
For a few special configurations of electric charge, the equipotential lines have a simple form, 
which provides a method to determine the capacity of a set of corresponding surfaces. In this 
problem we’ll explore the case of line charges. For it, you will need an expression for the electric 
potential a distance r away from an infinitely-long line charge with charge density per unit length λ; 
here it is: 
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Okay. Off we go… 
 
(a) Two parallel infinitely-long line charges with charge density per unit length ±λ are oriented 

along the z-axis and located at x = ±b, y = 0. Show that the equipotential surfaces (i.e. V = 
constant) can be described by the equation 
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(x − x0)
2 + y 2 = R2 

 
for all z; i.e. the equipotentials are circular cylinders with radii R centred at x0. Find explicit 
solutions for x0 and R in terms of b and the parameter 
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Sketch some representative equipotential lines. (Note that
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ξ	
  –1 may be positive or negative.) 
 

(b) Now consider two infinitely-long circular conducting cylinders located at x = ±d, y = 0 with 
finite radii a < d. Prove that the capacitance per unit length C of this system is given by  
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Hints: (1) conductors are equipotentials and (2) there’s a reason you did part (a) first! Start by 
finding which equipotential corresponds to each cylinder. Note that this method also works 
for cylinders of different radii, including the case of one cylinder placed off-centre inside 
another. 
 

(c) Find the work required to move the two cylinders from x = ±d to x = ±d (1+
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δ ), where 
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δ <<1, 
while keeping their potentials fixed. 
 

(d) Repeat (c) for a fixed charge instead. Are the answers to (c) and (d) different? If they are 
different, explain physically why this is so. 


