source produces *c*. 3000 counts; 1 ADU/pixel is *c*. 29.1 AB asec⁻².

- saturation and suspect pixel masking
- overscan subtraction
- CCD assembly of individual amplifiers
- bias subtraction
- variance image construction
- linearization of nonlinear response
- crosstalk correction
- mask defects, edges, nans, etc.
- brighter-fatter correction
- dark subtraction
- fringe correction
- stray light subtraction
- flat correction
- vignetting calculation
- illumination correction

- saturation and suspect pixel masking
- bias subtraction
- overscan subtraction
- CCD assembly of individual amplifiers
- variance image construction
- linearization of nonlinear response
- crosstalk correction
- mask defects, edges, nans, etc.
- brighter-fatter correction
- dark subtraction
- fringe correction
- stray light subtraction
- flat correction
- vignetting calculation
- illumination correction

DM subtracts an overscan-corrected 2-D master bias with mean \sim 0, and an offset estimated from the overscan.

Bias and Overscan

DM subtracts a 2-D master bias, and an offset estimated from the overscan.

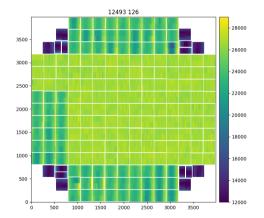
- Problems in ASIC's at c. 195-200kADU. Solution: adjust gain (believed to work for ITL/E2V)

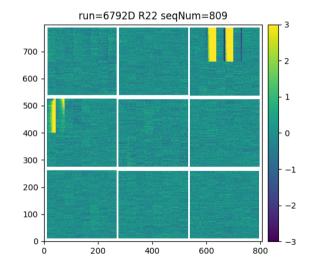
- Problems in ASIC's at c. 195-200kADU. Solution: adjust gain (believed to work for ITL/E2V)
- Bias frames following high-flux exposures
 - Especially near bad columns

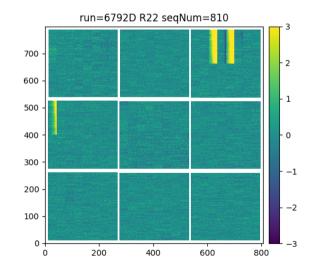
- Problems in ASIC's at c. 195-200kADU. Solution: adjust gain (believed to work for ITL/E2V)
- Bias frames following high-flux exposures
 - Especially near bad columns
- Instability in overscan level requires per-row overscan correction (we're using 64 columns)
 - still some 10-20 ADU residuals decaying to 5 ADU over 20 frames
 - apparently related to the ASPIC temperature

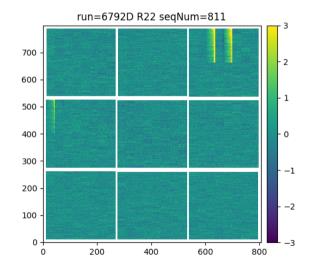
- Problems in ASIC's at c. 195-200kADU. Solution: adjust gain (believed to work for ITL/E2V)
- Bias frames following high-flux exposures
 - Especially near bad columns
- Instability in overscan level requires per-row overscan correction (we're using 64 columns)
 - still some 10-20 ADU residuals decaying to 5 ADU over 20 frames
 - apparently related to the ASPIC temperature
 - Stay tuned!

The lsstCam has high bias levels, c. 22000 – 27000 ADU

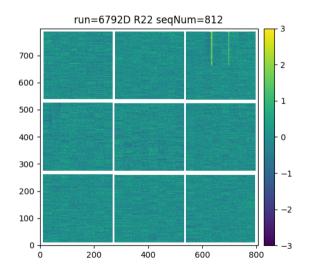


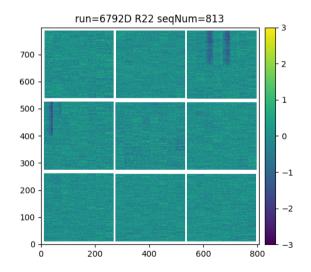

The lsstCam has high bias levels, c. 22000 – 27000 ADU

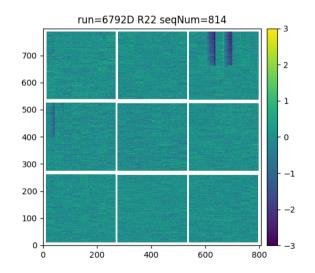


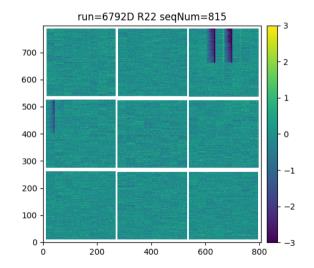


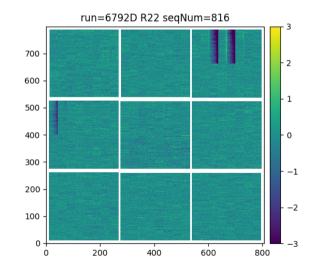


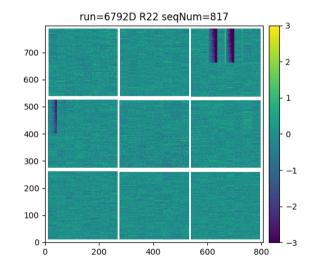


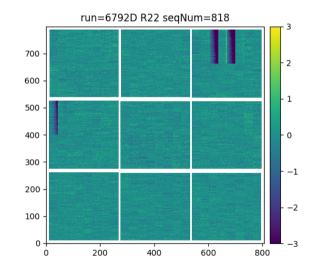




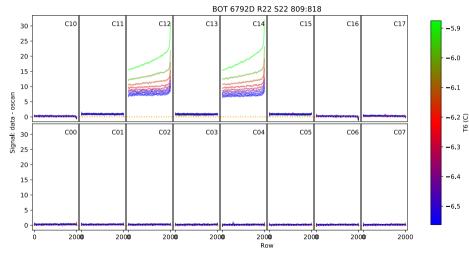






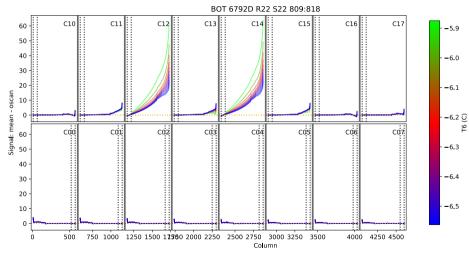


What's going on with R22 S22 (E2V-CCD250-360)?



Rubin Observatory

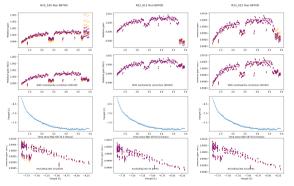
What's going on with R22 S22 (E2V-CCD250-360)?



What's going on with R22 S22 (E2V-CCD250-360)?

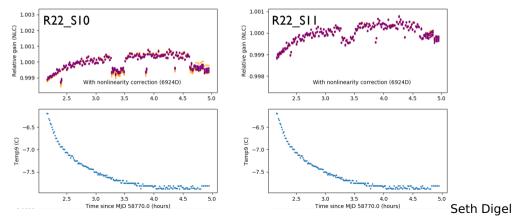
Rubin

1. Gain: drift over time and temperature



Rubin Observatory

- 1. Gain: drift over time and temperature
 - And a jump due to the back-bias voltage (VBB) changing; problem in power supplies
- 2. Changes in (Non-)Linearity? Probably small?


Seth Digel

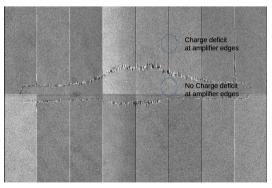
Rubin Observatory

- 1. Gain: drift over time and temperature
 - And a jump due to the back-bias voltage (VBB) changing; problem in power supplies
- 2. Changes in (Non-)Linearity? Probably small?

- 1. Gain: drift over time and temperature
 - And a jump due to the back-bias voltage (VBB) changing; problem in power supplies
- 2. Changes in (Non-)Linearity? Probably small?

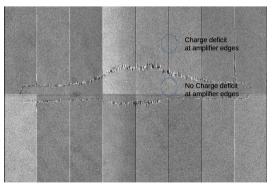
Relative gain drifts between CCDs and (worse) amplifiers is a problem for sky subtraction.

S Rubin Observatory


- 1. Tearing: "classic"
- 2. Tearing: "divisadero"
- 3. Persistence

- 1. Tearing: "classic"
- 2. Tearing: "divisadero"
- 3. Persistence

Pierre Antilogus, Claire Juramy, "Running e2v sensor in bipolar", 2019-07-14



Rubin

- 1. Tearing: "classic"
- 2. Tearing: "divisadero"
- 3. Persistence

Pierre Antilogus, Claire Juramy, "Running e2v sensor in bipolar", 2019-07-14

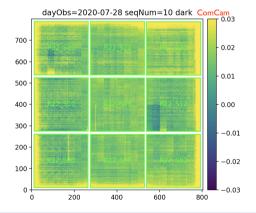
Tearing is solved by inverting voltages; investigating divisadero

Ruhin

Observatory

- 1. Dark current
- 2. Localized glows
 - Serials
 - Bulk

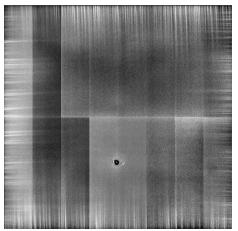
- 1. Dark current
- 2. Localized glows
 - Serials
 - Bulk
- 3. Read Noise (incl. correlations)
- 4. Glows from e.g. ?ion pumps? in comCam



- 1. Dark current
- 2. Localized glows
 - Serials
 - Bulk
- 3. Read Noise (incl. correlations)
- 4. Glows from e.g. ?ion pumps? in comCam
 - Some seen in the BOT; new baffling installed

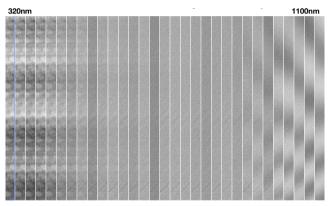
- 1. Dark current
- 2. Localized glows
 - Serials
 - Bulk
- 3. Read Noise (incl. correlations)
- 4. Glows from e.g. ?ion pumps? in comCam
 - Some seen in the BOT; new baffling installed

Probably OK if stable



1. Comb-like pattern in the far red ($\lambda > 1 \mu m$)

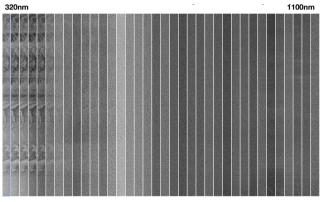
 $1.05 \mu m$ Yousuke Utsumi, 2019-8-13



- 1. Flat fields
- 2. "Annealing" (E2V), "Coffee stains" (ITL)
- 3. Fringing

E2V

Yousuke Utsumi, 2019-8-13

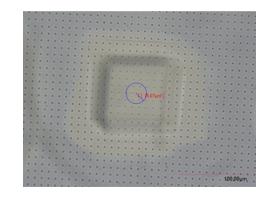


- 1. Flat fields
- 2. "Annealing" (E2V), "Coffee stains" (ITL)
- 3. Fringing

ITL

Yousuke Utsumi, 2019-8-13

- 1. Bad pixels
- 2. Midline "bloom stop" for E2V
- 3. Tree rings
- 4. Edge distortions
- 5. Pixel size variation



- 1. Bad pixels
- 2. Midline "bloom stop" for E2V
- 3. Tree rings
- 4. Edge distortions
- 5. Pixel size variation

E2V B dots Craig Lage arXiv:1911.09577v1.

- 1. Bad pixels
- 2. Midline "bloom stop" for E2V
- 3. Tree rings
- 4. Edge distortions
- 5. Pixel size variation

- 1. Bad pixels
- 2. Midline "bloom stop" for E2V
- 3. Tree rings
- 4. Edge distortions
- 5. Pixel size variation
- negligible if at 0.4% level; spec is 5% (Baumer and Roodman arXiv:1504.06088)

- 1. Bad pixels
- 2. Midline "bloom stop" for E2V
- 3. Tree rings
- 4. Edge distortions
- 5. Pixel size variation
- negligible if at 0.4% level; spec is 5% (Baumer and Roodman arXiv:1504.06088)

- Mask/interpolate bad pixels.

- 1. Bad pixels
- 2. Midline "bloom stop" for E2V
- 3. Tree rings
- 4. Edge distortions
- 5. Pixel size variation
- negligible if at 0.4% level; spec is 5% (Baumer and Roodman arXiv:1504.06088)

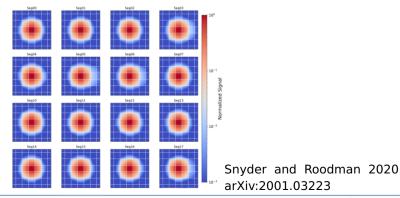
- Mask/interpolate bad pixels.
- Include large-scale effects in WCS

- 1. Bad pixels
- 2. Midline "bloom stop" for E2V
- 3. Tree rings
- 4. Edge distortions
- 5. Pixel size variation
- negligible if at 0.4% level; spec is 5% (Baumer and Roodman arXiv:1504.06088)

- Mask/interpolate bad pixels.
- Include large-scale effects in WCS
- Think about small-scale effects

- 1. Bad pixels
- 2. Midline "bloom stop" for E2V
- 3. Tree rings
- 4. Edge distortions
- 5. Pixel size variation
- negligible if at 0.4% level; spec is 5% (Baumer and Roodman arXiv:1504.06088)

- Mask/interpolate bad pixels.
- Include large-scale effects in WCS
- Think about small-scale effects
- Worry about whether these effects are really static


- 1. Serial CTE (and serial traps)
 - Fails specifications (req: CTE = 5e-6 from EPER) for a significant fraction of the ITL amps
- 2. Parallel CTE
 - Seems OK (req: CTE = 3e-6 from EPER)

- 1. Serial CTE (and serial traps)
 - Fails specifications (req: CTE = 5e-6 from EPER) for a significant fraction of the ITL amps
- 2. Parallel CTE
 - Seems OK (req: CTE = 3e-6 from EPER)
- 3. 55 Fe measurements show *c.* 1% trailing, which corresponds to 2e-5 serial CTI.

Ruh

Observatory

- 1. Serial CTE (and serial traps)
 - Fails specifications (req: CTE = 5e-6 from EPER) for a significant fraction of the ITL amps
- 2. Parallel CTE
 - Seems OK (req: CTE = 3e-6 from EPER)
- 3. 55 Fe measurements show *c.* 1% trailing, which corresponds to 2e-5 serial CTI.
- I don't think that the situation is totally clear. There seem to be several effects:
 - True serial CTI
 - Traps holding \sim 10-20 e^- with $au \sim 1 \mu s$
 - Anomalous impedences near the sense node
 - Lack of stiffness in the CDS voltages

- 1. Serial CTE (and serial traps)
 - Fails specifications (req: CTE = 5e-6 from EPER) for a significant fraction of the ITL amps
- 2. Parallel CTE
 - Seems OK (req: CTE = 3e-6 from EPER)
- 3. 55 Fe measurements show *c.* 1% trailing, which corresponds to 2e-5 serial CTI.
- I don't think that the situation is totally clear. There seem to be several effects:
 - True serial CTI
 - Traps holding \sim 10-20 e^- with $au \sim 1 \mu s$
 - Anomalous impedences near the sense node
 - Lack of stiffness in the CDS voltages
- DM doesn't currently handle CTE. As the problem appears to be in the serial, Snyder and Roodman have an algorithm which removes the effect to a level that should be acceptable, and which recovers pixel-to-pixel correlations much better than *e.g.* Massey 2010.

- 1. Serial CTE (and serial traps)
 - Fails specifications (req: CTE = 5e-6 from EPER) for a significant fraction of the ITL amps
- 2. Parallel CTE
 - Seems OK (req: CTE = 3e-6 from EPER)
- 3. 55 Fe measurements show *c.* 1% trailing, which corresponds to 2e-5 serial CTI.
- I don't think that the situation is totally clear. There seem to be several effects:
 - True serial CTI
 - Traps holding \sim 10-20 e^- with $au \sim 1 \mu s$
 - Anomalous impedences near the sense node
 - Lack of stiffness in the CDS voltages

DM doesn't currently handle CTE. As the problem appears to be in the serial, Snyder and Roodman have an algorithm which removes the effect to a level that should be acceptable, and which recovers pixel-to-pixel correlations much better than *e.g.* Massey 2010. Because the readnoise is added *after* the CTE effect, correcting for CTE leads to correlated noise.

Bleeding/Blooming

1. Full Well

- 1. Full Well
 - Not measured for resolved sources during EOtesting, not clear if PTC measures the same thing

Science

- 1. Full Well
 - Not measured for resolved sources during EOtesting, not clear if PTC measures the same thing
- Interpolated/masked along with defects

Science

1. Brighter-fatter

1. Brighter-fatter

Current algorithms correct *c*. 90% of the effect

- 1. Voltage Testing And Optimization
- 2. Excessive power dissipation
- 3. Cross talk (correction matrix)

Office of

- 1. Voltage Testing And Optimization
- 2. Excessive power dissipation
- 3. Cross talk (correction matrix)
 - Non-linearity is under study. Steve R.
- 4. ADC issues
- 5. Jitter and jitter cleaner
- 6. Analog overshoot in the signal chain, incomplete reset

- Take data in Chile using OCS to command comCam
 - Including defined sets of calibration frames
- Transfer data to NCSA using Long Haul Network (LHN) and ingest
- Reduce calibration data, run QA

- Take data in Chile using OCS to command comCam
 - Including defined sets of calibration frames
- Transfer data to NCSA using Long Haul Network (LHN) and ingest
- Reduce calibration data, run QA
- Repeat all possible detector tests at NCSA

- Take data in Chile using OCS to command comCam
 - Including defined sets of calibration frames
- Transfer data to NCSA using Long Haul Network (LHN) and ingest
- Reduce calibration data, run QA
- Repeat all possible detector tests at NCSA

At the same time, do as much of this as possible with BOT data:

- Take data in Chile using OCS to command comCam
 - Including defined sets of calibration frames
- Transfer data to NCSA using Long Haul Network (LHN) and ingest
- Reduce calibration data, run QA
- Repeat all possible detector tests at NCSA

At the same time, do as much of this as possible with BOT data:

- Take BOT data using CCS to command lsstCam
 - Including defined sets of calibration frames associated with with every run
- Transfer data to NCSA and ingest
- Reduce calibration data, run QA
- Repeat all possible detector tests at NCSA

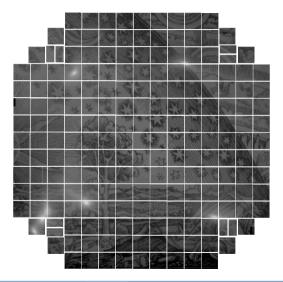
- Take data in Chile using OCS to command comCam
 - Including defined sets of calibration frames
- Transfer data to NCSA using Long Haul Network (LHN) and ingest
- Reduce calibration data, run QA
- Repeat all possible detector tests at NCSA

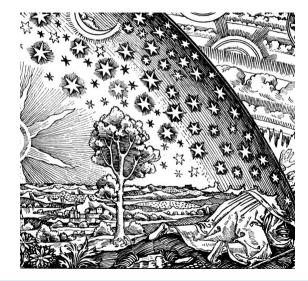
At the same time, do as much of this as possible with BOT data:

- Take BOT data using CCS to command lsstCam
 - Including defined sets of calibration frames associated with with every run
- Transfer data to NCSA and ingest
- Reduce calibration data, run QA
- Repeat all possible detector tests at NCSA

DM's working on this with the camera team.

The End




BOT Run 12478, dayObs=2020-08-18 seqNum=92 Rubin

