
We all know by now what the electric potential is at a distance d away from a point charge q > 0. 
But what if, at that distance d away, there were a grounded conductor? How would our answer 
change? Our point charge would certainly induce some negative charge distribution nearby, so our 
answer would have to account for the contribution from this induced charge. But how do we even 
know how much induced charge there is? 
 
There is a rather crafty technique used to answer problems just like this, called “the method of 
images”. We’ll start with a simple problem to illustrate the idea, and then make the situation more 
and more complex … just to have some fun. 
 
Let’s first make that grounded conductor an infinite grounded conducting plane, which we will 
place at z = 0. (The point charge is at z = d.) We need to find an electric potential that satisfies the 
following boundary conditions: 
 
1. V = 0 when z = 0 (since the plane is grounded); 
2. V  0 far from the charge (i.e. for x2 + y2 + z2 >> d2); and 
3. V  q/(4

€ 

πε 0r) near the point charge, as it should. 
 
Sounds tough. But something’s odd here … all of these boundary conditions are satisfied in a 
completely different setup: our point charge q at z = d and another point charge –q at z = –d. The 
potential in this situation is trivial: 
 

€ 

V (x,y,z) =
1

4πε 0
q

x 2 + y 2 + (z − d)2
−

q
x 2 + y 2 + (z + d)2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
.
 

 
This certainly has V = 0 when z = 0, has V  0 far from the charge, and V  q/(4

€ 

πε 0r) near our 
original point charge. And we know that answers to Poisson’s equation are unique if the charges 
and potentials are specified everywhere, so what’s going on? Is this our answer? It turns out that we 
just solved our original grounded-conductor problem by finding a much simpler problem that 
satisfied all the same boundary conditions! In this case, that extra charge –q is called our “image 
charge”. [The image charge must be placed somewhere where we aren’t looking for the potential 
(otherwise we can throw uniqueness out the window)! Indeed, our image charge was placed below 
the plane (where we didn’t care what the potential is).] 
 
Good. Let’s do some similar, but tougher, problems: 

 
(a) A point charge q is situated a distance a from the centre of a grounded conducting sphere of 

radius R. Find the potential outside the sphere. [Hint: the image charge should have a charge 
q’ = –(R/a) q. Where should it be placed to ensure V = 0 at r = R? This is sometimes called 
the “method of inversion”, though I still like to think of it as an image problem.] 
 

(b) If you add yet another image charge to your solution for (a), you can generalise to the case of 
a sphere held at any potential V0. What should this image charge be and where should it be 
placed? 
 

(c) Let’s return to the original planar problem described in the introduction, but replace the 
grounded plane with an infinite uniform linear dielectric material of susceptibility

€ 

χe . What is 
the analogous method-of-images problem? What is the image charge now? Where should it 
be placed? What is the potential for z > 0? [Careful! Your boundary conditions require you to 



know the potential for z < 0 and z > 0 and so you will actually need two image charges: one to 
obtain V above the plane and one to obtain V below the plane.] Check your answer by taking

€ 

χe →∞ ; you should recover q’ = –q. 
 

(d) Again, let’s return to the original planar problem described in the introduction (with the 
grounded plane), but replace the point charge with a dipole  

€ 

 p . Show that its energy is 
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where
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p|| and

€ 

p⊥ are the components of   

€ 

 p  parallel and perpendicular to the plane, respectively. 
How much energy is required to rotate it from a perpendicular orientation to a parallel one? 
[First hint: what is the image dipole? Think by analogy with the setup described in the 
introduction. Be careful which direction the image dipole is pointing! Second hint: you 
probably found a 32 in the denominator of U instead of a 64 … why should you divide by a 
factor of 2?] 

 
(e) Now combine the setups in (c) and (d): put a dipole  

€ 

 p 	  above an infinite uniform dielectric 
medium. How does your answer to (d) change? 
 


