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Abstract

We follow the formation and subsequent evolution of fragments (or cores) in magnetically-

supported, self-gravitating molecular clouds in two spatial dimensions. The six-fluid (neu-

trals, electrons, molecular and atomic ions, positively-charged, negatively-charged, and

neutral grains) physical system is governed by the radiative, nonideal magnetohydrody-

namic (RMHD) equations. The magnetic flux is not assumed to be frozen in any of the

charged species. Its evolution is determined by a newly-derived generalized Ohm’s law,

which accounts for the contributions of both elastic and inelastic collisions to ambipolar

diffusion and Ohmic dissipation. The species abundances are calculated using an exten-

sive chemical-equilibrium network. The thermal evolution of the protostellar core and its

affect on the dynamics are followed by employing the grey flux-limited diffusion approxi-

mation. Realistic temperature-dependent grain opacities are used that account for a variety

of grain compositions. We have augmented the publicly-available Zeus-MP code to take

into consideration all these effects and have modified several of its algorithms to improve

convergence, accuracy and efficiency. We present results of magnetic star formation simu-

lations that accurately track the evolution of a protostellar fragment over eleven orders of

magnitude in density, from the early ambipolar-diffusion–initiated fragmentation phase, the

magnetically-supercritical dynamical collapse phase, and the magnetic decoupling stage,

all the way to the nonisothermal phase, including the formation and evolution of a hydro-

static core of radius ≈ 2 AU, density ≈ 1014 cm−3, temperature ≈ 300 K, magnetic field

strength ≈ 0.2 G, luminosity ∼ 10−3 L¯, and mass ∼ 10−2 M¯.
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Lo duca e io per quel cammino ascoso

intrammo a ritornar nel chiaro mondo;

e sanza cura aver d’alcun riposo,

salimmo sù, el primo e io secondo,

tanto ch’i’ vidi de le cose belle

che porta ’l ciel, per un pertugio tondo.

E quindi uscimmo a riveder le stelle.

Into that hidden passage my guide and I
entered, to find again the world of light,
and, without thinking of a moment’s rest,
we climbed up, he first and I behind him,
far enough to see, through a round opening,
a few of those fair things the heavens bear.
Then we came forth, to see again the stars.

Dante, Inferno, Canto XXXIV
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Chapter 1

Introduction

1.1 Observed Properties of Molecular Clouds and

Protostellar Cores

Stars form in fragments within interstellar molecular clouds, which have sizes ranging from

1 to 5 pc, masses from a few tens to 105 M¯, mean densities ∼ 103 cm−3, and tempera-

tures ' 10 K (Myers 1985; Heiles 1987). Their spectral lines have Doppler-broadened

linewidths that suggest supersonic (but subAlfvénic) internal motions. In the deep interi-

ors of such clouds, high-energy cosmic rays (> 100 MeV) maintain a degree of ionization

xi . 10−7, whereas ultraviolet (UV) ionization is responsible for a much greater degree

of ionization xi & 10−5 in the outer envelopes (Caselli et al. 1998; Williams et al. 1998;

Bergin et al. 1999). Studies of giant molecular clouds (GMCs) indicate that only a small

fraction of their mass, . 10%, is actually converted into stars, with star-formation rates

inferred to be in the range ∼ 10− 100 M¯ Myr−1 (e.g., Lada 1992; Evans et al. 2009).

Low-mass molecular cloud fragments, often referred to by observers as “starless cores”

or “prestellar cores”,1 are prestellar condensations characterized by relatively small radii (≈
0.05−0.2 pc) and masses (≈ 0.3−10 M¯). Such fragments are denser (≈ 104−105 cm−3)

than their surrounding gas, but their similar temperatures (' 10 K) make them difficult to

1The recent review by Ward-Thompson et al. (2007) suggests the following classification scheme: a
“dense core” is defined as “any region in a molecular cloud that is observed to be significantly over-dense
relative to its surroundings”; a “starless core” is defined as “any dense core that does not contain any evidence
that it harbours a protostar, young stellar object or young star”; and “prestellar cores” are defined as a “subset
of starless cores which are gravitationally bound and hence are expected to participate in the star formation
process.”

1



distinguish from their backgrounds. They are typically observed by looking for emission

from molecules that trace higher density gas, such as CS, H2CO, NH3, N2H+, H13CO+,

DCO+, and C18O. More recently, the advent of large millimeter and submillimeter radiote-

lescopes has made possible the identification of starless cores through extensive dust con-

tinuum surveys at 450 µm and 850 µm (using the Submillimeter Common-User Bolometer

Array [SCUBA] on the James Clerk Maxwell Telescope), 1.3 mm (using the Max Planck

Institut für Radioastronomie Bolometer Arrays on the Institut für Radioastronomie im Mil-

limeterbereich 30 meter telescope), and 3 mm (using the Owens Valley Radio Observatory)

— e.g., see reviews by Andre et al. (2000) and Ward-Thompson et al. (2007).

An important piece of information that may be extracted from such observational sur-

veys is the distribution of core shapes. While observations of the shapes of molecular cloud

cores can serve as a powerful discriminator between different theories of molecular cloud

fragmentation and core formation, uncovering a core’s intrinsic shape is no easy task, as

it is not possible to directly deproject the shape of each observed core. Instead, statistical

techniques must be used. Early efforts to derive intrinsic core shapes from observations,

assuming axial symmetry, seemed to favor prolate cores (Myers et al. 1991; Ryden 1996).

However, subsequent investigations that relaxed the axisymmetry assumption have consis-

tently yielded triaxial, preferentially oblate core shapes (Jones et al. 2001; Jones & Basu

2002; Goodwin et al. 2002; Tassis 2007), independently of tracer, core sample, and statis-

tical technique. (See Table 1.1 for a summary.) Coupled with the fact that prestellar cores

are generally observed in states of low angular momentum (i.e., the ratios of rotational

and gravitational energy in cores are observed to be typically less than a few percent; e.g.,

Goodman et al. 1993; Caselli et al. 2002), and therefore are not rotationally flattened, this

strongly suggests that magnetic fields play a role in the fragmentation process (see below).

Another important diagnostic that may be retrieved from observational surveys of cores

is their initial mass function, i.e., the number of cores per mass interval. If the core mass

spectrum is written as dN/dM ∝ M−α, it is generally found that, for core masses M &

2



Table 1.1: Summary of best-fit mean axis ratios (long-to-short: ξ; middle-to-short: ζ).
Data Set Object Type ξ ζ
Onishi et al. 1996; Tachihara et al. 2000 Molecular cloud cores 0.4 a 0.9 a

Jijina et al. 1999 Molecular cloud cores 0.5 a 0.9 a

Jijina et al. 1999 Molecular cloud cores 0.4 b 0.8 b

Lee & Myers 1999 Molecular cloud cores 0.3 a 0.9 a

Clemens & Barvainis 1998 Bok globules 0.4 a 0.9 a

Bourke et al. 1995 Bok globules 0.4 a 0.9 a

Motte et al. 1998 Prestellar cores 0.4 a 0.9 a

Motte et al. 2001 Prestellar cores 0.4 a 0.9 a

Nutter & Ward-Thompson 2007 Prestellar cores 0.5 c 1 c

aAs determined by Jones & Basu (2002) from a least-squares analysis; σξ = σζ = 0.1.
bAs determined by Goodwin et al. (2002) from a least-squares analysis; σξ = 0.2, σζ = 0.1.
cAs determined by Tassis (2007) from a Bayesian analysis; given axis ratios ≈ the values with the maxi-

mum likelihood.

0.5 M¯, α ' 2 − 2.5, with 2.35 being typical, whereas for M . 0.5 M¯, α ' 1.5

(Motte et al. 1998; Testi & Sargent 1998; Johnstone et al. 2000, 2001; Motte et al. 2001;

Johnstone et al. 2006; Stanke et al. 2006; Enoch et al. 2006; Nutter & Ward-Thompson

2007). Johnstone et al. (2000) caution that the flattening below 0.5 M¯ in ρ Oph may be

from incompleteness due to limited sensitivity around ∼ 0.4 M¯, close to the turnover.

Observations by Motte et al. (1998) in ρ Oph also fail to find a mass turnover down to

their completeness limit of ∼ 0.1 M¯. However, compilation of SCUBA data from Orion

shows a mass turnover at ∼ 1 M¯ (Nutter & Ward-Thompson 2007), well above their

completeness limit, indicating that the turnover may not be a selection effect and that the

mass at which the turnover occurs may depend on the cloud environment. The fact that

the initial core mass function is very similar to the observed initial stellar mass function

suggests (but does not prove) that the early fragmentation process may determine the mass

spectrum of stars as well (Simpson et al. 2008).

Once a prestellar core fragments out of its natal molecular cloud, its evolution as a

young stellar object (YSO) towards the main sequence proceeds through several stages:

the collapse of the core, followed by protostar and disk formation; the subsequent accre-

tion of disk material onto the forming star; and, finally, the dissipation of the disk by planet
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formation, evaporation, etc. (Shu et al. 1987). These stages reveal themselves by engender-

ing their spectral energy distributions (SEDs; i.e., log λFλ vs. log λ) with observationally-

distinguishable characteristics. Motivated by the realization (Lada & Wilking 1984) that

observed SEDs of YSOs were falling naturally into distinct morphological classes, Lada

(1987) codified an empirical class system based upon the determination of the near-/mid-

infrared spectral index αIR ≡ d log λFλ/d log λ: for class I sources, 0 < αIR . 3; for

class II sources, −2 . αIR ≤ 0; and for class III sources, −3 < αIR . −2.2 Com-

parison with the predictions of contemporary star formation theory (Adams et al. 1987)

allowed for the association of the different empirically-defined classes with the various

theoretically-motivated evolutionary stages of a YSO. Class I sources are believed to be

relatively evolved protostars with both circumstellar disks and envelopes, whereas Class

II sources are believed to be pre-main-sequence stars with significant protoplanetary disks

(classical T Tauri stars). Class III sources are pre-main-sequence stars that are no longer

accreting significant amounts of matter and are surrounded by a debris disk (weak-lined T

Tauri stars).

Submillimeter dust continuum maps of molecular clouds detected several condensa-

tions that appeared to be associated with formed, hydrostatic YSOs. These were designated

“Class 0” protostars by Andre et al. (1993) and were defined by the following observational

properties:

1. Indirect evidence for a central young stellar object, as indicated by, e.g., the detection

of a compact centimeter radio continuum source, a collimated CO outflow, or an

internal heating source;

2. Centrally peaked but extended submillimeter continuum emission tracing the pres-

ence of a spheroidal circumstellar dust envelope (as opposed to just a disk);

2Subsequent revisions have shifted the boundaries to 0 < αIR (Class I) , −1.5 < αIR < 0 (Class II) , and
αIR < −1.5 (Class III) — see, e.g., Andre et al. (2000, § III.A) and Evans et al. (2009, § 5.1) for more on
the historical development of the YSO class system.
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3. High ratio of submillimeter to bolometric luminosity, suggesting that the envelope

mass exceeds the central stellar mass: Lsmm/Lbol > 0.5%, where Lsmm is measured

longward of 350 µm. In practice, this often means an SED resembling a single-

temperature blackbody at T ∼ 15− 30 K.

Using luminosity as a proxy for mass, the fact that most of the confirmed Class 0 objects

have Lsmm/Lbol À 0.5% indicates that they are likely to be at the beginning of the main

accretion phase with the mass of the envelope much greater than the protostellar mass (i.e.,

Menv À M∗). Class 0 objects are therefore thought be very young accreting protostars in

which a hydrostatic core has formed but not yet accumulated the majority of its final mass.

The boundary between Class 0 and Class I is marked by Menv ≈ M∗.

This Thesis uses analytical and numerical methods to discern the evolution of a single

molecular cloud fragment from mean molecular cloud densities and temperatures to densi-

ties and temperatures approaching those characteristic of a newly-formed Class 0 protostar.

Using the terminology suggested by Boss & Yorke (1995), we are in effect studying the

formation and evolution of a “Class –I” (pre-Class 0) protostar, i.e., the first (molecular)

hydrostatic core (see § 1.7). The formulation of a theory of star formation is no easy task,

however. It requires understanding of the nonlinear interactions among self-gravity, mag-

netic fields, rotation, chemistry (including grain effects), turbulence, and radiation, any one

of which presents formidable challenges of its own.

1.2 Self-Gravity

Early efforts to develop a theory of star formation sought to quantify the obvious impor-

tance of self-gravity. It has been 107 years since Sir James Jeans first showed via a linear

plane-wave analysis of an infinite uniform medium that a cloud (or rather part of a cloud)

becomes unstable and collapses if it lacks sufficient thermal-pressure support to balance

the force of gravity. A necessary condition for collapse of a density fluctuation is that its
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wavelength be larger than the critical Jeans length,

λJ = cs

(
π

Gρ

)1/2

(1.1a)

= 0.67

(
T

10 K

)1/2 ( n

103 cm−3

)−1/2

pc , (1.1b)

where ρ is the volume density, T the temperature, cs = (kBT/µmH)1/2 the isothermal

sound speed, n the number density (= ρ/µmH), and µ (= 2.33, accounting for the standard

20% He abundance by number) the mean mass per particle in units of the atomic hydrogen

mass, mH. Assuming that the density fluctuations have similar dimensions in all three

directions, the corresponding minimum mass for gravitational instability can be estimated

as

MJ = ρλ3
J (1.2a)

= 17.2

(
T

10 K

)3/2 ( n

103 cm−3

)−1/2

M¯ . (1.2b)

This critical mass is referred to as the Jeans mass.3

The Jeans analysis is rather specious, though. The infinite, uniform medium on top of

which the linear analysis was performed is not in an equilibrium state, and its inevitable

collapse, which may overwhelm the collapse of individual Jeans-unstable density fluctu-

ations, had been conveniently ignored (the so-called “Jeans swindle”; e.g., see Binney &

Tremaine 2008). In response, more rigorous (nonlinear) stability analyses have been per-

formed for a wide variety of equilibrium configurations. One particularly notable example,

the stability of an isothermal, nonrotating, nonmagnetic spherical cloud, was first examined

by Bonnor (1956) and Ebert (1957). They calculated the critical mass, MBE, required for

3Some authors (e.g., Binney & Tremaine 2008) use a spherical definition of the Jeans mass, which gives
a critical mass a factor π/6 smaller.
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self-gravity to balance thermal-pressure forces:

MBE = 1.18
c4
s

(G3Pext)1/2
(1.3a)

= 5.72

(
T

10 K

)3/2 ( n

103 cm−3

)−1/2

M¯ , (1.3b)

where Pext is the external pressure. Given the relative rigor involved in the Bonnor-Ebert

sphere calculation, it is rather surprising that the mathematically-inconsistent Jeans anal-

ysis overestimated the critical mass by only a factor ' 3. Regardless, the critical masses

obtained are orders of magnitude smaller than the observed masses of typical molecular

clouds. Nevertheless, molecular clouds as a whole are not collapsing (e.g., see review by

Zuckerman & Palmer 1974).

The evolution of an isothermal, nonrotating, nonmagnetic spherical cloud began to re-

ceive a great deal of attention in the 1970’s through both numerical and analytical ap-

proaches. The debate at the time centered around what may be best considered as the ini-

tial conditions at the onset of gravitational collapse. The case advocated by Larson (1969)

and Penston (1969) and extended by Hunter (1977) begins with a static cloud of constant

density and follows the formation of a r−2 density profile. At the time when the protostar

forms (i.e., when the central density reaches infinity in this idealized calculation), the col-

lapse is highly dynamic, with an infall velocity of 3.3cs. Consequently, the mass infall rate

onto the star is large, rapidly increasing from Ṁin = 29c3
s/G at the moment of protostar

formation to Ṁin = 47c3
s/G.

In an opposing point-of-view advocated by Shu (1977), the evolution to the r−2 density

profile is thought to occur quasi-statically (i.e., with negligible velocity). Once an unstable

hydrostatic equilibrium forms (the “singular isothermal sphere”), the flow evolves in a self-

similar fashion, collapsing initially at the center and subsequently at the location of an

expansion wave that propagates outwards at the sound speed. Hence, this solution has been

referred to as “inside-out” collapse. For radii greater than the instantaneous location of the
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expansion wave, the density is that of a singular isothermal sphere, ρ = c2
s/(2πGr2); for

radii less than the instantaneous location of the expansion wave, the gas accelerates until it

reaches free-fall, with an infall velocity v = (2GM∗/r)1/2 and density profile ρ ∝ r−3/2.

(M∗ is the instantaneous mass of the central protostar.) The mass infall rate is constant in

time, Ṁin = 0.975c3
s/G, considerably less than that of the Larson-Penston-Hunter solution.

While the singular isothermal sphere solution has its obvious pitfalls (observed pro-

tostellar cores are neither singular, nor isothermal, nor spheres), its simplicity and ease

of modification has allowed it to enjoy widespread use by the observational community

(e.g., Zhou et al. 1990, 1993, 1994; Choi et al. 1995; Zhou et al. 1996; Ceccarelli et al.

1996; Gregersen et al. 1997). However, the increasing sophistication of present-day obser-

vations, made manifest in subarcsecond interferometric surveys (e.g., Looney et al. 2003),

has provided ever-tightening constraints on the structure and evolution of protostellar cores,

thereby casting a pessimistic view on the applicability of idealized self-similar models such

as the Larson-Penston-Hunter and Shu solutions. The abstract of Looney et al. (2003) itself

is rather telling:

We suggest that either there is some overall time scaling of the self-similar

solutions that invalidates the age estimates or, more likely, we are at the limit of

the usefulness of these models. With our observations we have begun to reach

the stage at which models need to incorporate more of the fundamental physics

of the collapse process, probably including magnetic fields and/or turbulence.

1.3 Magnetic Fields

The possible importance of magnetic fields to the support of interstellar clouds and to the

regulation of star formation was first studied by Chandrasekhar & Fermi (1953), Mestel

& Spitzer (1956), and Mestel (1965) using the virial theorem. Similar investigations by

Strittmatter (1966a,b) and Spitzer (1968) followed. Mestel (1966) calculated the magnetic
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forces on a spherically-symmetric, gravitationally-bound cloud. Self-consistent calcula-

tions by Mouschovias (1976a,b) produced exact equilibria of initially uniform, isothermal,

magnetic clouds embedded in a hot and tenuous, electrically-conducting external medium.

Mouschovias & Spitzer (1976) used these equilibrium states to find the critical mass-to-flux

ratio (
M

ΦB

)

cr

=

(
1

63G

)1/2

(1.4)

that must be exceeded for collapse against the magnetic forces to set in. This condition can

be rewritten to give a critical mass,

Mcrit = 1.82× 102

(
R

Z

)2 (
B

30 µG

)3 ( n

103 cm−3

)−2

M¯ , (1.5)

where B is the magnetic field strength and the quantity (R/Z) is the major-to-minor axis

ratio of the cloud. Under typical molecular cloud conditions, the mean magnetic field can

support cloud masses ≈ 30 times greater than those supported by thermal pressure alone.

Scott & Black (1980) performed numerical simulations of the collapse of a supercritical (as

a whole) magnetic cloud. A picture of molecular clouds emerged in which magnetic fields

play a central role in their support and evolution (Mouschovias 1978).

Subsequent observations lent credence to this picture by revealing the importance of

magnetic fields through both dust polarization measurements and Zeeman observations.

Polarization studies have exhibited large-scale ordered magnetic fields connecting proto-

stellar cores to their surrounding envelopes (Vrba et al. 1981; Heyer et al. 1987; Novak

et al. 1989, 1997; Lai et al. 2001, 2003; Crutcher et al. 2004; Matthews et al. 2005; Alves

et al. 2008), often with an hourglass morphology (Schleuning 1998; Hildebrand et al. 1999;

Girart et al. 1999; Schleuning et al. 2000; Lai et al. 2002; Matthews & Wilson 2002; Houde

et al. 2004; Cortes & Crutcher 2006; Girart et al. 2006; Vaillancourt et al. 2008; Tang

et al. 2009; Kirby 2009), as predicted by the theoretical calculations (Mouschovias 1976b;

Fiedler & Mouschovias 1993). (See Figure 1.1 for some notable examples.) A large body
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Figure 1.1: Inferred magnetic field vectors from dust polarimetry in a variety of sources
(clockwise from top right): W3 (Schleuning et al. 2000), NGC 1333 IRAS 4A (Girart et al.
2006), OMC-1 (Vaillancourt et al. 2008), NGC 6334 (Li et al. 2006; Dotson et al. 2008),
DR21-Main (Kirby 2009), and the OMC-1 ridge (Schleuning 1998).
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of Zeeman observations (Crutcher & Kazès 1983; Kazès & Crutcher 1986; Troland et al.

1986; Crutcher et al. 1987; Goodman et al. 1989; Crutcher et al. 1993, 1994, 1996; Troland

et al. 1996; Crutcher et al. 1999a,b; Crutcher 1999; Heiles & Crutcher 2005; Cortes et al.

2005) revealed magnetic fields in the range ' 10 − 200 µG in molecular clouds, from

small isolated ones to massive star-forming ones. These values are more than sufficient to

establish the importance of magnetic fields in molecular cloud dynamics.

It was recognized early on (e.g., see Babcock & Cowling 1953, p. 373) that the mag-

netic flux of an interstellar blob of mass comparable to a stellar mass is typically several

orders of magnitude greater than that of magnetic young stars. This is the so-called “mag-

netic flux problem” of star formation. It lies in the fact that substantial flux loss must take

place at some stage during star formation. Ambipolar diffusion (the relative motion be-

tween plasma and neutrals) was first proposed by Mestel & Spitzer (1956) as a means by

which an interstellar cloud as a whole would reduce its magnetic flux and thereby collapse.

Pneuman & Mitchell (1965) undertook a detailed calculation of the collapse of such (spher-

ical) cloud. Spitzer (1968) calculated the ambipolar-diffusion timescale by assuming that

the magnetic force on the ions is balanced by the (self-)gravitational force on the neutrals.

Nakano (1979) followed the quasistatic contraction of a cloud due to ambipolar diffusion

using a sequence of Mouschovias’ (1976b) equilibrium states, each one of which had a

smaller magnetic flux than the previous one.

A new solution for ambipolar diffusion by Mouschovias (1979) showed that the essence

of this process is a redistribution of mass in the central flux tubes of a molecular cloud,

rather than a loss of magnetic flux by the cloud as a whole. He found the ambipolar-

diffusion timescale to be typically three orders of magnitude smaller in the interior of a

cloud than in the outermost envelope, where there is a much better coupling between neutral

particles and the magnetic field because of the much greater degree of ionization. This

suggested naturally a self-initiated fragmentation of (or core formation in) molecular clouds
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on the ambipolar-diffusion timescale

τAD ≈ τ 2
ff

τni

≈ 2× 106
( xi

10−7

)
yr , (1.6)

where τff and τni are the free-fall timescale and neutral-ion collision timescale, respec-

tively (Mouschovias 1979). This expression is essentially independent of geometry (see

Mouschovias 1987). The inefficiency of star formation was thereby attributed to the self-

initiated formation and contraction of molecular cloud fragments (or cores) due to ambipo-

lar diffusion in otherwise magnetically supported clouds (Mouschovias 1976b, 1977, 1978,

1979). The central mass-to-flux ratio eventually exceeds its critical value for collapse,

(
dM

dΦB

)

c,cr

=
3

2

(
M

ΦB

)

cr

, (1.7)

(see Mouschovias 1976a, eq. 44), and dynamic contraction ensues. Detailed numerical

calculations in slab (Paleologou & Mouschovias 1983; Mouschovias et al. 1985), cylindri-

cal (Mouschovias & Morton 1991, 1992a,b), axisymmetric (Fiedler & Mouschovias 1992,

1993; Ciolek & Mouschovias 1993, 1994, 1995; Basu & Mouschovias 1994, 1995a,b;

Ciolek & Königl 1998; Desch & Mouschovias 2001; Tassis & Mouschovias 2005a,b,

2007a,b,c), and nonaxisymmetric (Basu & Ciolek 2004; Li & Nakamura 2004; Ciolek &

Basu 2006; Kudoh et al. 2007; Nakamura & Li 2008; Kudoh & Basu 2008; Basu et al.

2009) geometries transformed this scenario of star formation into a theory with predictive

power.

1.4 Rotation

During the early, isothermal phase of star formation, a cloud (or a fragment) must also

lose a large fraction of its angular momentum (e.g., see Spitzer 1968, p. 231). While

the geometry of protostellar fragments is often disklike over a wide range of lengthscales
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(Kaifu et al. 1984; Sargent et al. 1988; Lay et al. 1994; Tassis 2007), observations show that

molecular clouds and embedded fragments (or cores) rarely exhibit rotation significantly

greater than that of the background medium (Goldsmith & Arquilla 1985). Even when

they do, their angular velocities (typical core rotational rates are Ω . 3 × 10−14 s−1)

imply centrifugal forces much too small to impose a disklike geometry through rotational

support perpendicular to the axis of rotation (Saito et al. 1995). If angular momentum

were conserved from the initial galactic rotation (i.e., starting from an angular velocity

Ω0 ' 10−15 s−1 at the mean density of the interstellar medium ' 1 cm−3; Goldsmith &

Arquilla 1985), centrifugal forces would not allow even the formation of interstellar clouds

(Mouschovias 1991a, § 2). Fragmentation does not alter this conclusion (Mouschovias

1977, § 1). This is referred to as the “angular momentum problem” of star formation.

As far as clouds and their cores are concerned, the angular momentum problem has been

shown to be resolved by magnetic braking (i.e., the transport of angular momentum from

a fragment to its surrounding medium through the propagation of torsional Alfvén waves

along magnetic field lines connecting the fragment to the cloud envelope) analytically by

Mouschovias & Paleologou (1979, 1980) and numerically by Basu & Mouschovias (1994,

1995a,b) and Mellon & Li (2009). Transient phenomena aside, Mouschovias & Paleologou

(1979, 1980) found that the characteristic time for loss of angular momentum is essentially

equal to the time it takes for torsional Alfvén waves to propagate away from a cloud (or

core) and set into motion an amount of “external” matter with moment of inertia equal to

that of the cloud (or core). The magnetic-braking timescale of a disk-shaped rotator with

straight-parallel field lines was found to be

τ|| =
ρcl

ρext

Z

vA,ext

≡
(

π

ρext

)1/2
M

ΦB

, (1.8)

where ρcl and ρext are the densities of the cloud and external medium (or envelope), re-

spectively, Z the half-thickness of the cloud, and vA,ext the Alfvén speed in the external
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medium. A “standard” value of ρext = 0.01ρcl (Basu & Mouschovias 1994).

In the case in which the field lines “fan out” away from a rotator (i.e., the field strength

decreases from its value in the cloud, through a transition region, to that of the “back-

ground” field), the magnetic-braking timescale acquires a multiplicative factor ≤ 1, whose

precise value depends on the moment of inertia of the transition region, Itr. If Itr . Icl

then the magnetic braking timescale becomes

τ||,fan = τ||

(
Rcl

R0

)4

≡
(

π

ρext

)1/2
M

ΦB

(
Rcl

R0

)2

, (1.9)

where R0 is the radius of the flattened cloud, when its density was ρ0 (> ρext) but its

magnetic field was equal to that of the external medium (see Mouschovias 1983). It follows

from this equation that, as a cloud (or core) contracts at constant M/ΦB in an environment

whose properties (ρext) do not change much as a result of the cloud’s (or core’s) contraction,

τ||,fan decreases as R2
cl (∝ Z ∝ ρ

−1/2
cl for isothermal contraction with balance of forces

maintained along field lines). In other words, magnetic braking becomes progressively

more effective because of the decreasing moment of inertia of the cloud.

Magnetic braking has been shown to be so effective that the centrifugal forces resulting

from the cloud’s or core’s rotation have a negligible effect on the evolution of the contract-

ing core, at least up to central densities of ≈ 1014 cm−3 (see the last paragraph of Tassis &

Mouschovias 2007b).

1.5 Grain Effects

Interstellar grains comprise about 1% of the mass in the interstellar medium (Spitzer 1978).

Baker (1979) and Elmegreen (1979) suggested that charged grains may couple to the mag-

netic field and thereby play a role in ambipolar diffusion and star formation. Elmegreen

(1979) and Nakano & Umebayashi (1980) compared and ambipolar-diffusion timescale

and the free-fall timescale and concluded that ambipolar diffusion occurs over too long a
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timescale (roughly 10 times greater than free-fall) to be a relevant process in star formation.

Refinements by the same authors (Elmegreen 1986; Umebayashi & Nakano 1990; Nishi

et al. 1991) led to similar conclusions. Through detailed numerical simulations of core

formation and evolution including the effects of (negative and neutral) dust grains, Ciolek

& Mouschovias (1993, 1994) found that grains lengthen the timescale for the formation

of a core because of grain-neutral collisions, but cautioned that the ambipolar-diffusion

timescale should not be compared to the free-fall timescale in determining its relevance in

magnetically-supported clouds, as originally pointed out by Mouschovias (1977), because

molecular clouds are not free-falling. Velocities characteristic of such collapse have not

been observed. Ciolek & Mouschovias (1995) extended these calculations by including

UV ionization and a variety of atomic metal ions (C+, S+, Si+, Mg+, Na+, Fe+). Atten-

tion was also paid to the complementary effect of protostellar evolution on the microscopic

physics and chemistry (Ciolek & Mouschovias 1996, 1998).

1.6 MHD Waves and/or Turbulence

It has long been known that molecular clouds exhibit supersonic linewidths (see review

by Zuckerman & Palmer 1974), which are inextricably linked to how such dense (n '
103 cm−3), cold (T ' 10 K) objects, whose masses are typically 102 − 104 greater than

the thermal (or Jeans, or Bonnor-Ebert) critical mass, could be supported against their

self-gravity, or whether they are supported at all. Possible explanations for the linewidths

are radial collapse (or expansion) (Shu 1973; Liszt et al. 1974; Goldreich & Kwan 1974;

Scoville & Solomon 1974), random motions of clumps within clouds (Zuckerman & Evans

1974; Morris et al. 1974), supersonic turbulence (Larson 1981; Leung et al. 1982; Myers

1983; Myers & Gammie 1999; Heyer & Brunt 2004), or hydromagnetic waves (Arons

& Max 1975; Mouschovias 1975; Zweibel & Josafatsson 1983; Mouschovias & Psaltis

1995; Mouschovias et al. 2006). While the first two possibilities have long been ruled out
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(Zuckerman & Evans 1974; Mouschovias 1975), there still exists a debate over the latter

two (Mac Low & Klessen 2004; Mouschovias et al. 2006).

The debate hinges upon a proper interpretation of the observed correlations between

linewidth (a proxy for velocity dispersion), size, and column density. When Larson (1981)

compiled data on linewidths on 54 clouds, clumps, and cores, and found a relation between

the observed velocity dispersion ∆v and the size (diameter) R of each object (the so-called

“turbulence law” ∆v ∝ R0.38, which was thought to be the signature of Kolmogorov tur-

bulence), supersonic turbulence appeared to be a natural explanation. Subsequent work

by Leung et al. (1982), Myers (1983), and Solomon et al. (1987) also found a power-law

relation, albeit with a significantly greater exponent, ' 0.5. Due in part to the influence of

Larson’s original work, it is widely believed even today that the characteristic scaling rela-

tions at the heart of theories of turbulence may still provide the most natural explanation of

the linewidth–size relation (Myers & Gammie 1999; Heyer & Brunt 2004).

Despite the promise of such an explanation, it is well known that supersonic turbu-

lence decays very rapidly (. 1 Myr) and has very high energy requirements (Mestel &

Spitzer 1956; Goldreich & Kwan 1974). Moreover, relatively recent numerical simulations

(Stone et al. 1998; Mac Low et al. 1998; Ostriker et al. 1999; Padoan & Nordlund 1999;

Ostriker et al. 2001) show that magnetic fields cannot mediate the decay of such turbulence

(often assumed to be initially superAlfvénic, although such an assumption lacks observa-

tional support; see below). In light of the arguments for long lifetimes of molecular clouds

(Mouschovias et al. 2006), this relatively rapid decay poses a serious problem for a tur-

bulent interpretation of the linewidth–size relation unless a suitable driving mechanism is

found that can replenish the rapidly-decaying turbulence. From a theoretical point of view,

these difficulties are compounded by the fact that different numerical studies of molecular

cloud turbulence seem to offer a wide range of conflicting results on what the predicted

linewidth–size relation ought to actually be (see Elmegreen & Scalo 2004, § 5.2).

Perhaps the most deleterious finding for a turbulent interpretation of the linewidth–size
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relation is the very recent revelation that Larson’s scaling relationships, in fact, do not

hold. The coefficient of the cloud structure functions, ∆v/R1/2, is not constant, but rather

systematically varies with the surface density of the cloud as Σ0.5 (Heyer et al. 2008).

This new relation is actually a special case of a more general result originally derived by

Mouschovias (1987) (see also Mouschovias & Psaltis 1995) in the context of the magnetic

support of molecular clouds. If (1) self-gravitating clouds are magnetically supported,

and (2) the material velocities responsible for the supersonic linewidths are slightly sub-

Alfvénic or Alfvénic, then the linewidths may be attributed to large-scale non-radial cloud

oscillations, which are essentially standing large-amplitude, long-wavelength (λ ∼ 1 pc)

Alfvén waves. For such clouds, the Alfvén speed is always comparable to the free-fall

speed, i.e.,

vA '
(

2GM

R

)1/2

= (2πGΣR)1/2 , (1.10)

where the column density Σ = M/πR2. Furthermore, self-gravitating, magnetically-

supported clouds are expected to have Σ ' Σcrit = (1/63G)1/2B (see eq. 1.4). Combining

these relations, one immediately finds that the nonthermal linewidth (∆v)NT is related to

the magnetic field strength B and the size R of the object by

(∆v)NT ' 1.4

(
B

30 µG

)1/2 (
R

1 pc

)1/2

km s−1 (1.11)

Equilibrium oscillations left over from the cloud formation process (Mouschovias 1975;

Kudoh & Basu 2003; Galli 2005; Kudoh & Basu 2006) could be the origin of these waves.

Equation (1.11) was shown by Mouschovias et al. (2006) to be in excellent quantitative

agreement with spectral line observations of clouds, cores, and embedded OH masers; they

considered the 31 objects for which the linewidth, size, and magnetic field strength were

reliably measured at the time (Myers & Goodman 1988; Crutcher 1999; Crutcher et al.

2004). We reproduce their Figures 1 and 2 here. In Figure 1.2a we plot (∆v)NT versus

R; errors bars are as in Myers & Goodman (1988), indicating an uncertainty of a factor
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Figure 1.2: (a) Nonthermal linewidth versus (FWHM) size for 31 objects (data from Myers
& Goodman 1988; Crutcher 1999; Crutcher et al. 2004). (b) Same linewidth-size data as in
(a), but grouped according to the total magnetic field strength.

18



Figure 1.3: Same linewidth-size data as in Figure 1.2, but exhibiting the ratio (∆v)NT/R1/2

as a function of the total magnetic field strength B. Error bars are as in Figure 1.2. The
theoretical prediction (eq. 1.11) is shown as a solid line. The dashed line is a least-squares
fit to the data.
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of 2. No single power law can meaningfully fit the data, in that the standard deviation

would be too large. In Figure 1.2b we separate these points into weak-field (B ≤ 270 µG;

open circles), moderate-field (270 µG < B < 3000 µG; grey circles), and strong-field

(3000 µG ≤ B; black circles) regimes. There is a clear indication that sources of different

magnetic-field strength follow different scaling laws. In Figure 1.3 we show the same data,

but we plot the quantity (∆v)NT/R1/2 against B. Error bars are as in Figure 1.2. The solid

line is the theoretical prediction, equation (1.11). The dashed line is a least-squares fit to

the data. The quantitative agreement between theory and observations is remarkable. The

theoretical prediction and the least-squares fit have exactly the same slope. In addition, the

fact that the theoretical prediction is offset slightly higher than the least-squares fit indicates

that the material motions responsible for the linewidths are slightly sub-Alfvénic.

Despite a lack of agreement on the origin of the linewidths, analytical (Mouschovias

1991a) and numerical calculations (Eng 2002) have demonstrated that turbulence plays an

insignificant role in the star formation process once dynamical contraction of a fragment

(or core) ensues. For typical molecular cloud parameters, the size of the region that can just

become gravitationally unstable because of ambipolar diffusion happens to be essentially

equal to the Alfvén lengthscale λA (Alfvén waves with wavelengths λ ≤ λA cannot propa-

gate in the neutrals because of damping by ambipolar diffusion — see Mouschovias 1991a,

eqs. 18a,b). In fact, it is precisely the decay of hydromagnetic waves due to ambipolar dif-

fusion that removes part of the support against gravity over the critical thermal lengthscale

and thus initiates fragmentation (or core formation) in molecular clouds (Mouschovias

1987). Observations showing narrowing and eventual thermalization of linewidths in pro-

tostellar cores (Baudry et al. 1981; Myers & Benson 1983; Myers et al. 1983; Bacmann

et al. 2000) are in agreement with this conclusion.
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1.7 Radiative Transfer

During the early phases of star formation, the energy produced by compressional heating is

radiated away by the dust grains in the infrared. At higher densities (& 1010 cm−3), the core

traps and retains part of this heat and its temperature begins to rise. Considerable work has

been conducted over the past several decades that attempts to discern the thermodynamic

evolution of protostellar cores in the absence of magnetic fields. A large number of nu-

merical simulations have been performed in one-dimensional spherically-symmetric (Bo-

denheimer 1968; Larson 1969, 1972b; Appenzeller & Tscharnuter 1975; Yorke & Kruegel

1977; Yorke 1979; Winkler & Newman 1980a,b; Masunaga et al. 1998), two-dimensional

axially-symmetric (Larson 1972a; Black & Bodenheimer 1976; Tscharnuter 1975, 1978;

Boss 1984; Bodenheimer et al. 1990; Yorke et al. 1993, 1995), and three-dimensional

(Boss 1986, 1988, 1993; Boss & Myhill 1995; Whitehouse & Bate 2006) geometries, using

widely varying initial conditions, approximations, and numerical techniques.

In the simplest case, the thermodynamic evolution of a protostellar core in the non-

isothermal regime may be approximated (but substantially overestimated) by using an adi-

abatic equation of state (Boss 1981). More realistic equations of state have also been

employed by, for example, Bate (1998). To accurately model the nonisothermal phase

of protostellar contraction, however, one needs to include a proper treatment of radiative

transfer.

Early efforts to include radiative transfer in (nonmagnetic) star formation calculations

were confined to the use of the diffusion approximation (Bodenheimer 1968; Larson 1969,

1972b; Black & Bodenheimer 1975, 1976; Tscharnuter 1975; Yorke & Kruegel 1977).

While the diffusion approximation is strictly applicable only to optically thick regions, its

ease of implementation and relatively low computational cost make it an attractive choice.

The Eddington approximation offers a slight improvement in that it retains some of the

rigor of using moments of the radiative transfer equation, while making the simplifying

assumption that the radiation field is everywhere isotropic. Its use in numerical calculations
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of (nonmagnetic) star formation has been documented in Tscharnuter (1978), Tscharnuter

& Winkler (1979), Winkler & Newman (1980a,b), Boss (1984, 1986, 1988), and Boss &

Myhill (1995). By implicitly assuming that photons always travel a distance comparable

to their mean-free path (even if this distance exceeds the free-flight distance c∆t, where

∆t is the computational timestep), the Eddington approximation gives unphysical behavior

in optically thin regions, in which the mean-free-path is huge. The result is a signal speed

unbound by the speed of light, i.e., it violates causality (see Mihalas & Weibel Mihalas

1984, § 97).

Increasing the accuracy and realism of a radiative transfer algorithm often requires mak-

ing limiting assumptions about the hydrodynamics in order to make the problem tractable

(e.g., Yorke 1980; Masunaga et al. 1998). A full frequency- and angle-dependent treatment

of the radiation is nearly always confined to postprocessing the results of a hydrodynamic

calculation (Yorke 1977; Yorke & Shustov 1981; Adams & Shu 1985, 1986) or a grey

(i.e., independent of frequency) radiation hydrodynamic calculation (Boss & Yorke 1990;

Bodenheimer et al. 1990). By contrast, the flux-limited diffusion (FLD) approximation

(Levermore & Pomraning 1981) is a propitious compromise that retains some of the ad-

vantages of the diffusion and Eddington approximations, while preserving causality and

coupling self-consistently to the hydrodynamic equations.

Despite vast differences in the approximations and numerical techniques used in pre-

vious work, a consensus has emerged regarding the qualitative evolution of nonmagnetic,

nonisothermal prestellar objects that is in broad agreement with the pioneering work of

Larson (1969). Such objects have been shown to remain isothermal until central densities

of ≈ 2 × 1010 cm−3 (or ≈ 2 × 108 cm−3, depending on the simulation) are reached. The

subsequent rise in temperature ultimately leads to the formation of a hydrostatic core at a

temperature ∼ 100 K and central density ≈ 2 × 1012 cm−3. The initial mass and radius

of the hydrostatic core are typically found to be ≈ 0.005 M¯ and ≈ 4 AU, respectively.

A thermal shock front forms at the core boundary as mass is accreted onto the hydrostatic
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core, while small-amplitude oscillations occur about equilibrium. Finally, a temperature of

1000 K is reached at a central density ≈ 2× 1015 cm−3. Soon thereafter, molecular hydro-

gen dissociates (at 2000 K), the ratio of specific heats γ dips below the critical value 4/3,

and material at the center of the core becomes unstable and collapses dynamically. De-

spite the ensuing highly dynamic evolution, the temperature rises only slowly since most

of the gravitational energy goes into molecular dissociation. Once molecular hydrogen is

nearly all dissociated, γ rises above 4/3 and the thermal pressure rises rapidly, decelerating

and ultimately halting the collapse at the center. A second (stellar) core forms, accompa-

nied by another small rebound and subsequent radial pulsations. The mass and size of this

core is ≈ 0.0015 M¯ and ≈ 1.3 R¯, respectively. Its central density ≈ 0.02 g cm−3 and

temperature ≈ 20, 000 K.

1.8 Summary and Outline

The addition of magnetic fields to the theory of star formation has brought a myriad of in-

teresting effects. Aside from the additional support that magnetic fields provide to counter

self-gravity, the inclusion of magnetic fields has led to a qualitatively different picture of

molecular cloud core fragmentation and evolution than earlier hydrodynamic calculations

had suggested.

In an initially magnetically-subcritical cloud, gravitational infall occurs only as rapidly

as allowed by ambipolar diffusion, the relative drift of neutral and charged particles. The

neutrals fall in toward a local gravitating center, impeded by collisions with the charged

particles, which remain nearly stationary along the magnetic field. Magnetic braking is

very effective during this phase of contraction and is responsible for reducing the angular

momenta of cloud cores to their observed low values and for resolving the angular momen-

tum problem during the early, isothermal stage of contraction. The magnetically-subcritical

phase continues until the neutral infall creates a central region with a supercritical mass-to-
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flux ratio (typically between a central density . 104 cm−3 and ≈ 105 cm−3). This region,

referred to as a supercritical core, contracts more rapidly than its surroundings, evolving

dynamically (though slower than free-fall) under near flux freezing, until the resurrection of

ambipolar diffusion causes magnetic decoupling4 to set in at a density ≈ 1010 cm−3. Mag-

netic decoupling occurs over a few orders of magnitude in central density enhancement

and precedes the formation of a central stellar object. The isothermal evolution of a mag-

netic molecular cloud has been followed in detail up to central densities of 2 × 1012 cm−3

by Desch & Mouschovias (2001), who find that the magnetic field strength asymptotically

approaches ≈ 0.1 G in the innermost ≈ 20 AU of the cloud.

Mostly due to the large numerical demands involved, the majority of magnetic star for-

mation simulations have only been able to follow in detail the early isothermal phase of

core fragmentation and evolution. There have been notable efforts, however, to incorporate

radiative effects into these calculations. Unfortunately, these often involve sacrificing rigor

in one aspect of the problem in deference to another. For example, the numerical simula-

tions of Boss (1997, 1999, 2002, 2005, 2007, 2009) followed the thermodynamic evolution

of a magnetic protostellar core with a reasonable degree of accuracy, via the Eddington ap-

proximation, while treating magnetic field effects and ambipolar diffusion crudely through

various approximations and parameterizations based on previous isothermal MHD calcula-

tions. Tassis & Mouschovias (2007a,b,c) have taken the opposite approach by incorporat-

ing a detailed treatment of nonideal MHD and chemistry into their numerical simulations,

while approximating the thermodynamic evolution via a piecewise adiabatic equation of

state.

This Thesis represents a step forward in joining decades-old efforts to uncover the ther-

modynamic evolution of a nonmagnetic protostellar core with the modern realization that

star formation is an intrinsically magnetohydrodynamic phenomenon. Magnetic fields are

4Complete magnetic decoupling refers to conditions such that the magnetic field has no significant effect
on the dynamics of the neutral matter and the motion of the neutral matter no longer affects the magnetic
field — see footnote 3 of Desch & Mouschovias (2001).
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an importunate necessity in the formulation of a theory of star formation, and while the fa-

mous psychoanalyst Carl Jung was most assuredly not referring to magnetic fields when he

wrote, “The artful denial of a problem will not produce conviction,” the quote itself seems

rather appropriate.

The outline of the Thesis is as follows. In Chapter 2 we formulate the problem to be

solved. Chapter 3 introduces the method of solution and provides the initial and boundary

conditions of the numerical simulations, the results of which are presented in Chapter 4.

Contact is made with both observations and prior theoretical work where appropriate. The

results of a brief parameter study are given in Chapter 5. Finally, in Chapter 6 we close

with a summary of results and predictions, as well as a discussion of their limitations and

of possible future work.
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Chapter 2

Formulation of the Problem

2.1 Outline

In this chapter we formulate the problem of the formation and evolution of protostellar frag-

ments (or cores) in magnetically-supported, self-gravitating molecular clouds, including

the effects of both ambipolar diffusion and Ohmic dissipation (which becomes important

at high densities), grain chemistry and dynamics, and radiation. Using the results of Eng

(2002) and Basu & Mouschovias (1994), we may safely ignore the effects of turbulence and

rotation, respectively, on the evolution of the protostellar core for the densities considered

here. The physical and chemical properties of the model cloud are summarized in Section

2.2. The radiation magnetohydrodynamic (RMHD) equations governing the evolution of

the model cloud are presented and discussed in Section 2.3. In Section 2.4 we present the

chemical model used in the calculations. The physics of magnetic diffusion (ambipolar and

Ohmic) is handled by using a generalized Ohm’s law, which is derived in Section 2.5. We

treat the radiative transfer using the grey (i.e., independent of frequency) FLD approxima-

tion, with realistic grain opacities accounting for a variety of grain compositions (§ 2.6).

Finally, we give the simplified set of equations and a brief summary in Section 2.7. Details,

mostly mathematical, are left for the Appendix.1
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Table 2.1: Chemical reaction network used in the calculation of the abundances of charged
species.

Relevant Chemical Reactions in Molecular Clouds
Cosmic-Ray Ionization: H2 + CR → H+

2 + e
H+

2 + H2 → H+
3 + H

H+
3 + CO → HCO+ + H2

Dissociative Recombination: HCO+ + e → H + CO
Radiative recombination: a A+ + e → A0 + hν
Charge transfer: a A0 + HCO+ → A+ + HCO
e− attachment onto grains: e + g0 → g−

e + g+ → g0

Atomic-ion attachment onto grains: a A+ + g− → A0 + g0

A+ + g0 → A0 + g+

Molecular-ion attachment onto grains: HCO+ + g0 → HCO + g+

HCO+ + g− → HCO + g0

Charge transfer by grain-grain collisions: gα
+ + gα′

− → gα
0 + gα′

0

gα
± + gα′

0 → gα
0 + gα′

±

aA+ represents an atomic ion, such as Na+, Mg+, and K+, and A0 the corresponding neutral atom.

2.2 Basic Properties of the Model Cloud

We consider a self-gravitating, magnetic, weakly-ionized, axisymmetric model molecular

cloud consisting of neutral particles (H2 with 20% He by number), ions (both molecu-

lar HCO+ and atomic Na+, Mg+, K+), electrons, singly negatively-charged grains, singly

positively-charged grains, and neutral grains. Following Desch & Mouschovias (2001), the

abundances of all species (except the neutrals) are determined from the chemical reaction

network shown in Table 2.1 and described below in Section 2.4.3. Cosmic rays of energy

& 100 MeV are mainly responsible for the degree of ionization in the cloud. Once col-

umn densities & 100 g cm−2 are achieved, cosmic rays are appreciably attenuated. At even

higher densities, cosmic rays are effectively shielded and radioactive decays become the

dominant source of ionization. Finally, at temperatures on the order of 1000 K or higher,

thermal ionization of potassium becomes important. UV radiation provides an additional

ionization mechanism, but it only affects the outer envelope of molecular clouds (Hollen-

1Published in ApJ Volume 693, Issue 2, pp. 1895–1911. Reproduction for this dissertation is authorized
by the copyright holder.
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bach et al. 1971; Glassgold & Langer 1974). We consider spherical grains whose radii are

determined by either a uniform or an MRN (Mathis et al. 1977) size distribution. In the

case of collisions of ions (molecular or atomic) with grains, we assume that the ions do

not get attached to the grains, but rather that they get neutralized, with the resulting neutral

particle escaping into the gas phase. Thus the total abundance of metals as well as the total

HCO abundance remain constant. Grain growth is not considered here.

The ambipolar-diffusion–initiated evolution of the model cloud is followed in two di-

mensions from typical mean molecular cloud densities (' 300 cm−3) to densities charac-

teristic of the formation of a hydrostatic protostellar core. The axis of symmetry is aligned

with the z-axis of a cylindrical polar coordinate system (r, φ, z). Isothermality is an excel-

lent approximation for the early stages of star formation, while the density is smaller than

≈ 1010 cm−3 (Gaustad 1963; Hayashi 1966; Larson 1969). However, once the heat gener-

ated by released gravitational energy during core collapse is unable to escape freely (at a

central number density of nopq ' 107 cm−3), radiative transfer calculations are employed

to determine the thermal evolution of the core.2 This is an improvement over previous

magnetic star formation calculations to reach these densities (Desch & Mouschovias 2001;

Tassis & Mouschovias 2007a,b,c), which assumed an adiabatic equation of state beyond a

critical density because of the high computational expense of radiative transfer calculations.

Numerical techniques and computer hardware have matured enough by now to render these

once impractical calculations feasible.

2We have varied the density nopq at which we turn on the radiative transfer solver from 106 to 1011 cm−3

and found that nopq . 107 cm−3 is necessary to achieve a smooth transition from isothermality. This
numerical necessity does not mean that the isothermality assumption breaks down at as low a density as
107 cm−3.

28



2.3 The Six-Fluid RMHD Description of Magnetic Star

Formation

The RMHD equations governing the behavior of the six-fluid system (neutrals, electrons,

ions, negative, positive, and neutral grains) are

∂ρn

∂t
+ ∇· (ρnvn) = 0 , (2.1a)

∂(ρg− + ρg0 + ρg+)

∂t
+ ∇· (ρg−vg− + ρg0vg0 + ρg+vg+) = 0 , (2.1b)

∂(ρnvn)

∂t
+ ∇· (ρnvnvn) = −∇Pn − ρn∇ψ +

1

c
j × B +

1

c
χFF , (2.1c)

0 = −ene

(
E +

ve

c
× B

)
+ F en , (2.1d)

0 = +eni

(
E +

vi

c
× B

)
+ F in , (2.1e)

0 = −eng−

(
E +

vg−

c
× B

)
+ F g−n + F g−g0,inel , (2.1f)

0 = +eng+

(
E +

vg+

c
× B

)
+ F g+n + F g+g0,inel , (2.1g)

0 = F g0n + F g0g−,inel + F g0g+,inel , (2.1h)

∇× B =
4π

c
j , (2.1i)

j = e
(
nivi − neve + ng+vg+ − ng−vg−

)
, (2.1j)

∂B

∂t
= −c∇× E , (2.1k)

∇2ψ = 4πGρn , (2.1l)

∂un

∂t
+ ∇· (unvn) = −Pn∇· vn − 4πκPB + cκEE + Γdiff , (2.1m)

∂E
∂t

+ ∇· (Evn) = −∇· F −∇vn :P + 4πκPB − cκEE , (2.1n)
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∂F
∂t

+ ∇· (Fvn) = −c2∇·P− cχFF . (2.1o)

The quantities ρs, ns, and vs refer to the mass density, number density, and velocity of

species s; the subscripts n, i, e, g−, g+, and g0 refer, respectively, to the neutrals, ions,

electrons, negatively-charged grains, positively-charged grains, and neutral grains. The

quantities E and B denote the electric and magnetic field, respectively, j the total electric

current density, un the internal energy density, Pn the gas pressure, and ψ the gravitational

potential. The source term Γdiff in the internal energy equation (2.1m) represents heating

due to ambipolar diffusion and Ohmic dissipation (see § 2.5.5). The magnetic field satisfies

the condition ∇· B = 0 everywhere at all times.

The radiation variables are the Planck function B, the total (frequency-integrated) ra-

diation energy density E , the total (frequency-integrated) radiation momentum density F ,

and the total (frequency-integrated) radiation pressure tensor P:

E(x, t) =
1

c

∫ ∞

0

dν

∮
dΩ I(x, t;Ω, ν) , (2.2a)

F(x, t) =

∫ ∞

0

dν

∮
dΩ I(x, t;Ω, ν) n̂ , (2.2b)

P(x, t) =
1

c

∫ ∞

0

dν

∮
dΩ I(x, t;Ω, ν) n̂n̂ . (2.2c)

Here we have introduced the frequency ν, the extinction coefficient (i.e., opacity) χ(ν)

(≡ κ(ν) + σ(ν), where κ is the absorption coefficient and σ is the scattering coefficient),

and the radiation specific intensity I . The material properties κP, κE , and χF are the Planck

and energy mean absorption coefficients, and the flux-weighted mean opacity, respectively;

they are given by

κP ≡ 1

B
∫ ∞

0

κ(ν)B(ν)dν , (2.3a)

κE ≡ 1

E
∫ ∞

0

κ(ν)E(ν)dν , (2.3b)
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χF ≡ 1

F
∫ ∞

0

χ(ν)F(ν)dν . (2.3c)

Equations (2.1n) and (2.1o) are obtained from taking moments of the radiation transport

equation

(
1

c

∂

∂t
+ Ω ·∇

)
I(x, t;Ω, ν) = χ(x, t;Ω, ν)

[
S(x, t;Ω, ν)− I(x, t;Ω, ν)

]
(2.4)

under the assumptions that all the radiation variables are measured in the comoving frame

of the fluid (in this frame the material properties are isotropic) and that the material prop-

erties are grey (Mihalas & Weibel Mihalas 1984).3 We have taken the source function S in

the transport equation (2.4) to be given by

4πSν =
4πκνBν + cσνEν

κν + σν

, (2.5)

taking into account both establishment of local thermodynamic equilibrium and coherent

isotropic scattering of radiation (Mihalas & Weibel Mihalas 1984).

The frictional force (per unit volume) on species s due to elastic collisions with neutrals

is given by

F sn =
ρs

τsn

(vn − vs) , s = i, e, g−, g+, g0 , (2.6)

where the mean (momentum exchange) collision times, accounting for both s-H2 and s-He

collisions, is

τsn = aHe−s
mH2 + ms

ρn〈σcollw〉sH2

. (2.7)

The quantity aHe−s is the factor by which the presence of He lengthens the slowing-down

time relative to the value it would have if only H2-s collisions were considered, and is given

3We caution here that Preibisch et al. (1995) and Yorke & Sonnhalter (2002) have shown that multi-
frequency calculations generally produce higher dust temperatures and greater degrees of anisotropy in the
radiation field than corresponding grey calculations.
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by (see Mouschovias 1996, § 2.1)

aHe−s =





1.23 for s = i ,

1.21 for s = e ,

1.09 for s = g−, g+, or g0.

(2.8)

The rate constant 〈σcollw〉sH2 for collisions between particles of species s and H2 molecules

is 1.69 × 10−9 cm3 s−1 for HCO+ ions, with a similar value for Na+ and Mg+ ions (Mc-

Daniel & Mason 1973), and 1.3 × 10−9 cm3 s−1 for electrons (Mott & Massey 1971). In

calculating these collisional rates, the Langevin approximation is used for ion-neutral col-

lisions but not for electron-neutral collisions, for which the electron spin is important. For

collisions between H2 and grains of radius a, the rate constant is given by

〈σcollw〉gH2 = πa2(8kBT/πmH2)
1/2 . (2.9)

This rate is the same for both charged and neutral grains of radius a ≥ 10−6 cm (the kind

of grains we consider). Equation (2.9) is valid only if the velocity difference between a

grain and a hydrogen molecule is smaller than the sound speed in the neutrals (Ciolek &

Mouschovias 1993). Otherwise, one has to use

〈σcollw〉gH2 = πa2|vn − vg| . (2.10)

By Newton’s third law, i.e., F ns = −F sn, τns = (ρn/ρs)τsn.

The quantity F γδ,inel(k) in equations (2.1f) – (2.1h) is the force per unit volume on grain

fluid γ due to the conversion of dust particles of fluid δ into dust particles of fluid γ, with

mass grain δmγ (note that mγ = mδ) via an inelastic process k, where k can be any one of

the processes listed in Table 2.1 that involve grains. The momentum transferred to fluid γ
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from fluid δ is

∆p = |δmγ|(vδ − vγ) , (2.11)

and we can write

F γδ,inel(k) = mγ

∣∣∣∣
∂nγ

∂t

∣∣∣∣
k

(vδ − vγ) , (2.12)

where the time rate of change of the number density of γ due to the inelastic process k is

given by ∣∣∣∣
∂nγ

∂t

∣∣∣∣
k

= nηnδ〈σcollw〉k =
nδ

τδη,inel

, (2.13)

and τδη,inel is the timescale for a particle δ to find a particle η and be converted into γ. Thus,

in general, since mγ = mδ,

F γδ,inel(k) =
ρδ

τδη,inel

(vδ − vγ) . (2.14)

Furthermore, according to Newton’s third law, the fluid δ will also experience an equal and

opposite force

F δγ,inel(k) = −F γδ,inel(k) =
ρδ

τδη,inel

(vγ − vδ) . (2.15)

The relevant timescales due to these inelastic processes are τg0e,inel = (neαeg0)
−1, τg0i,inel =

(niαig0)
−1, τg−i,inel = (niαig−)−1, τg+e,inel = (neαeg+)−1, τg−g+,inel = (ng+αg+g−)−1,

τg+g−,inel = (ng−αg+g−)−1, τg0g±,inel = (ng±αg±g0)
−1, and τg±g0,inel = (ng0αg±g0)

−1, where

the reaction rates αeg0 , αig0 , αig− , αeg+ , αg+g− , and αg±g0 are given in Appendix A.

In the force equations for the electrons, ions, and grains, the acceleration terms have

been neglected due to the small inertia of these species. The acceleration term for the

plasma was included by Mouschovias et al. (1985) and it was shown that the plasma reaches

a terminal drift velocity very fast. Similarly, the thermal-pressure and gravitational forces

have been dropped from the force equations of all species other than the neutrals because

they are negligible compared to the electromagnetic and collisional forces. The inelastic

momentum transfer by the electron and ion fluids due to attachment onto grains and neu-
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tralization are negligible compared to the momentum transfer due to elastic collisions, and

they have been omitted from the force equations (2.1d) and (2.1e) (see discussion in Ciolek

& Mouschovias 1993, § 3.1). When considering a distribution of grain sizes, equations

(2.1b), (2.1f) – (2.1h) apply to each grain size separately.

The full set of RMHD equations are closed with constitutive relations for the gas

pressure, opacities, and the Planck function [i.e., Pn = Pn(ρn, T ), χF = χF(ρg, T ),

κE = κE(ρg, T ), κP = κP(ρg, T ), and B = B(T ), where T is the gas temperature and

ρg ≡ ρg− + ρg0 + ρg+ is the total grain mass density]. In addition, we close the radiation

moment equations with the tensor variable Eddington factor f which is used to eliminate

the radiation stress tensor P in favor of the radiation energy density E via

P = fE . (2.16)

The Eddington factor f is determined by employing the FLD approximation (see § 2.6.1).

The equation of state for an ideal gas is given by

Pn = (γ − 1)un , (2.17)

where γ = kB/cV + 1 is the adiabatic index and cV is the specific heat at constant volume

per particle:

cV =
3

2
kB + cvib

V + crot
V , (2.18)

assuming that there is no coupling between the rotational and vibrational degrees of free-

dom of the molecule (in this case, H2). The vibrational specific heat is

cvib
V = kB

(
Θvib

T

)2
exp(Θvib/T )[

exp(Θvib/T )− 1
]2 , (2.19)

where Θvib = 6100 K; the rotational specific heat for a 3:1 mixture of ortho- and para-
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hydrogen is

crot
V =

3

4
kBx2 ∂2

∂x2
ln Zo +

1

4
kBx2 ∂2

∂x2
ln Zp , (2.20)

where Zo and Zp are the ortho- and para-hydrogen partition functions, respectively, given

by

Zo =
∑

odd j

(2j + 1) exp[−xj(j + 1)] (2.21a)

Zp =
∑
even j

(2j + 1) exp[−xj(j + 1)] , (2.21b)

and x ≡ Θrot/T = 85.4 K/T (Kittel 1958). The dependence of γ on temperature T is

shown in Figure 2.1.

Altogether, then, we have a system of 17 equations [(2.1a) – (2.1o), (2.16), and (2.17)],

which contain 21 unknowns (ρn, Pn, un, E, B, j, ψ, vn, ve, vi, vg− , vg+ , vg0 , ρe, ρi, ρg− ,

ρg+ , ρg0 , E , F , P). To close the system, the densities of electrons, ions, and charged grains

(ne, ni, ng− , and ng+) are calculated from the chemical-equilibrium model detailed below.

2.4 The Chemical Model

2.4.1 Ionization Rate

The rate of ionization per unit volume is given by ζnH2 and is (in principle) due to the

following ionization sources: UV radiation, cosmic rays, radioactivities, and thermal ion-

ization. The presence of molecules in molecular clouds implies low levels of UV radiation,

so it is usually neglected. UV radiation was included by Ciolek & Mouschovias (1995) in

their numerical simulations of core formation and evolution. They found that UV ionization

dominates cosmic-ray ionization for visual extinctions AV . 10 and can increase the de-

gree of ionization in the envelope by at least 2 orders of magnitude (see also McKee 1989).

The increase in ionization was found to speed up core collapse by approximately 30% be-

cause the central gravitational field of a flattened cloud is stronger (i.e., less diluted by the
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Figure 2.1: Dependence of γ (ratio of specific heats) on temperature T for H2.
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mass of the envelope) when matter in the envelope is held farther away from the forming

core. Once dynamical contraction ensues, it was found that UV radiation has little effect on

the evolution of central quantities and therefore it is usually neglected. For numerical rea-

sons, however, we add to the electron and ion number densities the second term in equation

(4h) of Fiedler & Mouschovias (1992) (= 467.64 n−2
H2

cm−3) so as to maintain a relatively

large degree of ionization (∼ 10−5 − 10−6) (and therefore negligible ambipolar diffusion)

in the low-density (nH2 . 103 cm−3) cloud envelope. This term qualitatively mimics the

effect of cloud envelope penetration by UV photons, and has negligible quantitative effect

on the formation and evolution of the core.

Cosmic rays, on the other hand, with typical energies of 100 MeV are able to penetrate

deeper into molecular clouds. Umebayashi & Nakano (1980) have investigated the ioniza-

tion due to a spectrum of cosmic rays. They found that the cosmic-ray ionization rate was

well described by the following relation:

ζCR = ζ0 exp(−ΣH2/96 g cm−2) , (2.22)

where ΣH2 is the column density of H2 separating the point in question from the exterior

of the cloud and ζ0 = 5× 10−17 s−1 is the canonical unshielded cosmic-ray ionization rate

(Spitzer 1978). Tassis & Mouschovias (2007b) found that, when a typical core’s central

density exceeds' 1012 cm−3, cosmic rays are shielded and an abrupt decrease in ionization

occurs.

Once the core is shielded from high-energy cosmic rays, the dominant source of ioniza-

tion is radioactive decay of 40K or 26Al. The isotope 40K is the most common radionuclide

invoked, due to its long half-life of 1.25 Gyr and its ubiquity in nature (0.012% of terrestrial

potassium is 40K). The density of potassium in the interstellar medium (2.70 × 10−7 nH2)

and the energy of the beta particle emitted as 40K decays, 1.31 MeV, are used as inputs

to calculate the ionization rate (e.g., see Glassgold 1995): ζ40 = 2.43 × 10−23 s−1. Con-
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solmagno & Jokipii (1978) have suggested that 26Al may have been a much more potent

ionizer than 40K. Performing a similar calculation for 26Al, one finds ζ26 = 1.94×10−19 s−1,

with the fraction of aluminum in the isotope 26Al inferred to have existed in the solar neb-

ula being 5 × 10−5 (Clayton & Leising 1987). Although 26Al is four orders of magnitude

more potent an ionizer than 40K, its short half-life (0.716 Myr) makes it relevant only if the

initial mass-to-flux ratio of the parent cloud is close to critical, so that the evolution is rapid

enough to retain an adequate amount of this radionuclide. 26Al can also become important

if the core happens to get enriched because of a nearby Supernova explosion.

Finally, at temperatures on the order of 1000 K or higher, collisions between molecules

are energetic enough to ionize those atoms with low ionization potentials, of which potas-

sium and sodium are the most abundant. The abundance of sodium in the interstellar

medium is greater than that of potassium (by a factor ' 14; Lequeux 1975), but the lower

threshold of potassium (4.34 eV vs. 5.13 eV for sodium) makes it the dominant ion. The

ionization occurs at a rate (Pneuman & Mitchell 1965) given by

d

dt
(nK+) = 4.1× 10−15nH2nK0

(
T

1000 K

)1/2

exp

(
−5.04× 104 K

T

)
cm3 s−1 . (2.23)

Because this process relies on collisions between two species, it is not expressed in terms

of a quantity ζ .

2.4.2 Grain Size Distribution

Since the dust opacity, the conductivity of the gas, and the collision rates (see below) all

depend on the (local) grain surface area, it is necessary to investigate the effect of a grain

size distribution. The initial size distributions adopted here are a uniform distribution and

the standard “MRN” distribution of interstellar dust (Mathis et al. 1977). In both cases,

the density of the solid material of each grain is taken to be ρS = 2.3 g cm−3, the average

density of silicates. For the uniform distribution, a fiducial grain size a0 = 0.0375 µm is
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used and the total mass density of dust ρg,tot = 0.01ρn,tot. For the MRN distribution, the

number density of spherical dust grains with radii between a and a + da is

dng,tot(a) = NMRNa−3.5da . (2.24)

The distribution is truncated at a lower grain radius amin and an upper grain radius amax.

The coefficient NMRN is proportional to the dust-to-gas mass ratio in the cloud. Note that

most of the grain surface area is contributed by small grains, because of their overwhelming

abundance.

The grains are binned according to size and charge and treated as separate grain species.

Each size bin represents a subset of the original distribution of grains, those with radii

between alower and aupper. The subset of grains in the αth (α = 1, 2, . . . , N ) size bin is

replaced by a number density nα
g of grains with identical radii, aα. The total number of

grains and the total surface area of grains in the size bin are constrained to match the total

number and surface area of original grains incorporated into the size bin. Hence

nα
g =

∫ aupper

alower

dng,tot

da
da , (2.25a)

nα
ga2

α =

∫ aupper

alower

a2dng,tot

da
da . (2.25b)

Applying these relations to the MRN grain size distribution, equation (2.24), if there are N

size bins, then the αth bin is characterized by grains of number density and radii as follows:

nα
g = ng,tot ξ2.5(α−1)/N

(
1− ξ2.5/N

1− ξ2.5

)
, (2.26a)

aα = amin ξ−(α−1)/N

[
5

(
1− ξ0.5/N

1− ξ2.5/N

)]1/2

. (2.26b)

The ratio of the lower and upper radii of the distribution is denoted by ξ ≡ amin/amax.

The total number density of dust, ng,tot, is determined by constraining the total grain mass
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density in the size distribution to be ρg,tot:

ng,tot =

(
ρg,tot

4
3
πρSa3

min

)[
1

5

(
1− ξ2.5

1− ξ0.5

)]
ξ0.5 . (2.27)

The lower and upper cutoffs to the size distribution are chosen to be amin = 0.0181 µm

and amax = 0.9049 µm, respectively. In equation (2.27), the total mass density of dust

in the system, ρg,tot, is chosen in such a way that the total grain surface area in the size

distribution is equal to that in the fiducial case of a single grain size a0. This constraint

demands that ρg,tot be increased by a factor (amin/a0) ξ−0.5 over the fiducial value of ρg,tot.

Only in this way can the effect of a size distribution, as distinct from just the surface area of

grains, be determined. With the fiducial values a0 = 0.0375 µm and ρg,tot = 0.01ρn,tot for

the single grain case, ρg,tot = 0.0341ρn,tot for the case of a size distribution. Empirically, it

was found that a minimum of five size bins of grain radii were required for convergence of

1%. Since each size grain can be found in one of three possible charge states (−e, 0, and

+e), a total of 15 grain species are considered.

While we do not consider grain growth (and therefore fix the number of grains within

each size bin), we do expect the grain size distribution to evolve spatially within the star-

forming cloud. Ambipolar diffusion can alter a grain size distribution by acting more effec-

tively on the larger grains, causing a spatial segregation of grain sizes that leaves the smaller

grains behind in the cloud envelope. The result is a deficit of small grains (a . 10−5 cm)

in the cloud core. In fact, Ciolek & Mouschovias (1996) show how observations of grain

abundances in the core and envelope of a molecular cloud can, at least in principle, be used

to determine the initial mass-to-flux ratio of the cloud.

2.4.3 Chemical Network

We use a chemical-equilibrium network accounting for electrons (subscript e); molecu-

lar ions such as HCO+ (subscript m+); neutral metal atoms (subscript A0) and atomic
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ions (subscript A+) of Mg, Na, and K; singly positively-charged grains (subscript g+);

singly negatively-charged grains (subscript g−); and, neutral grains (subscript g0). Multi-

ply negatively- (positively-)charged grains may be neglected, because a singly negatively-

(positively-)charged grain repels electrons (ions) thereby decreasing the rate of capture by

the factor exp(−e2/akBT ) (Spitzer 1941). The equilibrium assumption is accurate pro-

vided that the dynamical timescales of interest are sufficiently longer than the chemical-

reaction timescales. This is always the case for the density regime considered here. The

relevant reactions are given below and explained briefly.

The production of molecular ions (such as HCO+) is balanced by their destruction

through charge-exchange reactions with atomic ions, by dissociative recombinations (col-

lisions with electrons), or by collisions with and neutralization on the surfaces of grains:

ζnH2 = nm+nA0β + nm+neαdr +
∑

α

nm+ngα
−αm+gα

− +
∑

α

nm+ngα
0
αm+gα

0
. (2.28)

The index α denotes a grain size bin, and the sum is over all the size bins, which are treated

as independent grain species. The production of atomic ions by charge-exchange reactions

is balanced by radiative recombinations and by collisions with grains:

nm+nA0β = nA+neαrr +
∑

α

nA+ngα
−αA+gα

− +
∑

α

nA+ngα
0
αA+gα

0
. (2.29)

If the atomic ion in question is K+, there is the additional source term due to thermal ioniza-

tion of potassium atoms, nK0nH2αK0H2
. Positively-charged grains are formed by the colli-

sions of ions and neutral grains and by charge exchange between grains; they are destroyed

by collisions with electrons, collisions with negative grains, and by charge exchange with
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neutral grains:

nm+ngα
0
αm+gα

0
+ nA+ngα

0
αA+gα

0
+

∑

α′
ngα′

+
ngα

0
αgα′

+ gα
0

= nengα
+
αegα

+
+

∑

α′
ngα

+
ngα′

−
αgα

+gα′
−

+
∑

α′
ngα

+
ngα′

0
αgα

+gα′
0

. (2.30)

Here the index α′ runs over all the grain size bins, independently of the index α. Negatively-

charged grains are formed by the collisions of electrons and neutral grains and by charge

exchange between grains, and are destroyed by collisions with ions, collisions with positive

grains, and by charge exchange with neutral grains:

nengα
0
αegα

0
+

∑

α′
ngα′

−
ngα

0
αgα′

− gα
0

= nm+ngα
−αm+gα

− + nA+ngα
−αA+gα

− +
∑

α′
ngα′

+
ngα

−αgα′
+ gα

−
+

∑

α′
ngα

−ngα′
0

αgα
−gα′

0
.

(2.31)

We close this set of equations with constraints on the total number of grains in a given size

bin,

ngα
+

+ ngα
0

+ ngα
− = ngα , (2.32)

and the total number of an atomic species (neutral + positively-charged),

nA0 + nA+ = nA , (2.33)

and with charge neutrality:

nm+ + nA+ − ne +
∑

α

(
ngα

+
− ngα

−

)
= 0 . (2.34)

The rate coefficients in equations (2.28) – (2.34) are given in Appendix A.

The mass of molecular ions is taken to be that of HCO+, mm+ = 29 mp, while for the
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atomic ions an average value mA+ = 23.5 mp, between the mass of Na (mNa+ = 23 mp)

and the mass of Mg (mMg+ = 24 mp), is used. Since the ion masses are all comparable,

the fact that different ionic species dominate in different density regimes does not affect

the evolution of the cloud cores. The total number density of metals (neutral + ionized) is

fixed at nA = 2.05× 10−6 nn (Morton 1974; Snow 1976).

2.5 Magnetic Flux Loss and Electrical Resistivity

The force equations (2.1d) – (2.1h) and the induction equation (2.1k) are not written in

the most convenient form for our purposes. A useful simplification can be made, which

amounts to a generalized version of Ohm’s law; namely, we replace equations (2.1d) –

(2.1h) with a modified form of equation (2.1k). This auspiciously eliminates five variables

(ve, vi, vg0 , vg− , and vg+), but not without a cost. The ensuing algebra is messy, and much

of it is deferred to Appendix B.1. Here, we outline the simplification and highlight some

results suitable for the present discussion.

2.5.1 Resistivity of a Magnetic Gas

The rate of change of magnetic flux across a surface S, comoving with a fluid with velocity

v, is given by
dΦB

dt
=

∫

S

[
∂B

∂t
−∇× (v × B)

]
· dS . (2.35)

Using Faraday’s law (2.1k), the integrand can be rewritten as

dΦB

dt
= −c

∫

S

∇×
(
E +

v

c
× B

)
· dS , (2.36)

and the current density can be calculated from

j = σ
(
E +

v

c
× B

)
. (2.37)
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The quantity v is the velocity of the fluid, which for a weakly-ionized gas is essentially

that of the neutrals vn, and σ is the conductivity tensor. The presence of a magnetic field

introduces an anisotropy in the equations, which is the reason for which the conductivity

must be described by a tensor. If we take the 3-direction to lie along the magnetic field, the

conductivity tensor has the following representation (Parks 1991):

σ =




σ⊥ −σH 0

σH σ⊥ 0

0 0 σH




. (2.38)

As B → 0, the tensor must reduce to an isotropic form; i.e., σH → 0 and σ⊥ → σ||.

Because magnetic forces vanish along the magnetic field, σ|| must be independent of the

magnetic field strength.

Equation (2.37) may be inverted to obtain the electric field, in which case a resistivity

tensor η is defined by

E +
vn

c
× B = ηj , (2.39)

where, in the same representation as σ written above,

η =




η⊥ ηH 0

−ηH η⊥ 0

0 0 η||




, (2.40)

and

η|| =
1

σ||
, (2.41a)

η⊥ =
σ⊥

σ2
⊥ + σ2

H

, (2.41b)

ηH =
σH

σ2
⊥ + σ2

H

. (2.41c)

The flux-freezing approximation corresponds to the limit η → 0.
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If we write the current density j in component form, it follows that we may write

equation (2.39) as

E +
vn

c
× B = η||j || + η⊥j⊥ + ηHj × b , (2.42)

where j || and j⊥ are the components of the current density parallel and perpendicular to the

magnetic field, respectively, and b is a unit vector along the magnetic field. This relation

between the electric field and the current density can be substituted in equation (2.36) to

find that
dΦB

dt
= −c

∫

S

∇× (
η||j || + η⊥j⊥ + ηHj × b

) · dS . (2.43)

This is the general form of the equation describing the loss of magnetic flux from a parcel of

neutral gas, written entirely in terms of the components of the resistivity tensor and current

density.

For our model cloud, we have assumed axisymmetry and neglected rotation. In this

case, the magnetic field is purely poloidal and the current density is purely toroidal by

Ampere’s law (2.1i). This geometry implies that the only nonvanishing component of the

current density is the component perpendicular to the magnetic field, j = j⊥. The evolu-

tion of the poloidal magnetic flux in the neutrals’ reference frame is then given by

dΦB

dt
= −c

∫

S

∇× (
η⊥j⊥

) · dS . (2.44)

The equivalent equation governing the evolution of the poloidal magnetic field is

∂B

∂t
= ∇× (

vn × B
)− c∇× (

η⊥j⊥
)
. (2.45)

Equation (2.44) describes the evolution of magnetic flux in the neutrals’ reference frame

due to the motion of charges at right angles to the magnetic field and includes the effects

of both ambipolar diffusion and Ohmic dissipation. The rate at which magnetic flux is lost

equals the sum of the rates due to each process. Therefore, η⊥ can itself be written as the
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sum of two components, one related to ambipolar diffusion (subscript AD) and the other to

Ohmic dissipation (subscript OD):

η⊥ = η⊥AD + η⊥OD . (2.46)

The issue of how to separate the resistivity η⊥ into its two components is discussed, for

example, in Nakano & Umebayashi (1986a,b), Goldreich & Reisenegger (1992), and Desch

& Mouschovias (2001). We quote the result here:

η||OD = η|| , (2.47a)

η⊥OD = η|| , (2.47b)

η||AD = 0 , (2.47c)

η⊥AD = η⊥ − η|| . (2.47d)

We now derive expressions for the resistivities from first principles.

2.5.2 Generalized Ohm’s Law

We outline the derivation of a generalized Ohm’s law, taking into account both elastic and

inelastic collisions between neutrals, ions, electrons, and charged and neutral grains. We

begin by writing the force equation for the charged species s:

0 = nsqs

(
E +

vs

c
× B

)
+

ρs

τsn

(vn − vs) +
ρg0

τs,inel

(vg0 − vs) . (2.48)

The subscript s runs over all the charged species, taking on the values s = i, e, g+, and

g−. Although we employ a grain size distribution, we consider only a single grain size

in what follows for ease of presentation; a discussion of the consequences of a grain size

distribution is deferred to Appendix B.2. The charge qs of species s carries an algebraic
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sign (e.g., it is negative for electrons). We write τs,inel to represent the timescale for species

s to be created by or take part in any inelastic collision. For example,

τg+,inel =

[
1

τg0i,inel

+
1

τg0g+,inel

+
ρg+

ρg0

(
1

τg+e,inel

+
1

τg+g−,inel

+
1

τg+g0,inel

)]−1

(2.49)

is the timescale for a neutral grain to participate in any inelastic reaction involving conver-

sion between positive and neutral grains. The first two terms represent the production of

positive grains due to charge exchange between neutral grains and ions and between neu-

tral grains and positive grains, respectively; the next two terms represent the conversion of

positive grains to neutral grains via neutralization with electrons and negative grains, re-

spectively; and, the final term represents the conversion of positive grains to neutral grains

via charge exchange. Since these are processes occurring in parallel, the reciprocals of their

respective collision times are added to obtain the net collision time. Similarly,

τg−,inel =

[
1

τg0e,inel

+
1

τg0g−,inel

+
ρg−

ρg0

(
1

τg−i,inel

+
1

τg−g+,inel

+
1

τg−g0,inel

)]−1

(2.50)

is the timescale for a neutral grain to be involved in any inelastic reaction involving con-

version between negative and neutral grains. The force equation for the neutral grains is

0 =
ρg0

τg0n

(vn − vg0) +
∑

k

ρg0

τk,inel

(vk − vg0) , (2.51)

where the index k runs over all the charged species.

We eliminate the velocity vs of species s in favor of a new velocity, ws, which is the

velocity of species s with respect to the neutral gas (ws ≡ vs− vn). In addition, we define

En as the electric field in the frame of reference of the neutral gas (En ≡ E + vn × B/c).

Equations (2.48) and (2.51) then become, respectively,

0 =
ωsτsn

1 + %s

( c

B
En + ws × b

)
−ws +

%s

1 + %s

wg0 , (2.52)
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0 = wg0 −
∑

k

τ0

τk,inel

wk , (2.53)

where we have introduced the cyclotron frequency of species s, ωs = qsB/msc, and have

defined %s and τ0 by

%s =
ρg0

ρs

τsn

τs,inel

(2.54a)

1

τ0

=
1

τg0n

+
∑

k

1

τk,inel

. (2.54b)

Equations (2.52) and (2.53) form the set of equations to be solved.4 The species velocities

(relative to the neutrals) ws can be expressed in terms of En and then substituted in the

definition of the current density

j =
∑

s

nsqsws , (2.55)

where we have used charge neutrality (
∑

s nsqs = 0). This expression can then be inverted

to find En in terms of j, which defines the resistivity tensor. The magnetic induction

equation is then found by substitution into Faraday’s law of induction:

∂B

∂t
−∇× (vn × B) = −c∇× En . (2.56)

Using this approach, we derive an induction equation generalized to include Ohmic dissi-

pation, ambipolar diffusion, and the Hall effect for a six-fluid system including both elastic

and inelastic collisions.

The ensuing calculation is tedious, and we defer the details to Appendix B.1. Here we

give only the final result:

j = σ||En,|| + σ⊥En,⊥ − σHEn × b , (2.57)

4The quantity %s was written as rs in Tassis & Mouschovias (2007a). We have renamed it here to avoid
confusion with the cylindrical radial coordinate r.
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where

σ|| =
∑

s

σs(1− ςs) , (2.58a)

σ⊥ =
∑

s

σs(1− ςs)

1 + ω2
sτ

2
sn(1− ϕs)

Υs(ς) , (2.58b)

σH = −
∑

s

σsωsτsn(1−$s)

1 + ω2
sτ

2
sn(1− ϕs)

Υs($) . (2.58c)

The conductivity of species s is given by σs = nsq
2
sτsn/ms. The quantities ςs, $s, ϕs,

and Υs are defined in Appendix D; they represent the effects of inelastic collisions on the

conductivity of the gas. In the absence of inelastic collisions, these formulae reduce to their

standard form (e.g., see Parks 1991):

σ|| →
∑

s

σs , σ⊥ →
∑

s

σs

1 + ω2
sτ

2
sn

, σH → −
∑

s

σsωsτsn

1 + ω2
sτ

2
sn

.

Equation (2.57) may be inverted to give

En = η||j || + η⊥j⊥ + ηHj × b , (2.59)

with the resistivities η||, η⊥, and ηH given by equations (2.41).

2.5.3 Attachment of Species to Magnetic Field Lines

It is possible to write the velocity of each species, vs, in terms of the velocity of the neutrals,

vn, and the velocity of the field lines, vf , which is defined implicitly by

E +
vf

c
× B = 0 . (2.60)
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The algebra and some intermediate results of interest are given in Appendix C; here, we

quote the main result and explain it physically:

vs,⊥ = vn,⊥
1

Θs + 1
+ vf,⊥

Θs

Θs + 1
+ (vf − vn) × b Λs , (2.61a)

vs × b = vn × b
1

Θs + 1
+ vf × b

Θs

Θs + 1
− (vf,⊥ − vn,⊥) Λs , (2.61b)

where the expressions for Θs and Λs are given in Appendix C. The quantity Θs is the

attachment parameter (i.e., for Θs À 1, vs ≈ vf and species s is attached to the field lines,

whereas for Θs ¿ 1, vs ≈ vn and species s is detached and comoves with the neutrals) —

see, also, Ciolek & Mouschovias (1993, § 3.1.2). The function Λs quantifies the relation of

one component of the species velocity to its mutually perpendicular component of the field

line drift velocity, and essentially embodies Ampere’s law. Under the assumptions of this

paper, the midplane velocities of the charged species s, written in cylindrical coordinates

(r, φ, z), are

vs,φ(r, z = 0) = (vn,r − vf,r) Λs , (2.62a)

vs,r(r, z = 0) = vn,r
1

Θs + 1
+ vf,r

Θs

Θs + 1
. (2.62b)

The first equation says that the charged species move in such a way as to cause differential

motion between the field lines and the neutrals (Ampere’s law). The second equation gives

the radial velocity of any charged species in terms of the velocities of the neutrals and of

the field lines. These may be combined to yield

ws,r = vs,r − vn,r = − Θs

Θs + 1

vs,φ

Λs

. (2.63)

In other words, the radial drift between species s and the neutrals is directly proportional

to the contribution of species s to the azimuthal current.
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2.5.4 Grain Continuity Equation

In the notation of Section 2.5.2, the grain continuity equation (2.1b) may be written as

∂ρg

∂t
+ ∇· (ρgvn) = −∇· (ρg−wg− + ρg0wg0 + ρg+wg+) , (2.64)

where ρg = ρg− + ρg0 + ρg+ is the total grain density. Eliminating wg0 using equation

(2.53), we find that

∂ρg

∂t
+ ∇· (ρgvn) = −∇·

[
ρg+wg+

(
1 +

τ0

τg+n

%g+

)
+ ρg−wg−

(
1 +

τ0

τg−n

%g−

)]
.

(2.65)

We may use equation (C.1) to eliminate the differential velocities of the charged grain

species to find, after some manipulation,

∂ρg

∂t
+ ∇ · (ρgvn) = −∇· (ηcont,||j || + ηcont,⊥j⊥ + ηcont,Hj × b

)
, (2.66)

where the components of the grain-continuity resistivity tensor, ηcont, are defined as

ηcont,|| =
∑

s=g+,g−

ms

qs

[
η||σ||,s

(
1 +

τ0

τsn

%s

)]
, (2.67a)

ηcont,⊥ =
∑

s=g+,g−

ms

qs

[
η⊥σ⊥,s

(
1 +

τ0

τsn

%s

)
− ηHσH,s

(
1 +

τ0

τsn

%s

)]
, (2.67b)

ηcont,H =
∑

s=g+,g−

ms

qs

[
ηHσ⊥,s

(
1 +

τ0

τsn

%s

)
− η⊥σH,s

(
1 +

τ0

τsn

%s

)]
. (2.67c)

These equations apply to all grain sizes separately. Under the assumptions in this work,

j || = 0 and ∇· j⊥ = 0 by axisymmetry. Equation (2.66) then becomes

∂ρg

∂t
+ ∇· (ρgvn) = −∇· (ηcont,Hj × b

)
. (2.68)
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Note that if ηcont,H = 0, a quantitative implementation of flux-freezing, the grain species

are advected with the neutrals, as expected.

2.5.5 Joule Heating

The rate Γdiff at which collisions dissipate kinetic energy as heat per unit volume (in the

reference frame of the neutrals) may be calculated by taking the dot product of equation

(2.52) with ws and using equation (2.51):

Γdiff =

[∑
s

(1 + %s)
ρs

τsn

|ws|2
]
−

(∑
s

ρg0

τs,inel

ws

)
·
(∑

k

τ0

τk,inel

wk

)
, (2.69)

where the summation indices s and k run, as usual, over all charged species (including

charged grains of different sizes if a grain size distribution is considered). Using equa-

tion (C.1) to eliminate the velocities in favor of the current density, we find after much

simplification

Γdiff = η|||j |||2

∑

s

(
σ||,s√
σsσ||

√
1 + %s

)2

−
(∑

s

σ||,s√
σsσ||

√
%sτ0

τs,inel

)2



+ η⊥|j⊥|2

∑

s

(
σ⊥,s√
σsσ⊥

√
1 + %s

)2

−
(∑

s

σ⊥,s√
σsσ⊥

√
%sτ0

τs,inel

)2



+ ηH|j⊥|2

∑

s

(
σH,s√
σsσH

√
1 + %s

)2

−
(∑

s

σH,s√
σsσH

√
%sτ0

τs,inel

)2

 . (2.70)

In the limit where inelastic collisions are negligible relative to elastic collisions (i.e., %s →
0), this equation reduces to the usual expression

Γdiff → η|||j |||2 + η⊥|j⊥|2 = ηOD|j|2 + ηAD|j⊥|2 .

In the last step, we have used equations (2.47) to separate the contributions of Ohmic

dissipation and ambipolar diffusion to the heating rate. Ohmic dissipation affects the total
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current density, whereas ambipolar diffusion affects only the perpendicular component of

the current density.

2.6 Radiative Transfer

2.6.1 The Flux-Limited Diffusion Approximation

Computing a formal solution of the full angle-frequency dependent non-LTE radiative

transfer equation in a multidimensional numerical algorithm is a prohibitive task. Even

if a rigorous yet tractable algorithm were developed to this end, the computational expense

involved would prevent a solution in any reasonable amount of time. In fact, the sophisti-

cated numerical code described in Stone et al. (1992) designed to solve this problem with

as few approximations as possible never saw public release. The FLD approximation is an

attractive method for handling transport phenomena that is relatively easy to implement,

robust, and inexpensive. It has the advantage over other diffusive approximations in that it

preserves causality in regions where significant spatial variation can occur over distances

smaller than a mean free path. For example, the Eddington approximation consists of as-

suming the radiation field is everywhere isotropic, an assumption that is violated in the

optically-thin limit where the radiation becomes streaming (Mihalas & Weibel Mihalas

1984).

The fundamental assumption of FLD is that the specific intensity is a slowly varying

function of space and time. This is certainly valid in the diffusion and streaming limits (at

least in one dimension); one hopes that it is approximately true in intermediate situations

(and in multidimensions). Given this assumption, Levermore & Pomraning (1981) showed

that the radiation flux can be expressed in the form of Fick’s law of diffusion,

F = −DFLD∇E , (2.71)
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where the diffusion coefficient DFLD can be written as

DFLD =
cλFLD

χF
. (2.72)

The dimensionless function λFLD = λFLD(E) is called the flux limiter. Similarly, in FLD

theory the radiation pressure tensor can be expressed in terms of the radiation energy den-

sity via

P = fE , (2.73)

where the components of the Eddington tensor f are given by

f =
1

2
(1− f)I +

1

2
(3f − 1)n̂n̂ , (2.74)

where n̂ = ∇E/|∇E| is the normalized gradient of E and the dimensionless function

f = f(E) is called the Eddington factor (Turner & Stone 2001). The flux limiter λFLD and

Eddington factor f are related through implicit constraints between the moments F and P,

so that

f = λFLD + λ2
FLDR2 , (2.75)

where R is the dimensionless quantity R = |∇E|/χFE . We have chosen the flux limiter

derived by Levermore & Pomraning (1981, eq. 28), which is given by

λFLD =
2 +R

6 + 3R+R2
. (2.76)

Its use in hydrodynamic simulations of star formation has been documented, for example,

in Bodenheimer et al. (1990), Yorke et al. (1993, 1995), and Whitehouse & Bate (2006).
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2.6.2 Dust Opacities

For temperature less than ' 1500 K, the contribution of dust to the total opacity dominates

that from all other sources. We take κE = κP and χF = χR (see Mihalas & Weibel

Mihalas 1984, § 82), where κP and χR have been obtained from private communication

with Dmitry Semenov and Thomas Henning. The major dust constituents are “iron-poor”

silicates, troilite, organics, and water. Their relative mass fractions are taken from Pollack

et al. (1994). These opacities (in cm2 g−1 of dust) are shown in Figures 2.2 and 2.3 for

the five different grain size bins taken to represent an MRN distribution (see § 2.4.2). The

major changes in the dust opacities are: for temperatures T < 120 K, all dust material are

present; at T ' 120 K, water ice evaporates; at T = 275 K, volatile organics evaporate; at

T = 450 K, refractory organics evaporate; at T = 680 K, troilite (FeS) evaporates.

2.7 Summary

In this chapter, we have formulated the problem of the formation and evolution of frag-

ments (or cores) in magnetically-supported, self-gravitating molecular clouds in two spatial

dimensions. The evolution is governed by the six-fluid RMHD equations. The magnetic

flux is not assumed to be frozen in any of the charged species. Its evolution is determined

by a newly-derived generalized Ohm’s law, which accounts for the contributions of both

elastic and inelastic collisions to ambipolar diffusion and Ohmic dissipation. The species

abundances (electrons, atomic and molecular ions, positively-charged grains, negatively-

charged grains, and neutral grains) are calculated using an extensive chemical-equilibrium

network. Both MRN and uniform grain size distributions are considered. The thermal evo-

lution of the protostellar core and its effect on the dynamics are followed by employing

the grey FLD approximation. Realistic temperature-dependent grain opacities are used that

account for a variety of grain compositions.

We summarize here for convenience the simplified evolutionary equations discussed
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Figure 2.2: Planck mean absorption coefficients κP (in cm2 g−1 of dust) as a function
of temperature T for grain sizes a = 0.0256 µm (solid line), 0.0543 µm (dotted line),
0.1190 µm (dashed line), 0.2600 µm (dash-dotted line), and 0.5680 µm (dashed–triple-dot
line).
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Figure 2.3: Rosseland mean extinction coefficients χR (in cm2 g−1 of dust) as a function
of temperature T for grain sizes a = 0.0256 µm (solid line), 0.0543 µm (dotted line),
0.1190 µm (dashed line), 0.2600 µm (dash-dotted line), and 0.5680 µm (dashed–triple-dot
line).
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above and used in our numerical simulations (see Chapter 3):

∂ρn

∂t
+ ∇· (ρnvn) = 0 , (2.77a)

∂ρg

∂t
+ ∇· (ρgvn) = −∇· (ηcont,Hj × b

)
, (2.77b)

∂(ρnvn)

∂t
+ ∇· (ρnvnvn) = −∇Pn − ρn∇ψ +

1

4π
(∇× B) × B − λFLD∇E , (2.77c)

∂B

∂t
= ∇×

(
vn × B − c2η⊥

4π
∇× B

)
, (2.77d)

∇2ψ = 4πGρn , (2.77e)

∂un

∂t
+ ∇· (unvn) = −Pn∇· vn − 4πκPB + cκPE + Γdiff , (2.77f)

∂E
∂t

+ ∇· (Evn) = ∇·
(

cλFLD

χR

∇E
)
−∇vn :P + 4πκPB − cκPE . (2.77g)

These equations are considered together with the relations Pn = (γ − 1)un and P = fE .
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Chapter 3

Method of Solution

3.1 Introduction

In order to solve for the evolution of the many complex, nonlinear systems of equations

presented in Chapter 2, numerical techniques are necessary. Rather than extend the so-

phisticated fully implicit, nonorthogonal adaptive mesh, two-fluid MHD code of Fiedler

& Mouschovias (1992) to include radiative transfer, we have opted instead to modify the

publicly-available Zeus-MP RMHD code (Hayes et al. 2006).

Zeus-MP is a time-explicit, operator-split, massively-parallel RMHD code, distributed

by the Laboratory for Computational Astrophysics at the University of California, San

Diego. It offers a vast improvement over its namesake, the original Zeus-2D code docu-

mented in Stone & Norman (1992a,b), not only in its efficiency — being a Message Passing

Interface (MPI) implementation of Zeus, it is designed for execution on massively parallel

architectures — but also in its accuracy and stability. Zeus-MP offers an MHD algorithm

which is better suited for multidimensional flows than the Zeus-2D module by virtue of

modifications to the Method of Characteristics scheme first suggested by Hawley & Stone

(1995). In addition, radiative transfer is already implemented in the code via an implicit

FLD module. Arbitrary equations of state are supported. Zeus-MP is the first Zeus code to

allow for the advection of multispecies fluids. We refer the reader to Hayes et al. (2006)

for a more complete history of the Zeus code’s development.

The Zeus series was conceived with a discerning eye towards versatility and flexibility,

in order to ease its use and modification by as wide an audience as possible. As a result,
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each physical effect is modular, isolated from the others. Physical effects associated with

advection are all calculated together in the “transport” part of each timestep, whereas physi-

cal effects associated with sources or sinks are grouped together in the “source” part of each

timestep. The accommodation of a new physical effect by the code essentially amounts to

the user providing a new module and placing it appropriately in either the transport or

source step of the code.

We have altered the algorithms governing the evolution of the magnetic field in order

to account for ambipolar diffusion and Ohmic dissipation. In addition, we have added

routines to evolve the total grain density, update the gas energy density due to Joule heating,

determine the local ratio of specific heats, and compute the species abundances from the

chemical-equilibrium model detailed in § 2.4.3. Changes have also been made to Zeus-

MP’s adaptive mesh module in order to track the collapsing core. New modules were

written to improve both the efficiency of Zeus-MP’s implicit radiative transfer solver and

the manner in which the gravitational potential is calculated. A brief description of these

modifications follows this section.

For future code reference, the names of the relevant added and/or substantially modified

routines are listed at the start of each corresponding section below. These routines have

been incorporated into the program control in our modified version of Zeus-MP, which is

diagrammed in Figure 3.1 as an adaptation of the original Zeus-MP flowchart given in Fig.

2 of Hayes et al. (2006).1

1Portions of this chapter have been published in ApJ Volume 693, Issue 2, pp. 1895–1911. Reproduction
for this dissertation is authorized by the copyright holder.
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Figure 3.1: Modified Zeus-MP program control. Figure adapted from Hayes et al. (2006).
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3.2 Incorporating Nonideal MHD Into Zeus-MP

3.2.1 Ideal Magnetohydrodynamics in Zeus-MP

The ability of the Zeus codes to accurately follow the evolution of magnetohydrodynamic

processes stems from their use of an innovative algorithm, the Method of Characteristics

/ Constrained Transport (MOCCT) scheme. This scheme is a hybrid of two previous ap-

proaches to numerical MHD. The Constrained Transport (CT) method (Evans & Hawley

1988) is a robust method for evolving the magnetic field while preserving the divergence-

free condition. The Method of Characteristics (MOC) is an accurate interpolation scheme

which uses quantities that are upwind with respect to MHD waves. We review these meth-

ods in this section as they are currently used in the publicly-available Zeus-MP code, so

that alterations to them (described in the next section) may be understood.

Magnetic fields engender new degrees of freedom to a physical system, and the con-

sequent emergence of new families of wave modes necessitates a careful and relatively

complex numerical treatment of wave advection. MHD waves may be longitudinal and

compressive (e.g., fast and slow magnetosonic waves) or transverse and non-compressive

(e.g., Alfvén waves). A naïve numerical implementation of the former wave family suf-

fices; they may be treated in the source-step portion of the Zeus code in a similar fashion

to their hydrodynamic analogs. Unfortunately, the same is not true for the latter family

of waves. Alfvén waves couple directly to the magnetic induction equation and, when

treated numerically, require knowledge of fluid quantities upwind. As a result, these non-

compressive modes are computed in a separate step that necessarily follows the source step

update but precedes the transport update.

These concerns may be put on a rigorous mathematical footing after noting that the

Lorentz force in equation (2.77c) may be expanded as

(∇× B) × B = −1

2
∇B2 + (B ·∇)B . (3.1)
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The first term on the right-hand side is the gradient of the magnetic pressure. This term is

responsible for providing a longitudinal force, which represents the contribution from the

compressive magnetosonic waves. Numerically, this term is finite-differenced in space and

time identically to the thermal pressure term and therefore is evaluated in the source step

portion of the momentum equation. The second term on the right-hand side is typically

thought of as representing the magnetic tension in curved field lines and is transverse to the

gradient of B. It is this term that couples to the magnetic induction equation to produce

Alfvén waves. The magnetic tension force and the induction equation must therefore be

solved simultaneously using the MOCCT method.

In Section 2.5.1, we gave the rate of change of magnetic flux across a surface S, which

is comoving with a fluid with velocity v (eq. 2.36). If, instead, we consider the surface to

be one which moves with the grid at a velocity vgrid, it is straightforward to show that

dΦB

dt
= −c

∫

S

∇×
(
E +

vgrid

c
× B

)
· dS (3.2a)

=

∫

S

∇ × (v − vgrid) × B · dS (3.2b)

=

∮

C

(v − vgrid) × B · d` (3.2c)

≡
∮

C

ε · d` , (3.2d)

where C is the closed boundary of the surface S. The quantity

ε = (v − vgrid) × B (3.3)

is referred to in the Zeus literature as the electromotive force (EMF) acting along the curve

C. If vgrid = v, we recover the well-known flux-freezing result, dΦB/dt = 0.

As discussed in Evans & Hawley (1988), Stone & Norman (1992b), Hawley & Stone

(1995), and Hayes et al. (2006), equation (3.2d) guarantees divergence-free magnetic field

transport when finite differenced, provided the EMFs are evaluated once and only once per
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Figure 3.2: Centering of different components of the EMF (ε1, ε2, ε3; black circles on
the box edges) and the magnetic flux (Φ1, Φ2, Φ3; crosses on the box faces) on a three-
dimensional unit cell in Zeus-MP. Figure adapted from Hayes et al. (2006).
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timestep. Referring to the unit computational cell diagrammed in Figure 3.2, we can write

the discrete (dt → ∆t, dx → ∆x) form of equation (3.2d) as

Φn+1
1;i,j,k − Φn

1;i,j,k

∆t
= ε2;i,j,k∆x2;i,j,k + ε3;i,j+1,k∆x3;i,j+1,k

− ε2;i,j,k+1∆x2;i,j,k+1 − ε3;i,j,k∆x3;i,j,k , (3.4a)

Φn+1
2;i,j,k − Φn

2;i,j,k

∆t
= ε1;i,j,k+1∆x1;i,j,k+1 + ε3;i,j,k∆x3;i,j,k

− ε1;i,j,k∆x1;i,j,k − ε3;i+1,j,k∆x3;i+1,j,k , (3.4b)

Φn+1
3;i,j,k − Φn

3;i,j,k

∆t
= ε1;i,j,k∆x1;i,j,k + ε2;i+1,j,k∆x2;i+1,j,k

− ε1;i,j+1,k∆x1;i,j+1,k − ε2;i,j,k∆x2;i,j,k , (3.4c)

where the superscript n refers to the timestep number and the subscripts i, j, k refer to the

three-dimensional location of the cell on the computational grid. Summing the contribu-

tions to the change in flux piercing all 6 sides yields zero. Therefore, the total magnetic flux

penetrating the cube remains constant. Provided that the user supply an initially divergence-

free magnetic field, the code will evolve the field conservatively, always ensuring that the

divergence remains zero (to machine accuracy).

The power of the CT formalism is that, in principle, one could use any method to com-

pute the EMF and still maintain a divergence-free magnetic field. However, the accuracy

of the magnetic flux evolution is not guaranteed by the CT algorithm, and so a method

must be used which stably and accurately propagates both MHD wave types: longitudinal–

compressive (fast and slow magnetosonic) waves and transverse–non-compressive (Alfvén)

waves. As noted earlier, the real difficulty arises in the treatment of the Alfvén waves.

The various properties of Alfvén waves suggest themselves what steps must be taken
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to ensure a robust numerical algorithm. Unlike hydrodynamic waves, which steepen into

shocks, Alfvén waves are not dissipative; this rules out the use of dissipative numerical

algorithms. Alfvén waves tightly couple the evolution equations for the velocity and mag-

netic field components perpendicular to the direction of propagation; this rules out operator

splitting these components. Finally, information about the characteristics of Alfvén waves

must be included in the EMFs to ensure stability. All these requirements are satisfied by

using the MOC to compute the EMFs, which may be written schematically as (ignoring

vgrid for simplicity)

ε1;i,j,k = v∗2;i,j,kB
∗
3;i,j,k − v∗3;i,j,kB

∗
2;i,j,k (3.5a)

ε2;i,j,k = v∗3;i,j,kB
∗
1;i,j,k − v∗1;i,j,kB

∗
3;i,j,k (3.5b)

ε3;i,j,k = v∗1;i,j,kB
∗
2;i,j,k − v∗2;i,j,kB

∗
1;i,j,k . (3.5c)

The starred quantities represent the upwinded values for these variables resulting from the

solution of the characteristic equations at the centers of zone edges where the EMFs are

located.

Since the MOC is applied to Alfvén waves only (longitudinal modes are adequately

handled during the source step using finite difference methods), the equations of incom-

pressible MHD may be used to derive Alfvén wave characteristics:

∂B

∂t
= −(v · ∇)B + (B ·∇)v , (3.6a)

∂v

∂t
= −(v ·∇)v +

1

4πρ
(∇× B) × B . (3.6b)

To simplify the derivation, the magnetic field and velocity are assumed to be

B = Bxêx + B(x)êy , (3.7a)

v = vxêx + v(x)êy , (3.7b)

66



so that both variables are functions of x and t only.2 Then, the solenoidal nature of the

velocity and magnetic field constrains vx and Bx, respectively, to be spatially uniform and

equations (3.6) reduce to

∂B

∂t
= −vx

∂B

∂x
+ Bx

∂v

∂x
, (3.8a)

∂v

∂t
= −vx

∂v

∂x
+

Bx

4πρ

∂B

∂x
. (3.8b)

Multiplying the first equation by (4πρ)−1/2 and then adding and subtracting the two yields

the characteristic equation
Dv

Dt
± 1√

4πρ

DB

Dt
= 0 , (3.9)

where the comoving derivative

D

Dt
≡ ∂

∂t
+ (vx ∓ vA)

∂

∂x
, (3.10)

and vA = Bx(4πρ)−1/2 is the Alfvén speed associated with the background magnetic field.

The upper (lower) sign in equations (3.9) and (3.10) corresponds to the characteristic equa-

tion along the forward- (backward-)facing characteristic C±. Physically, equations (3.9)

state that along characteristics, which are straight lines in space-time with slopes vx ± vA,

the changes in the velocity and magnetic field are not independent.

The characteristic equations (3.9) are used to determine the upwinded values of the ve-

locity and magnetic field to be used in equations (3.5). These intermediate values, denoted

v∗ and B∗, are located at x∗, which is the boundary between neighboring cells. The Alfvén

waves that reach x∗ at timestep n + 1/2 (time tn + ∆t/2) initiated at timestep n (time tn)

from spatial locations denoted x+ and x−, which are referred to as the “footpoints”. (See

Figure 3.3.) Once the characteristic speeds vx±vA are used to compute the footpoint values

2Here we are in effect considering a linearly-polarized Alfvén wave. The subsequent derivation, however,
may be trivially generalized for a circularly-polarized Alfvén wave by replacing the unit vector êy with
(1/
√

2)(êy ± iêz).
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Figure 3.3: Space-time diagram illustrating how Alfvén waves originate at footpoints x+

and x−, propagate along characteristics C+ and C−, respectively, and meet at the point x∗

at a time tn + ∆t/2. Figure taken from Stone & Norman (1992b).
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v± and B±, the finite difference equations along C+ and C− become

v∗ − v±

∆t/2
± 1√

4πρ±
B∗ −B±

∆t/2
= 0 . (3.11)

(For simplicity, the Zeus code sets ρ± equal to the mean density in the cell in which x±

lies, rather than using interpolated values for the time-centered density obtained by upwind

differencing.) The two linear equations (3.11) are then solved algebraically for the two

unknowns v∗ and B∗.

The generalization of the above analysis to multiple dimensions is relatively straight-

forward, with the exception of an important subtlety in its implementation. For multidi-

mensional calculations, the upwinding of variables along full characteristics is numerically

impractical. This is circumvented by adopting the approach of Hawley & Stone (1995),

in which only partial characteristics are used to upwind velocity and magnetic field com-

ponents. This amounts to directionally splitting the advection on planes passing through

the center of the cell and the cell edges where the EMFs are to be evaluated. Stability is

improved, particularly in the presence of magnetic discontinuities, by combining Alfvén-

upwinded quantities with quantities upwinded along hydrodynamic fluid-flow characteris-

tics (coordinate axes) in a self-consistent fashion. Following the discussion in Appendix

C1 of Hayes et al. (2006), we illustrate this process by calculating the numerical represen-

tation of ε3. First, B2 and v2 are van Leer average upwinded along the 1-axis according

to v1 to find B
(1)

2 and v
(1)
2 , respectively. These quantities are then used to compute the

Alfvén-characteristic speeds in the 2-direction:

v(2±) = v
(1)
2 ∓ |B(1)

2 |√
4πρ±

. (3.12)

The third step amounts to van Leer average upwinding B1 and v1 along the± characteristics

using these characteristic speeds; the result is v
(2±)
1 and B

(2±)

1 . Finally, the characteristic

equations are solved for B∗
1 and v∗1 and the products v∗1B

(1)

2 and v
(1)
2 B∗

1 are stored. The
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analogous process is executed for B∗
2 and v∗2 by examining partial characteristics in the

1-direction, obtaining the products v∗2B
(2)

1 and v
(2)
1 B∗

2 . The 3-EMF may then be written as

ε3;i,j,k =
1

2

(
v∗1;i,j,kB2;i,j,k + v1;i,j,kB

∗
2;i,j,k

)

− 1

2

(
v∗2;i,j,kB1;i,j,k + v2;i,j,kB

∗
1;i,j,k

)
, (3.13)

Because each component of the magnetic field (e.g., B1) depends upon EMFs computed

around both transverse axes (e.g., ε2 and ε3), the evolution of each magnetic-field compo-

nent will depend upon the full set of characteristics.

The Lorentz accelerations are computed by a procedure analogous to the calculation

of the EMFs. However, as the numerical algorithm involved in calculating and applying

the Lorentz force update is unaffected by the incorporation of nonideal MHD, we do not

describe it here but rather refer the reader to Appendix C2 of Hayes et al. (2006).

3.2.2 Nonideal Magnetohydrodynamics in Zeus-MP

Added Routines: EmfsOD, BValCrl, CTOD, DGSrc, Joule

Modified Routines: SrcStep, NewDT

Having described in the previous section the numerical solution to the problem of the

stable and accurate advection of Alfvén waves, the incorporation of nonideal MHD into

the algorithm is actually much simpler than one would expect. While the details are rather

involved, the end result is surprisingly simple: as long as the nonideal MHD Courant con-

dition

∆t ≤ ∆tdiff ≡ 4π

c2η⊥

(∆x)2

2
(3.14)

is satisfied, then the method of characteristics used to update the magnetic field due to

advection by the neutral species remains valid (Mac Low et al. 1995) and we may use it

without modification. Physically, this is because, for a sufficiently short timestep, ambipo-

lar diffusion and/or Ohmic dissipation does not have time to alter the characteristics of

70



Alfvén waves.

This may be proved rigorously by writing down the nonideal MHD analogs of equations

(3.6):
∂B

∂t
= −(v ·∇)B + (B ·∇)v −∇ ×

(
c2η⊥
4π

∇× B

)
, (3.15a)

∂v

∂t
= −(v ·∇)v +

1

4πρ
(∇× B) × B , (3.15b)

where v now refers to the motion of the neutral gas (rather than the flux-frozen bulk

plasma). Inserting the previous Ansatz (3.7), the above equations can be reduced to

∂B

∂t
= −vx

∂B

∂x
+ Bx

∂v

∂x
+

∂

∂x

(
c2η⊥
4π

∂B

∂x

)
, (3.16a)

∂v

∂t
= −vx

∂v

∂x
+

Bx

4πρ

∂B

∂x
. (3.16b)

These may be combined in the usual fashion to derive the new characteristic equation

Dv

Dt
± 1√

4πρ

DB

Dt
= ± 1√

4πρ

∂

∂x

(
c2η⊥
4π

∂B

∂x

)
. (3.17)

The MOC including magnetic diffusion again utilizes information at the two footpoints x±

to compute v∗ and B∗. The nonideal MHD analogue of equations (3.11) is

v∗ − v±

∆t/2
± 1√

4πρ±
B∗ −B±

∆t/2
= ± 1√

4πρ±
∂

∂x

(
c2η⊥
4π

∂B

∂x

)
. (3.18)

The bar over the terms on the right-hand side of these equations denotes an average along

the characteristic. This average is found by integrating along the characteristic, using the

definition of the differential operator D/Dt. In what follows, we illustrate this averaging

mathematically by examining the C+ characteristic.

An Alfvén wave that follows the C+ characteristic originates at position x+ at time tn

and terminates at position x∗ at time tn + ∆t/2. The average value over this characteristic
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of the spatial derivative of some quantity Q, ∂Q/∂x, is defined to be

∂Q

∂x

∣∣∣∣
+

≡
∫ ∗
+
(∂Q/∂x)Dt∫ ∗

+
Dt

=
1

∆t/2

∫ ∗

+

∂Q

∂x
Dt . (3.19)

Evaluation of the integral is aided by rewriting the spatial derivative of Q in terms of the

differential operator D/Dt:

∂Q

∂x
=

1

vx + vA

(
DQ

Dt
− ∂Q

∂t

)
, (3.20)

so that
∂Q

∂x

∣∣∣∣
+

=
1

(vx + vA)(∆t/2)

[∫ ∗

+

DQ

Dt
Dt−

∫ ∗

+

∂Q

∂t
Dt

]
. (3.21)

The first integral is trivial to evaluate, but the second integral requires knowledge of the

time derivative of Q along the characteristic. This information necessitates a knowledge of

Q everywhere at time tn + ∆t/2, which demands an implicit solution algorithm. To avoid

this problem, we make the approximation that ∂Q/∂t at all times and positions along the

characteristic takes on the same values as ∂Q/∂t at the same times and at position x = x∗.

Under this assumption, the second integral becomes

∫ ∗

0

∂Q

∂t
dt = Q|∗ − Q|0 , (3.22)

where the subscript “0” denotes evaluation at the space-time location (x∗, t). Collecting

all terms, using the relationship x∗ − x+ = (vx + vA)(∆t/2), and simplifying, we obtain

the following expression for the average value of the spatial derivative of Q along the

characteristic:
∂Q

∂x

∣∣∣∣
+

=
Q|0 − Q|+
x∗ − x+

. (3.23)

In other words, the average spatial derivative of Q along the characteristic is equal to its

average value at time tn.
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If we associate Q with (c2η⊥/4π)(∂B/∂x), equations (3.18) can be solved for the two

unknowns B∗ and v∗:

B∗ =

(
B+

√
4πρ+

+
B−

√
4πρ−

)
− (

v+ − v−
)

+

(
∆t

2

) (
(∂Q/∂x)+√

4πρ+
+

(∂Q/∂x)−√
4πρ−

)

1√
4πρ+

+
1√

4πρ−

,

(3.24a)

v∗ =

(
v+

√
4πρ+ + v−

√
4πρ−

)
− (

B+ −B−)−
(

∆t

2

)(
∂Q

∂x

∣∣∣∣
+

− ∂Q

∂x

∣∣∣∣
−

)

√
4πρ+ +

√
4πρ−

.

(3.24b)

The terms in these equations can be shown to be on the order of

B∗ ∼ B

[
O(1) +O

(
v

vA

∆t

τA

)
+O

(
∆t

τdiff

)]
, (3.25a)

v∗ ∼ vA

[
O

(
v

vA

)
+O

(
∆t

τA

)
+O

(
∆t

τA

∆t

τdiff

)]
, (3.25b)

where τA is the Alfvén crossing time across a grid cell and τdiff is the timescale associated

with magnetic diffusion. As long as the Courant condition is met for all physical processes,

including magnetic diffusion, for which equation (3.14) is the relevant timestep limitation,

then the terms representing wave propagation and magnetic diffusion will remain only

small corrections to the magnetic field or velocity. That is, B∗ and v∗ will approximately

equal the magnetic field and velocity, respectively, in the neighborhood of x∗, with correc-

tions that are derived from the MOC.

The only remaining issue regarding the implementation of ambipolar diffusion and

Ohmic dissipation in Zeus-MP is the following: at what point in the code should the EMF

due to magnetic diffusion be applied? The ability of the CT algorithm to preserve the

divergence-free constraint on the magnetic field regardless of the EMF used suggests that
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we merely replace the EMF given by equation (3.3) with

ε = (v − vgrid) × B − c2η⊥
4π

∇ × B (3.26)

and let the current Zeus architecture handle the rest. Unfortunately, sending this EMF to

the CT algorithm during the transport step of the Zeus code leads to numerical instabilities.

Perhaps this is not too surprising, though. That the first term in equation (3.26) should be

handled in the transport step makes a great deal of sense — it is this term that is associated

with the advection of the magnetic flux. The same cannot be said, however, for the second

term, which represents a sink due to magnetic diffusion and therefore ought to be placed in

the source step. In this way, the physical interpretation of the terms in equation (3.26) itself

suggests the proper construction of a stable and accurate nonideal MOCCT algorithm.

We employ a similar approach to the grain continuity equation (2.68). The right-hand

side is treated as a source term in the source step part of the code. Then, the grain mass

density is advected during the transport step using the multispecies advection module al-

ready present in Zeus-MP. Joule heating (eq. 2.70) is also applied to the internal energy

during the source step.

3.3 Chemical Abundances and Magnetic Resistivity

Added Routines: Ohmic, GamCalc, Ionize, Chem, Resist

Modified Routines: BVal3D, ZeusMP

The starting point for calculating the chemical abundances and magnetic resistivities is

to determine the gas temperature from the relation

T =
un

nncV

. (3.27)

Since cV is a complicated function of temperature (see eq. 2.18 and Fig. 2.1), equation
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(3.27) must be solved implicitly. The most straightforward way to accomplish this is by

applying a Newton-Raphson iteration scheme using an initial guess for the temperature,

which may be obtained from the previous timestep. (The internal energy un and neutral

number density nn are known at the current timestep.) Once the current temperature is

known, the adiabatic index γ = kB/cV + 1 can be found.

The next step is to compute the local ionization rate in every computational cell. The

cosmic-ray ionization rate is a sensitive function of the column density, which is computed

by integrating from the point in question to the cloud surface following a path perpendicular

to the disk midplane. This rate is then supplemented with the rates of alternate sources of

ionization, such as UV, radioactivities, and thermal ionization of potassium (see Section

2.4.1). With the total ionization rate in hand, we may then proceed to calculate the chemical

abundances.

The nonlinear system of equations (2.28) – (2.34), which quantifies our chemical-

equilibrium network and thereby uniquely determines the chemical abundances, is best

solved numerically via Gauss-Jordan elimination on the matrix equation derived by apply-

ing the Newton-Raphson iteration method. The abundance equations are a system of N

variables xi (the various abundances) and N equations fi(x1, x2, . . . , xN) = 0 (the rate

equations or constraints), i = 1, 2, . . . , N . If X denotes an array of the abundances, then in

the neighborhood of the initial guess X0, the functions fi can each be expanded in a Taylor

series to give

fi(X0 + δX) ≈ fi(X0) +
N∑

j=1

∂fi

∂xj

δxj . (3.28)

Since one desires fi(X0+δX) = 0 for all i, a matrix equation is formed for the corrections

δX:

δX = R−1ξ , (3.29)
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where

Rij =
∂fi

∂xj

, (3.30)

ξi = −fi(X0) . (3.31)

This matrix equation is solved using Gauss-Jordan elimination, which yields a correction

to the abundances. The matrix R and the residual vector ξ are recomputed for the new set

of abundances. This process is iterated to convergence, until ξ = 0. In order to prevent

unphysical negative abundances, corrected abundances are never allowed to drop by more

than 50% during any one iteration.

Once the chemical abundances are found, the local values of the magnetic conductivi-

ties (eq. 2.58) and resistivities (eqs. 2.41 and 2.67) may be computed in each cell, since we

also know the neutral density and gas temperature (to calculate the collision timescales τsn

and τs,inel) and the magnetic field strength (to calculate the gyrofrequency ωs).

3.4 Adaptive Grid

Modified Routine: NewVG

We use an adaptive grid to track the evolution of the contracting core. The grid, which

must resolve the core, has its innermost zone constrained so as to always have a width

in the range λT,cr/5 − λT,cr/7, where λT,cr ≡ 1.4csτff is the critical thermal lengthscale

(Mouschovias 1991a) and τff ≡ (3π/32Gρn,c)
1/2 is the spherical free-fall time. (The quan-

tity ρn,c is the neutral mass density at the cloud center.) The critical thermal lengthscale is

the smallest scale on which there can be spatial structure in the density without thermal-

pressure forces smoothing it out. The number of cells is fixed (80× 80), and their positions

are spaced logarithmically, so that the spacing between the ith and ith + 1 cells is a num-

ber greater than the spacing between the ith − 1 and ith cells. This ratio is kept spatially
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uniform (with the same value in both the r and z directions) but is allowed to vary in time.

At the end of the simulations presented in this Thesis, the smallest computational cell has

a width ≈ 0.2 AU, which represents a tiny fraction (∼ 10−6) of the width of the entire

computational domain (0.75 pc — see below).

3.5 Radiative Transfer Routine

Modified Routines: Opacity, MatProp, Grey_FLD

Once the heat generated by released gravitational energy during core contraction is

unable to escape freely (at a central number density of nopq ' 107 cm−3), radiative trans-

fer calculations are used to determine the thermal evolution of the core and its effect on

the dynamics. For this, we employ the grey flux-limited diffusion (FLD) approximation.

Fortunately, this approximation has already been built into the public-release version of

Zeus-MP. As discussed in Hayes et al. (2006, § 3.8.1), Zeus-MP uses the diagonal precon-

ditioned conjugate gradient method to solve the sparse matrix equation that results from

spatially discretizing equations (2.1m) and (2.1n).

Diagonal preconditioning is an attractive technique due to its simple calculation, the

fact that it poses no barrier to parallel implementation, and its fairly common occurrence

in linear systems. However, it is only efficient for matrices in which the main diagonal el-

ements are much greater in magnitude than the off-diagonal elements (a condition referred

to as “diagonal dominance”). Unfortunately, this is generally not the case for the problem

studied here. We have therefore replaced the diagonal preconditioner with an incomplete

Cholesky decomposition preconditioner, similar to what was provided in the public-release

version of Zeus-2D. The savings in computational cost has been enormous.

3.6 Gravitational Potential Solver

Added Routine: GPBVCyl
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Modified Routine: Gravity

Zeus-MP computes the gravitational potential through a two-step process: first, the

gravitational potential ψ is found on the computational boundaries; then ψ is found in the

interior by iteratively solving the Poisson equation for ψ using a sparse matrix solver that

relies on the preconditioned conjugate gradient method. For each boundary of the domain,

there are two possible boundary types: (1) Neumann, in which the slope of the gravitational

potential is set to zero, and (2) Dirichlet, in which the value of ψ in the ghost zones is

specified. (There is actually a third possible boundary type — periodic boundary conditions

— however, this boundary condition is not used here.) Neumann boundary conditions are

used at symmetry boundaries (axis r = 0 and equatorial plane z = 0), while Dirichlet

conditions are applied at the outer boundaries, far from most of the mass distribution. In

the public-release version of Zeus-MP, Dirichlet boundary conditions are implemented by

computing ψ on the domain boundaries using a multipole expansion formula, which we

give here in spherical coordinates (r , θ, φ) for an axisymmetric mass distribution:

ψ(r , θ) = −G
∑

`=0,2

[∫
ρ(r ′, θ′)P`(cos θ′)r ′`d3r ′] P`(cos θ)r `+1

, (3.32)

where P` is the Legendre polynomial of degree `. Note that Zeus-MP uses only the

monopole and quadrupole moments, in contrast to the earlier Zeus-2D code (Stone &

Norman 1992a), which used arbitrarily high ` moments until a desired convergence was

achieved. The term in brackets is denoted by q`, and is known as the multipole moment

of order ` of the density distribution. In most situations, a dozen or so multipole moments

are sufficient for convergence. They can be calculated once and then used to find the po-

tential at many boundary points. However, we have found this subroutine inadequate for

our purposes, as it fails to converge in situations when the distance r to the point at which

one wishes to calculate the potential is greater than the distance to any mass element. In

the axisymmetric geometry used in this work, this situation is inevitable: mass elements
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near (r, z) = (0, Z) or (r, z) = (R, 0) are closer to the origin than are mass elements near

(r, z) = (R, Z). We, therefore, have followed Desch & Mouschovias (2001) in using the

more general multipole expansion (Jackson 1999):

ψ(r , θ) = −G

∞∑

`=0

[∫
ρ(r ′, θ′)P`(cos θ′)

r `
<r `+1

>

d3r ′] P`(cos θ) , (3.33)

where r > (r <) is the greater (lesser) of r ′ and r , and ` may take arbitrarily large integral

values until a desired convergence is achieved. An unfortunate consequence of this more

general expansion is that it is not possible to perform one integration over all space and use

the result of that integration (the multipole moment q`) to find the potential at all boundary

points. Instead, a new integration over space must be performed for each boundary point,

since the location of that boundary point will determine how the integral in equation (3.33)

is separated into two integrals: one integral will have r ′ in the numerator of the integrand,

and in the other integral r ′ will be in the denominator. This situation is further complicated

by the use of parallelization, since comparisons of r and r ′ and subsequent integrations

must take place across multiple processors.

3.7 Initial and Boundary Conditions

Added Routine: NewStar

The model cloud is evolved by using the six-fluid RMHD equations (2.77) from a

nonequilibrium, uniform “reference” state, characterized by a number density of neutrals

nn,ref = 300 cm−3 (corresponding to a neutral mass density ρn,ref ' 1.17× 10−21 g cm−3),

temperature Tref = 10 K (corresponding to an isothermal sound speed cs,ref = 0.188

km s−1), and magnetic field strength Bref = 15 µG (corresponding to an Alfvén speed

vA = 1.24 km s−1). The cloud has radius R and half-thickness Z, both equal to 0.75 pc,

implying a total mass of 45.5 M¯. The central mass-to-flux ratio of the reference state in
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units of the critical central value is then

µref ≡ (dM/dΦB)c

(dM/dΦB)c,cr

=
2Zρn,ref/Bref

(3/2)(63G)−1/2

= 0.49
( nn,ref

300 cm−3

) (
Z

0.75 pc

)(
15 µG

Bref

)
, (3.34)

where (dM/dΦB)c,cr = (3/2)(63G)−1/2 is the central critical value for collapse originally

determined by Mouschovias & Spitzer (1976) for objects initially having a spherical mass

distribution threaded by a uniform magnetic field.

If the magnetic field were frozen in the matter, our “reference” state would relax along

field lines and oscillate about an equilibrium state (denoted by a subscript “0”) in which

gravity is balanced by thermal-pressure forces along field lines and mainly by magnetic

forces perpendicular to field lines. An important dimensionless parameter in this equilib-

rium state is the ratio of the magnetic and thermal pressures,

α0 ≡ B2
0

8πρn,0c2
s,0

= 6.48

(
B0

15 µG

)2 (
103 cm−3

nn,0

)(
10 K

T0

)
. (3.35)

In equilibrium, α0µ
2
0 ≈ 0.71 (see Mouschovias 1991b). Since µref = µ0 (i.e., flux-frozen

contraction along field lines does not alter a fragment’s mass-to-flux ratio), the central

density in the equilibrium state will be a factor ≈ 1.4 αrefµ
2
ref ≈ 7 greater than that of

the reference state. As in Fiedler & Mouschovias (1993), we have found little quantitative

difference (for typical parameters) between a run in which ambipolar diffusion operates

from the outset and one in which the cloud is allowed to reach equilibrium under flux-

freezing before ambipolar diffusion is switched on. The physical reason for this is that the

relaxation time along field lines is short compared to the ambipolar diffusion timescale,

particularly for the low densities characteristic of the relaxation phase (nn . 103 cm−3 —

see below) when ionization due to UV radiation is important.
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We pause here briefly to reemphasize an important point discussed in Mouschovias

(1991b, § 2.3) — see also Fiedler & Mouschovias (1993). In the central flux tube of such

an equilibrium state, one has that

ρn,cc
2
s ≈

π

2
GΣ2

n,c ≈
µ2

0

0.71

B2
c

8π
, (3.36)

where Σn,c = 2ρn,cZ is the neutral column density of the central flux tube. Physically, this

equation states that, in equilibrium, the thermal, gravitational, and magnetic pressures of a

critical central flux tube (µ0 = 1) are approximately equal to one another. For subcritical

central flux tubes (µ0 < 1), the local magnetic pressure exceeds the thermal and gravita-

tional pressures. This does not imply that such flux tubes will expand. It simply means

that the magnetic field in the core is comparable to that in envelope, and is confined by

the massive envelope, not the core. Virial-theorem based arguments (McKee et al. 1993;

Nakano 1998) miss this essential point, leading to the physical absurdity that magnetically-

subcritical fragments cannot exist in nature.

Due to the assumed symmetry of the problem, we need only simulate the computational

region bounded by 0 ≤ r ≤ R and 0 ≤ z ≤ Z. Boundary conditions on the density and

velocity are chosen so that no mass, flux, or thermal energy crosses any boundary. The

magnetic field is constrained to cross the midplane (z = 0) and upper boundary (z = Z)

normally, and to have no radial component at the axis (r = 0) and outer boundary (r = R).

In order to prevent unrealistic densities near the upper boundary of the computational do-

main (z = Z), a floor is imposed on the neutral number density at nn,floor = 1 cm−3. In

addition, the gas and radiation temperatures are maintained ≥ 10 K by imposing tempera-

ture floors.
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3.8 Summary

In this chapter we described in detail the numerical method used to obtain the solution of the

nonlinear evolutionary equations (2.77), which were derived in the previous chapter. The

wide variety of physics encountered when attempting to numerically simulate the process of

star formation places stringent demands on the type of code that can be employed quickly

and effectively. Fortunately, the publicly-available Zeus-MP code is well-suited for this

task, not only because of its well-documented and thoroughly-tested ability to accurately

follow the dynamics of astrophysical fluids in the presence of both magnetic fields and

radiation, but also because the code was designed with a discerning eye towards versatility

and flexibility. This made our task of altering the algorithms governing the evolution of the

magnetic field, in order to account for ambipolar diffusion and Ohmic dissipation, relatively

straightforward and painless. Unfortunately, the same cannot be said for several of Zeus-

MP’s other algorithms, whose poor convergence and gross inefficiency were revealed by

the demands of our particular problem. These faults were rectified either by the addition

of new or the modification of existing modules, all of which have been catalogued in this

chapter. We have also provided here the initial and boundary conditions imposed on the

numerical simulations, the results of which are presented in the following chapter.
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Chapter 4

Results

4.1 The Physical Model

A detailed discussion of the physical processes included in the calculations was presented

in Chapter 2. In summary, we consider a two-dimensional, nonrotating, nonisothermal

model molecular cloud, whose axis of symmetry is aligned with the z-axis of a cylindrical-

polar coordinate system (r, φ, z). The cloud is initially threaded by a uniform magnetic

field oriented along the symmetry axis. The abundances of all species (except the neutrals)

are determined from an extensive equilibrium chemical reaction network that includes cos-

mic rays, radioactive decays, thermal ionization, dissociative and radiative recombination,

atomic and molecular ion charge transfer, electron and ion attachment onto grains, and

charge transfer by grain–grain collisions. UV ionization is treated qualitatively. While

the code described in Chapter 3 is designed to handle an MRN grain size distribution, we

present here only the simpler case of a uniform grain size distribution. Results of numeri-

cal calculations that employ an MRN distribution will be presented as a part of a parameter

study in a future publication (M. W. Kunz & T. Ch. Mouschovias 2010, in preparation).

4.2 Overall Evolution

In Figures 4.1 and 4.2, we show, respectively, the time evolution of the central number

density of neutrals, nn,c, and the central mass-to-flux ratio, (dM/dΦB)c, (normalized to

the central critical value) as a function of nn,c. There are three distinct phases of evolu-
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Figure 4.1: Central number density of neutrals, nn,c, as a function of time. The “star” marks
the time at which a supercritical core forms.
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Figure 4.2: Central mass-to-flux ratio (normalized to the central critical value) as a function
of nn,c. The “star” marks the time at which a supercritical core forms.
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tion: relaxation, quasistatic, and dynamic. First, the cloud relaxes along magnetic field

lines from its uniform reference state to a quasi-equilibrium state whose central density

nn,c ' 2280 cm−3. Ambipolar diffusion is negligible during this phase, since it is marked

by relatively low densities (. 103 cm−3) and therefore relatively large degrees of ioniza-

tion (∼ 10−6 − 10−5) due to UV radiation. Hence, the mass-to-flux ratio remains roughly

constant. Once UV radiation is shielded, the fragment contracts quasistatically (i.e., neg-

ligible acceleration) under its own self-gravity via ambipolar diffusion until a supercritical

core forms at nn,c ' 1.1 × 104 cm−3 and time ≈ 9 Myr (denoted in the figure by the

position of the “star”). The subsequent evolution is dynamic, although significantly slower

than free-fall. The central mass-to-flux ratio asymptotes to roughly twice its critical value

until ambipolar diffusion is “reawakened” at a central density nn,c ≈ 1011 cm−3. The mass-

to-flux ratio then increases dramatically, reaching ' 80 times the central critical value for

collapse by the end of the calculation (at a density ' 1014 cm−3). During the entire su-

percritical phase of evolution, the central density increases by ten orders of magnitude in

2.38 Myr.

Note that, by the time the core formed in this simulation becomes observable as a

well-defined ammonia core (at a central density 2×104 cm−3), it has already become mag-

netically supercritical. Therefore, Zeeman observations of ammonia cores are predicted

to preferentially measure supercritical mass-to-flux ratios. Indeed, this has already been

seen by, e.g., Crutcher (1999). Also, the detectable (using ammonia as a tracer) lifetime

of the core formed in this simulation is 1.46 Myr, compatible with the ∼ 1 Myr lifetime

of starless cores advocated by Lee & Myers (1999) and Jijina et al. (1999). (See Tassis &

Mouschovias 2004 for a further discussion of this point and its importance in interpreting

starless core statistics.)

The overall spatial and temporal evolution of the cloud is shown in Figures 4.3 – 4.11.

The density (thin solid lines), magnetic field (thick solid lines), and velocity field (arrows)

are given in each of the frames, which show portions of the cloud at the different times
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when the central density nn,c = 3 × (103, 104, 105, 106, 109, 1011, 1012, 1013) cm−3

and 1014 cm−3. The velocity vectors are normalized to the maximum velocity in each

frame (given in the figure captions). Every second isodensity contour indicates a change in

density by a factor of 10.

In Figure 4.3, we show the entire model cloud (−R ≤ r ≤ R, −Z ≤ z ≤ Z) at the

time when the central density nn,c = 3 × 103 cm−3. The cloud has settled into a quasi-

equilibrium state and ambipolar diffusion has already commenced. The magnetic field lines

remain relatively undeformed, while the neutrals contract through the magnetic field lines

via their own self-gravity (their maximum radial velocity at this moment is 0.012 km s−1).

At large r and z, there is a small outward motion as the cloud rebounds from overshooting

its equilibrium state.

In Figure 4.4 (nn,c = 3 × 104 cm−3), the central magnetic flux tubes of the cloud

have just become magnetically supercritical and begun to bend into an hourglass morphol-

ogy. Such a field morphology has been observed via dust polarimetry by, e.g., Schleuning

(1998), Hildebrand et al. (1999), Girart et al. (1999), Schleuning et al. (2000), Lai et al.

(2002), Matthews & Wilson (2002), Houde et al. (2004), Cortes & Crutcher (2006), Girart

et al. (2006), Vaillancourt et al. (2008), Tang et al. (2009), and Kirby (2009). The maxi-

mum radial velocity has increased to 0.033 km s−1. The outermost envelope of the cloud

remains magnetically supported, whence the radial velocities there are very small. A shock

has formed at z ' 0.3 pc (maximum vertical velocity 0.39 km s−1 ≈ 2cs) because of the

rapid collapse along field lines.

In Figure 4.5 (nn,c = 3 × 105 cm−3), the magnetically-supercritical core is well into

its dynamical (though slower than free-fall) stage of evolution and the maximum radial

velocity has reached ≈ 0.1 km s−1. By this point, the qualitative features of the outer

envelope of the cloud, which is magnetically supported, have been largely determined and

essentially do not evolve throughout the remainder of the simulation. The result is a highly

nonhomologous collapse. We therefore focus on progressively smaller radii and track the
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Figure 4.3: Spatial structure of the entire model cloud at the time when the central density
nn,c = 3×103 cm−3. Isodensity contours (thin solid lines), magnetic field lines (thick solid
lines), and velocity vectors (arrows) are shown. Every second isodensity contour indicates
a change in density by a factor of 10. The innermost isodensity contour corresponds to
103 cm−3. The velocity vectors are normalized to the maximum velocity in the frame
(0.23 km s−1).
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Figure 4.4: Spatial structure of the entire model cloud at the time when the central density
nn,c = 3×104 cm−3. Isodensity contours (thin solid lines), magnetic field lines (thick solid
lines), and velocity vectors (arrows) are shown. Every second isodensity contour indicates
a change in density by a factor of 10. The innermost isodensity contour corresponds to
104 cm−3. The velocity vectors are normalized to the maximum velocity in the frame
(0.39 km s−1).

89



Figure 4.5: Spatial structure of the entire model cloud at the time when the central density
nn,c = 3×105 cm−3. Isodensity contours (thin solid lines), magnetic field lines (thick solid
lines), and velocity vectors (arrows) are shown. Every second isodensity contour indicates
a change in density by a factor of 10. The innermost isodensity contour corresponds to
3 × 105 cm−3. The velocity vectors are normalized to the maximum velocity in the frame
(0.42 km s−1).
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local evolution of the magnetically-supercritical core.

In Figure 4.6, we show the innermost 10% of the cloud when nn,c = 3×106 cm−3. The

maximum radial (vertical) velocity is 0.18 km s−1 (0.47 km s−1). It is clear that the core

remains disklike down to smallest scales, even in the absence of rotation, a consequence

of the presence of magnetic forces. In Figure 4.7, we show the innermost 1% of the cloud

when nn,c = 3 × 109 cm−3. The maximum radial (vertical) velocity at this moment is

0.38 km s−1 (0.80 km s−1). The similarities between these two figures suggest that the

supercritical phase of core contraction is nearly self-similar, a fact that has been exploited

by, e.g., Basu (1997), Contopoulos et al. (1998), and Krasnopolsky & Königl (2002), who

derived semianalytic self-similar solutions for this stage of contraction that reproduce the

main qualitative features found in detailed simulations.

The evolution departs from being nearly self-similar at higher densities, once the gas

begins to decouple from the magnetic field and a spherical geometry is approached. In Fig-

ures 4.8 – 4.11, we zoom in on the innermost 0.01% of the cloud (' 15.5 AU× 15.5 AU)

in order to highlight the formation of the hydrostatic core. In Figure 4.8, the central

density nn,c = 3 × 1011 cm−3 and the maximum radial (vertical) velocity at this mo-

ment is 0.52 km s−1 (1.03 km s−1). This is the last frame shown in which an oblate

disklike geometry is exhibited in the innermost r . 4 AU of the cloud. In Figure 4.9

(nn,c = 3×1012 cm−3), this region has begun to assume a spherical geometry due to the in-

creasing relative importance of thermal-pressure forces. The magnetic field has decoupled

from the matter and the field lines are straight inside the ' 3 × 1011 cm−3 density con-

tour. The radial and vertical velocities attain their maxima (0.64 km s−1 and 1.14 km s−1,

respectively) just outside of the boundary of the newly-formed hydrostatic core, where

shocks occur in both radial and vertical directions. These shocks are a result of the rapid

deceleration of matter as it comes into contact with the hydrostatic core boundary. In Figure

4.10 (nn,c = 3× 1013 cm−3), the hydrostatic core is clearly visible and exhibits a spherical

geometry inside of' 2 AU. The magnetic field lines continue to remain straight within the
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Figure 4.6: Spatial structure of the innermost 10% of the model cloud at the time when the
central density nn,c = 3 × 106 cm−3. Isodensity contours (thin solid lines), magnetic field
lines (thick solid lines), and velocity vectors (arrows) are shown. Every second isodensity
contour indicates a change in density by a factor of 10. The innermost isodensity contour
corresponds to 3×106 cm−3. The velocity vectors are normalized to the maximum velocity
in the frame (0.47 km s−1).
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Figure 4.7: Spatial structure of the innermost 1% of the model cloud at the time when the
central density nn,c = 3 × 109 cm−3. Isodensity contours (thin solid lines), magnetic field
lines (thick solid lines), and velocity vectors (arrows) are shown. Every second isodensity
contour indicates a change in density by a factor of 10. The innermost isodensity contour
corresponds to 109 cm−3. The velocity vectors are normalized to the maximum velocity in
the frame (0.80 km s−1).
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Figure 4.8: Spatial structure of the innermost 0.01% of the model cloud at the time when the
central density nn,c = 3× 1011 cm−3. Isodensity contours (thin solid lines), magnetic field
lines (thick solid lines), and velocity vectors (arrows) are shown. Every second isodensity
contour indicates a change in density by a factor of 10. The innermost isodensity contour
corresponds to 1011 cm−3. The velocity vectors are normalized to the maximum velocity
in the frame (1.03 km s−1).
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Figure 4.9: Spatial structure of the innermost 0.01% of the model cloud at the time when the
central density nn,c = 3× 1012 cm−3. Isodensity contours (thin solid lines), magnetic field
lines (thick solid lines), and velocity vectors (arrows) are shown. Every second isodensity
contour indicates a change in density by a factor of 10. The innermost isodensity contour
corresponds to 1012 cm−3. The velocity vectors are normalized to the maximum velocity
in the frame (1.14 km s−1).
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Figure 4.10: Spatial structure of the innermost 0.01% of the model cloud at the time when
the central density nn,c = 3 × 1013 cm−3. Isodensity contours (thin solid lines), magnetic
field lines (thick solid lines), and velocity vectors (arrows) are shown. Every second iso-
density contour indicates a change in density by a factor of 10. The innermost isodensity
contour corresponds to 1013 cm−3. The velocity vectors are normalized to the maximum
velocity in the frame (1.33 km s−1).
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Figure 4.11: Spatial structure of the innermost 0.01% of the model cloud at the time when
the central density nn,c = 1014 cm−3. Isodensity contours (thin solid lines), magnetic field
lines (thick solid lines), and velocity vectors (arrows) are shown. Every second isodensity
contour indicates a change in density by a factor of 10. The innermost isodensity contour
corresponds to 3×1013 cm−3. The velocity vectors are normalized to the maximum velocity
in the frame (1.44 km s−1).
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' 3 × 1011 cm−3 density contour. The maximum radial (vertical) velocity in the frame is

1.13 km s−1 (1.27 km s−1). A closer inspection reveals a small outward motion with speed

of∼ 0.1 km s−1 along the vertical symmetry axis, a result of infalling gas rebounding after

overshooting hydrostatic quasi-equilibrium. Throughout the evolution, the magnitude of

the radial component of the magnetic field never becomes greater than the magnitude of

the vertical component. Magnetic pinching forces remain small and magnetic reconnection

does not occur. Figure 4.11 shows the innermost 0.01% of the cloud at the end of the sim-

ulation (when nn,c = 1014 cm−3). The maximum radial (vertical) velocity in the frame is

1.44 km s−1 (1.24 km s−1).

Figures 4.12 – 4.15 exhibit the thermal structure of the innermost 0.01% of the model

cloud at times when the central density nn,c = 3× (1011, 1012, 1013) cm−3 and 1014 cm−3.

Isothermal (solid lines) and isodensity (dashed lines) contours are shown. The maximum

temperatures in the three figures are 22.0 K, 72.9 K, 184.4 K, and 268.5 K respectively.

Every tenth isothermal contour indicates a change in temperature by a factor of 10; every

second isodensity contour indicates a change in density by a factor of 10. Note that, in

all three figures, isothermal and isodensity contours coincide only within a region r ≡
(r2 + z2)1/2 . 4 AU. Outside of this region, the temperature structure is appreciably

more spherical than the density structure. This suggests that the assumption of a piecewise

adiabatic equation of state not only substantially overestimates the temperature, but also

results in a qualitatively incorrect thermal structure outwards of ≈ 4 AU.

4.3 Evolution of Central Quantities

Figure 4.16 exhibits the central gas (solid line) and radiation (dashed line) temperatures,

Tc, as a function of the central number density of neutrals. The gas remains isothermal

at 10 K until a density nopq ' 107 cm−3, after which the heat generated by gravitational

collapse is unable to escape efficiently. The central gas temperature then rises with density
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Figure 4.12: Thermal structure of the innermost 0.01% of the model cloud at the time
when the central density nn,c = 3 × 1011 cm−3. The maximum temperature is 22.0 K.
Isothermal contours (solid lines) and isodensity contours (dashed lines) are shown. Every
tenth isothermal contour indicates a change in temperature by a factor of 10; every second
isodensity contour indicates a change in density by a factor of 10. The innermost isothermal
(isodensity) contour corresponds to 20 K (1011 cm−3).
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Figure 4.13: Thermal structure of the innermost 0.01% of the model cloud at the time
when the central density nn,c = 3 × 1012 cm−3. The maximum temperature is 72.9 K.
Isothermal contours (solid lines) and isodensity contours (dashed lines) are shown. Every
tenth isothermal contour indicates a change in temperature by a factor of 10; every second
isodensity contour indicates a change in density by a factor of 10. The innermost isothermal
(isodensity) contour corresponds to 63 K (1012 cm−3).
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Figure 4.14: Thermal structure of the innermost 0.01% of the model cloud at the time
when the central density nn,c = 3 × 1013 cm−3. The maximum temperature is 184.4 K.
Isothermal contours (solid lines) and isodensity contours (dashed lines) are shown. Every
tenth isothermal contour indicates a change in temperature by a factor of 10; every second
isodensity contour indicates a change in density by a factor of 10. The innermost isothermal
(isodensity) contour corresponds to 158 K (1013 cm−3).
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Figure 4.15: Thermal structure of the innermost 0.01% of the model cloud at the time when
the central density nn,c = 1014 cm−3. The maximum temperature is 268.5 K. Isothermal
contours (solid lines) and isodensity contours (dashed lines) are shown. Every tenth isother-
mal contour indicates a change in temperature by a factor of 10; every second isodensity
contour indicates a change in density by a factor of 10. The innermost isothermal (isoden-
sity) contour corresponds to 251 K (3× 1013 cm−3).
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Figure 4.16: Evolution of the central gas (solid line) and radiation (dashed line) tempera-
tures, Tc, as functions of the central number density of neutrals, nn,c. The “star” marks the
time at which a supercritical core forms.
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Figure 4.17: Evolution of the exponent γeff in the relation Tc ∝ nγeff−1
n,c (solid line) as a

function of the central number density of neutrals, nn,c. The dotted line shows the exponent
if the gas were to evolve adiabatically beyond a central density 1011 cm−3. The “star” marks
the time at which a supercritical core forms.
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at a rate ∂ ln Tc/∂ ln nn,c ≡ γeff − 1, where γeff is the effective adiabatic index denoted

by the solid line in Figure 4.17. The dotted line in Figure 4.17 shows this index if the

gas were to evolve adiabatically beyond a central density 1011 cm−3 (as in, e.g., Tassis &

Mouschovias 2007b). The gas never evolves adiabatically during the simulation. There

is some indication that adiabaticity will set in at the cloud center by a central density ∼
1015 cm−3, after which γeff ' 7/5. The central temperature never evolves with an effective

adiabatic index γeff = 5/3.

A central temperature of 100 K is reached when the central density is' 6×1012 cm−3.

This is a significantly higher density than that found by, e.g., Larson (1969). There are

two principal reasons for this difference. First, a disklike, rather than spherical, geometry

allows the radiation to escape more easily, since the radiation is not isotropically confined

by a spherical opacity distribution. Second, the early redistribution of mass by ambipolar

diffusion is responsible for lowering the dust-to-gas ratio in the central flux tubes of the

cloud from its usual interstellar medium value (see below). The fewer dust grains there re-

sult in a lowered opacity, and consequently allow radiation to escape more efficiently. This

effect is complicated somewhat, however, as our opacities are temperature-dependent (see

Figures 2.2 and 2.3), whereas Larson (1969) assumed a constant value χR = 15 cm2 g−1

of dust (with a constant dust-to-gas ratio of 0.01).

The evolution of the central (gas) temperature assists in understanding the evolution

of the quantity ∂ ln Σn,c/∂ ln nn,c (shown in Figure 4.18), which is a quantitative indicator

of the core geometry. For a disk, in which thermal-pressure forces balance gravity along

magnetic field lines, ∂ ln Σn,c/∂ ln nn,c = γeff/2 (whose value is denoted by the dotted line

in the figure), whereas for a sphere, ∂ ln Σn,c/∂ ln nn,c = 2/3. After the rapid collapse

along field lines, ∂ ln Σn,c/∂ ln nn,c approaches and oscillates about 1/2; the cloud has set-

tled into a disklike quasi-equilibrium. Even during the magnetically-supercritical phase

of dynamical contraction, the geometry remains disklike (as indicated by the near coinci-

dence of the solid and dotted curves in the figure). This trend holds until central densities
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Figure 4.18: Evolution of the exponent ∂ ln Σn,c/∂ ln nn,c (solid line) as a function of the
central number density of neutrals, nn,c. The dotted line shows the exponent if the geometry
were to remain disklike throughout the evolution. The “star” marks the time at which a
supercritical core forms.
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≈ 3× 1011 cm−3 are attained, after which a spherical core geometry becomes increasingly

apparent.

In Figure 4.19, we show the central magnetic field strength, Bc, as a function of cen-

tral density. During the ambipolar-diffusion–controlled evolution (until the formation of

a supercritical core, marked by the “star”), Bc increases by only ' 47% from 15 µG to

22 µG. A phase of near flux-freezing subsequently follows, during which Bc resembles

a power-law Bc ∝ nκ
n,c with κ ' 0.47 (see Figure 4.20). This is in excellent agree-

ment with the observed κ = 0.47 ± 0.08 inferred from Zeeman detections of protostellar

cores (Crutcher 1999). For a thin disk in the flux-freezing limit, Bc ∝ n
1/2
n,c T

1/2
c , so that

κ = γeff/2. Therefore, any nonisothermal evolution (i.e., γeff > 1) will result in κ > 1/2

(in the flux-freezing limit). This is evident briefly in Figure 4.20 for the central density

range nn,c ∼ 108 − 1011 cm−3. This trend is halted once the magnetic field begins to de-

couple from the matter and κ decreases. Once the magnetic field is completely decoupled

from the gas, Bc ∝ T
1/2
c , so that κ = (γeff − 1)/2. This scaling will approximately hold

until the core contracts spherically under flux-refreezing (after magnetic recoupling — see

below) and κ approaches 2/3.

Note that the rapid, large oscillations in κ seen in Figure 1f of Tassis & Mouschovias

(2007b) after magnetic decoupling sets in are absent in our Figure 4.20. Those oscillations

were due to the abrupt and (relatively) rapid adiabatic temperature increase in the core,

which forced the contracting core to overshoot and subsequently oscillate about hydro-

static equilibrium. In the situation presented here, the much more gradual increase in the

central temperature affords the core enough time to maintain hydrostatic force balance as it

contracts. A close inspection of Figure 4.20 does indeed reveal small physical oscillations

about a hydrostatic equilibrium.

Figures 4.21 and 4.22 show the evolution of quantities related to the chemistry as func-

tions of central density: the ionization rate at the center of the cloud, ζc, due to all processes

(UV radiation, cosmic rays, and radioactive decays) and the central abundances of differ-
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Figure 4.19: Evolution of the central magnetic field strength, Bc, as a function of the central
number density of neutrals, nn,c. The “star” marks the time at which a supercritical core
forms.
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Figure 4.20: Evolution of the exponent κ in the relation Bc ∝ nκ
n,c (solid line) as a function

of the central number density of neutrals, nn,c. The dotted line shows the exponent if
the magnetic field were to evolve under strict flux-freezing and the gas were to behave
adiabatically beyond a central density 1011 cm−3. The “star” marks the time at which a
supercritical core forms.
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Figure 4.21: Evolution of the central ionization rate due to all processes (UV radiation,
cosmic rays, and radioactive decays) as a function of the central number density of neutrals,
nn,c. The “star” marks the time at which a supercritical core forms.
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Figure 4.22: Evolution of the central abundances of species xs (where s = e, i, g−, g0, g+)
as functions of the central number density of neutrals, nn,c. The “star” marks the time at
which a supercritical core forms.
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ent species, xs,c ≡ ns,c/nn,c (where s = e, i, g−, g0, g+). For nn,c . 1800 cm−3, UV

radiation dominates the ionization rate. Beyond this density, the ionization in the core is

mainly due to cosmic rays. Its value is constant, ζ = 5 × 10−17 s−1, for densities up to

≈ 3 × 1011 cm−3, beyond which the column density exceeds ≈ 100 g cm−2 and cosmic

rays are appreciably attenuated. The ionization rate then decreases monotonically, until it is

dominated by radioactive decays (mainly of 40K) above a central density ≈ 1013 cm−3 and

reaches a constant value ζ = 6.9× 10−23 s−1. Thermal ionization does not become impor-

tant for the density range investigated in this Thesis, since the temperature never reaches

' 103 K. A simple extrapolation of temperature based on our results indicates that such

a temperature will not be reached until a central density ≈ 3 × 1015 cm−3. Therefore, we

predict that magnetic recoupling will not occur until central densities of at least several

×1015 cm−3 are attained.

The central species abundances are strongly affected not only by changes in the ion-

ization rate, but also by microscopic interactions between the different species and by the

macroscopic dynamics of the cloud. For central neutral densities . 1800 cm−3, UV ioniza-

tion and (radiative and dissociative) recombinations dominate the ion and electron chem-

istry and the ion and electron abundances xi,e ∝ n−3
n . Once UV radiation is effectively

shielded and the ionization is primarily due to cosmic rays, xi,e decreases more slowly.

However, the canonical relation xi,e ∝ nk−1
n with k = const = 1/2 is never established. In

fact, during the subcritical phase of the evolution (i.e., nn,c . 105 cm−3), k is always greater

than 1/2, an effect that is entirely due to ambipolar diffusion. As explained by Ciolek &

Mouschovias (1998), during this phase of evolution charged and neutral dust grains are well

attached to magnetic field lines, which are essentially “held in place” (Mouschovias 1978,

1979), and are “left behind” by the inwardly diffusing neutrals. This results in a decrease in

the central dust-to-gas ratio by a factor roughly equal to the initial (dimensionless) central

mass-to-flux ratio. One consequence is a significantly reduced inelastic capture of ions and

electrons onto grains and therefore a greater number of gas-phase ions and electrons than
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predicted by calculations that assume a constant dust-to-gas ratio.

Once a supercritical core forms, the grain abundances are frozen at their values un-

til a central density of ∼ 109 cm−3 is reached. Gas-phase ions and electrons are then

quickly adsorbed onto grain surfaces and the grains become the main charge carriers (when

nn,c ∼ 1010 cm−3). However, most grains remain neutral due to inadequate numbers of ions

and electrons, whose abundances are determined by balancing their rates of production

against their collision rates with neutral grains. Because these collision rates are inversely

proportional to the square root of the ion/electron mass, the ions are more abundant than

the lighter electrons by a factor ' (mi/me)
1/2 ' 210 (different sticking probabilities for

ions and electrons reduce this value to ' 125). Since xg0 approaches a constant, the densi-

ties of ions and electrons approach constant values, so their abundances relative to neutrals

asymptote towards a n−1
n dependence. Once cosmic rays become appreciably attenuated,

however, this asymptotic behavior is interrupted and the abundances of electrons and ions

decrease much more rapidly. An ionization floor is established by the radionuclide 40K

at densities ≈ 1013 cm−3, after which the electron and ion abundances once again scale

roughly as n−1
n . The abundances of charged grains are proportional to n

−1/2
n , for the same

reasons that applied to the abundances of electrons and ions at low densities.

The evolution of central quantities related to magnetic diffusion are demonstrated in

Figures 4.23 – 4.26 as functions of central density. The magnetic diffusion coefficients

related to ambipolar diffusion (AD), Ohmic dissipation (OD), and the Hall effect (H) are

shown in Figure 4.23. As we are concerned here with the evolution of only the poloidal

component of the magnetic field (recall that rotation has been justifiably ignored), the Hall

effect plays no role in the dynamics of the cloud. Nevertheless, we have calculated the

Hall resistivity (denoted by the dashed line) in order to highlight its importance relative

to the other diffusion mechanisms. Ambipolar diffusion dominates the evolution of the

cloud until a density ' 7 × 1012 cm−3 is reached, after which Ohmic dissipation is the

primary magnetic diffusion mechanism. Therefore, ambipolar diffusion still dominates
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Figure 4.23: Evolution of the central magnetic resistivities associated with ambipolar dif-
fusion (AD), Ohmic dissipation (OD), and the Hall effect (H) as functions of the central
number density of neutrals, nn,c. The “star” marks the time at which a supercritical core
forms.
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Figure 4.24: Evolution of the central parallel (||), perpendicular (⊥), and Hall (H) magnetic
conductivities as functions of the central number density of neutrals, nn,c. The “star” marks
the time at which a supercritical core forms.
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Ohmic dissipation as a flux-reduction mechanism when the grains become the primary

charge carriers, contrary to the expectations of Nakano & Umebayashi (1986a,b). Equality

of the ambipolar-diffusion and Ohmic-dissipation rates occurs once the central mass-to-

flux ratio ' 16 times its critical value and the grains become the dominant current carriers

(see below).

In Figure 4.24, we show the parallel (||), perpendicular (⊥), and Hall (H) conductivi-

ties. Figures 4.25 and 4.26 show the fraction of the parallel and perpendicular conductiv-

ities, respectively, carried by each species. (Absolute values have been taken; the cusps

in the positive grain curves are due to the conductivity passing through zero as it changes

sign.) The electrons dominate the parallel conductivity until Ohmic dissipation becomes

the primary magnetic diffusion mechanism, after which the charged grains dominate the

parallel conductivity. The ions dominate the perpendicular conductivity (and therefore the

electrical current — see Section 4.4.5) until a central density ' 3× 1012 cm−3, after which

the charged grains dominate. In other words, the grains begin to carry the majority of the

current at roughly the same time that Ohmic dissipation becomes important. Star formation

and protostellar disk calculations that study the phase when Ohmic dissipation becomes an

important magnetic diffusion mechanism must include not only the chemistry but also the

magnetohydrodynamics of dust grains.

4.4 Evolution of Spatial Structure of the Model Cloud

Figures 4.27 – 4.47 show radial midplane (solid line) and vertical symmetry-axis (dashed

line) profiles of physical quantities at thirteen different times. Each curve corresponds to

a time tj when the central density has increased by a factor of 10j relative to the initial

uniform “reference” state (i.e., the central density ' 3 × 102+j cm−3 at time tj). The

exception is the last curve (corresponding to t12), which represents the time at which nn,c '
1014 cm−3.
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Figure 4.25: Evolution of the fraction of the central parallel magnetic conductivity carried
by each species as a function of the central number density of neutrals, nn,c. The “star”
marks the time at which a supercritical core forms.
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Figure 4.26: Evolution of the fraction of the central perpendicular magnetic conductivity
carried by each species as a function of the central number density of neutrals, nn,c. The
“star” marks the time at which a supercritical core forms.
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4.4.1 Density and Temperature

Figure 4.27 displays the number density of neutrals as a function of radius (r) and height (z)

at the 13 different times given above. We also show the logarithmic slope of the (midplane)

density profile versus radius, ∂ ln nn/∂ ln r, in Figure 4.28. A uniform central region is

maintained (in the radial direction) for r < λT,cr(t) by thermal pressure forces. Outside

of this region, the density profile resembles a broken power-law. Inside the supercritical

core, the slope has an average value ' −2.2 for 10−4 pc . r . 10−1 pc. For smaller

radii in the range ≈ 10−5 − 10−4 pc (≈ 2 − 20 AU), the slope increases briefly due

to a local increase in magnetic support (see § 4.4.3). A transition to spherical geometry

occurs at r ' 4 AU when the central density ' 3 × 1012 cm−3. The radial and vertical

density profiles are nearly identical inside this radius, with a slope approaching ≈ −10/3,

corresponding to hydrostatic force balance (with γeff = 7/5). Outside of the magnetically-

supercritical core (≈ 0.4 pc), there is an abrupt break in the slope because of significant

magnetic support in the envelope. Very near the cloud radial boundary (r = R = 0.75 pc)

the slope decreases again to satisfy the boundary condition that the material has no radial

velocity at this surface.

Figure 4.29 displays similar profiles for the (gas) temperature. The logarithmic slope

of the (midplane) temperature versus radius, ∂ ln T/∂ ln r, is shown in Figure 4.30. The

molecular cloud and supercritical core evolve isothermally for densities nn . 107 cm−3

and cylindrical polar radii r & 10−2 pc. Just inside the hydrostatic core (r . 2 AU),

the slope is closely approximated by (γeff − 1)(∂ ln nn/∂ ln r), whereas the temperature

becomes constant very near the center of the core. For 2 AU . r . 2000 AU, no single

power-law can approximate the temperature profile.

4.4.2 Magnetic Field and Alfvén Speed

The z-component of the magnetic field is shown in Figure 4.31. In common with the

density profile, there is an inner flat region [r < λT,cr(t)] where the magnetic field is near
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Figure 4.27: Radial midplane (solid line) and vertical symmetry-axis (dashed line) profiles
of the number density of neutrals at twelve different times. The inner (outer) “star” on a
radial profile curve, present only after a supercritical core forms, marks the initial (final)
radius of the supercritical core.

120



Figure 4.28: Radial derivative along the midplane of the density profile, ∂ ln nn/∂ ln r, at
different times, as in Fig. 4.27. The inner (outer) “star” on a radial profile curve, present
only after a supercritical core forms, marks the initial (final) radius of the supercritical core.
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Figure 4.29: Radial midplane (solid line) and vertical symmetry-axis (dashed line) profiles
of the gas temperature at different times, as in Fig. 4.27. The inner (outer) “star” on a radial
profile curve, present only after a supercritical core forms, marks the initial (final) radius
of the supercritical core.
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Figure 4.30: Radial derivative along the midplane of the (gas) temperature profile,
∂ ln T/∂ ln r, at different times, as in Fig. 4.27. The inner (outer) “star” on a radial profile
curve, present only after a supercritical core forms, marks the initial (final) radius of the
supercritical core.
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Figure 4.31: Radial midplane (solid line) and vertical symmetry-axis (dashed line) profiles
of the z-component of the magnetic field at different times, as in Fig. 4.27. The inner
(outer) “star” on a radial profile curve, present only after a supercritical core forms, marks
the initial (final) radius of the supercritical core.
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Figure 4.32: Radial derivative along the midplane of the z-component of the magnetic field,
∂ ln Bz/∂ ln r, at different times, as in Fig. 4.27. The inner (outer) “star” on a radial profile
curve, present only after a supercritical core forms, marks the initial (final) radius of the
supercritical core.
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uniform. Outside the supercritical core (r ≈ 0.4 pc, marked by a “star”), where the gas

is magnetically-supported, the profile flattens significantly and Bz is almost uniform. For

radii in the range ≈ 10−3 − 10−2 pc the slope ∂ ln Bz/∂ ln r ' −1.1 (see Figure 4.32). As

the temperature increases at smaller radii, the slope approaches' −1.6 until the location of

the hydrostatic core boundary, inside of which the slope quickly asymptotes to zero. This

zero slope is due to efficient Ohmic dissipation, which quickly erases any spatial variation

in the magnetic field. The strength of the magnetic field inside the hydrostatic core is

≈ 0.2 G, in excellent agreement with the protosolar magnetic field strength as derived

from meteoritic data (Levy 1988; Stacey et al. 1961; Herndon & Rowe 1974).

A closer inspection of Figures 4.31 and 4.32 reveals that the z-component of the mag-

netic field actually has a local maximum just outside of the hydrostatic core at r ' 10−5 pc

(' 2 AU), where the inwardly-advected magnetic flux has piled up and formed a “magnetic

wall.” This local concentration of magnetic flux outside the hydrostatic core boundary is

due to efficient ambipolar diffusion and results in a magnetic shock, the consequences of

which we will discuss in Sections 4.4.3 and 4.4.4. Tassis & Mouschovias (2005b) followed

the formation and evolution of a series of these magnetic shocks and found that accretion

onto the forming protostar occurs in a time-dependent, spasmodic fashion.

Figure 4.33 shows the maximum (in z) strength of the r-component of the magnetic

field, generated as a result of field-line deformation during core contraction. Inside the

inner flat region where the magnetic field is near uniform, Br,max declines rapidly to very

small values, reaching zero at the origin. The rapid contraction outside the hydrostatic

core induces a strong field-line deformation, and Br,max has a sharp local maximum at the

boundary of the hydrostatic core, where its value becomes comparable to, although still

smaller than, that of Bz (Br/Bz = 0.99 at the location of Br,max). In fact, Bz > Br at all

locations and for all times.

The ratio of the local Alfvén speed and the local isothermal sound speed, vA/cs, is

shown in Figure 4.34. The behavior of this ratio may be understood by realizing that
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Figure 4.33: Radial profiles of the maximum (in z) strength of the r-component of the
magnetic field at different times, as in Fig. 4.27. The inner (outer) “star”, present only after
a supercritical core forms, marks the initial (final) radius of the supercritical core.
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Figure 4.34: Radial midplane (solid line) and vertical symmetry-axis (dashed line) profiles
of the ratio of the Alfvén speed and the local isothermal sound speed at different times,
as in Fig. 4.27. The inner (outer) “star” on a radial profile curve, present only after a
supercritical core forms, marks the initial (final) radius of the supercritical core.
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vA/cs ∝ n
κ−γeff/2
n . Outside of the magnetically-supercritical core (marked by a “star”)

κ ≈ 0 and so vA/cs ∝ n
−1/2
n . This accounts for the large values of vA/cs in the cloud

envelope and upper atmosphere. In the magnetically-supercritical core during the isother-

mal phase of contraction (when κ ' 0.47 and γeff = 1), the Alfvén speed varies only

slightly with the isothermal sound speed and is approximately a constant of order unity.

The fact that vA becomes comparable to (or smaller than) the sound speed inside the su-

percritical core provides an explanation for the thermalization of linewidths observed in

molecular cloud cores (Baudry et al. 1981; Myers & Benson 1983). In the theory of mag-

netic star formation, the material motions responsible for the observed linewidths are at-

tributed to long-wavelength, standing Alfvén waves (Mouschovias 1987; Mouschovias &

Psaltis 1995), with a remarkable quantitative agreement between theory and observations

(Mouschovias et al. 2006).

A local maximum in vA/cs occurs just outside of the magnetic wall at r ≈ 10 AU.

There is a substantial decrease in vA/cs inside the hydrostatic core, where the gas is primar-

ily thermally-supported, due to the increase in γeff and decrease in κ; i.e., the gas begins to

evolve near-adiabatically and the magnetic field begins to decouple from the matter. Once

the magnetic field no longer significantly influences the matter, κ ' (γeff − 1)/2 and we

immediately find that vA/cs ∝ n
−1/2
n . This proportionality will approximately hold until

the temperature reaches ∼ 103 K, when thermal ionization and grain sublimation become

important and the gas recouples to the magnetic field.

The radial profile of the mass-to-flux ratio (normalized to the central critical value for

collapse) is given in Figure 4.35. It appears to exhibit a three-slope power law with a

flat inner region, which corresponds to the flat-density uniform-magnetic-field core. The

first power law (at small r) occurs just outside of hydrostatic core and marks the transition

from the magnetically-decoupled hydrostatic core to the near flux-frozen magnetically-

supercritical core. From radii ∼ 10−4 pc to a few ×10−2 pc, there is a second power

law, which is relatively flat. In this region, the ions are still attached to the field lines
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Figure 4.35: Radial profile of the mass-to-flux ratio (normalized to the central critical value
for collapse) at different times, as in Fig. 4.27. The inner (outer) “star” on a radial profile
curve, present only after a supercritical core forms, marks the initial (final) radius of the
supercritical core.
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and the mass-to-flux ratio only increases mildly. The third power law begins outside of

magnetically-supercritical core, where magnetic fields continues to support the cloud en-

velope.

4.4.3 Forces

Figures 4.36 – 4.38 demonstrate the relative importance of thermal pressure, magnetic

pressure and tension, and gravity in determining the magnitude of the local forces. In Figure

4.36, we give the ratio of thermal-pressure and gravitational forces. The gravitational force

dominates the thermal force everywhere (since the cloud is thermally supercritical), except

in the hydrostatic core (r . 2 AU). Just outside of the hydrostatic core, there is an abrupt

increase in the thermal-pressure force that is ultimately responsible for the formation of a

thermal shock there (see Section 4.4.4). At time t10, the ratio of the thermal-pressure and

gravitational forces inside the hydrostatic core is significantly larger than unity. This is

because the collapsing core has overshot its equilibrium, which results in radial (spherical)

pulsations (see Section 4.4.4).

In Figure 4.37, we give the ratio of magnetic and gravitational forces. The magnetic

force is an appreciable fraction of the gravitational force everywhere except inside the hy-

drostatic core (where efficient Ohmic dissipation operates — see Section 4.4.6). This is the

case even inside the dynamically contracting magnetically-supercritical core. Hence, the

dynamical contraction of the magnetically-supercritical core is significantly slower than

free-fall. The magnetic force has a local maximum with respect to the gravitational force

at ≈ 10 AU, just outside of the location of the maximum of the magnetic field seen in

Figure 4.31. There the abrupt increase in the magnetic force by a factor & 2.5 constitutes a

magnetic wall and results in the formation of a magnetic shock (see Section 4.4.4).

In order to determine what agent is mainly responsible for diluting the effects of gravity

at any given radius, we also give in Figure 4.38 the ratio of thermal-pressure and magnetic

forces. The magnetic force is greater than the thermal-pressure force (and hence provides
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Figure 4.36: Radial midplane profile of the ratio of thermal-pressure and gravitational
forces at different times, as in Fig. 4.27. The inner (outer) “star” on a radial profile curve,
present only after a supercritical core forms, marks the initial (final) radius of the supercrit-
ical core.
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Figure 4.37: Radial midplane profile of the ratio of magnetic and gravitational forces at
different times, as in Fig. 4.27. The inner (outer) “star” on a radial profile curve, present
only after a supercritical core forms, marks the initial (final) radius of the supercritical core.
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Figure 4.38: Radial midplane profile of the ratio of thermal-pressure and magnetic forces
at different times, as in Fig. 4.27. The inner (outer) “star” on a radial profile curve, present
only after a supercritical core forms, marks the initial (final) radius of the supercritical core.
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the dominant opposition to gravity) everywhere except in the hydrostatic core, where the

thermal-pressure force dominates the magnetic force by several orders of magnitude. There

is a local minimum in the thermal-to-magnetic force ratio outside of the hydrostatic core,

where the magnetic field strength increases briefly.

4.4.4 Velocities

The velocity of the neutrals is given in Figure 4.39. For comparison, the isothermal sound

speed at a temperature of 10 K is 0.188 km s−1. The ambipolar-diffusion–controlled,

quasistatic phase is marked by small radial velocities (' 0.01 − 0.03 km s−1). Once a

magnetically- and thermally-supercritical core forms, dynamical contraction ensues inside

the core and the radial velocity increases to ' 0.5cs − 1.0cs. It is of interest to note that

the radial velocity is ≈ 0.1 km s−1 at r ∼ 0.1 pc, in excellent agreement with the observed

infall motions of L1544 by Tafalla et al. (1998). The predicted radial velocities also com-

pare well with the observed infall motions near the starless molecular cloud core MC27

in Taurus, where speeds of 0.2 − 0.3 km s−1 have been detected at r ' 2000 − 3000 AU

(∼ 10−2 pc) (Onishi et al. 1999). The radial velocities outside of the supercritical core,

where the gas is magnetically supported, remain subsonic by a factor of a few.

At approximately the same time that isothermality breaks down in the supercritical core,

the radial velocities become supersonic. The mass accumulating in the hydrostatic core

causes an accelerated infall and the radial velocity approaches and exceeds ∼ 1 km s−1. A

shock forms near the boundary of the hydrostatic core due to rapid increases in the local

magnetic and thermal pressure forces, and the velocity rapidly falls to zero inside the hy-

drostatic core. The large vertical velocities throughout the evolution result from the cloud

collapsing along field lines and constantly responding to changes in the thermal-pressure

gradient along magnetic field lines. At the boundary of the hydrostatic core, shocks appear

along the vertical symmetry axis. Vertical velocities become positive after the core over-

shoots hydrostatic equilibrium, rebounds, and oscillates. Radial velocities remain negative,
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Figure 4.39: Radial midplane (solid line) and vertical symmetry-axis (dashed line) profiles
of the velocity of the neutrals at different times, as in Fig. 4.27. The inner (outer) “star” on
a radial profile curve, present only after a supercritical core forms, marks the initial (final)
radius of the supercritical core.
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but form a thermal and magnetic shock outside of the hydrostatic core.

The maximum radial velocities in this simulation are substantially larger than those

found by Tassis & Mouschovias (2007b). In addition, there are significant differences in

the structure and strength of the magnetic wall. Fortunately, the thorough parameter study

by Tassis & Mouschovias (2007c) provides a valuable service by obviating the reasons

for which these differences exist. They found that, if the onset of adiabaticity is delayed

beyond its oft-assumed critical density 1011 cm−3, as is naturally the case in the RMHD

simulations presented here, the maximum infall velocity of both neutrals and magnetic

field lines increases somewhat as the density at which adiabaticity sets in increases. This

is because the delay of the onset of adiabaticity implies accelerated infall for longer times.

Using the results from a simulation in which isothermality was assumed to always hold,

Tassis & Mouschovias (2007c) found that the longer the gas remains isothermal, the weaker

the magnetic shock is. In other words, the enhanced “pile-up” of matter and magnetic flux

outside the hydrostatic core becomes increasingly absent. Given that the results of our

RMHD simulations must necessarily be bracketed by those in which isothermal or adiabatic

equations of state are assumed, the fact that our magnetic wall is more pronounced than

found in their isothermal control run, yet less pronounced than found in their adiabatic run,

is not surprising.

The velocity of the field lines is given in Figure 4.40. (Note the different velocity

scaling on the ordinate.) Effective Ohmic dissipation in the hydrostatic core erases all

spatial inhomogeneities in the magnetic field strength there and transports the magnetic

flux outwards towards the magnetic wall where it accumulates. This is seen in the figure as

a positive field-line velocity in the lab frame. Everywhere outside of the hydrostatic core,

the velocity of the field lines remains negative at all times, indicating that the magnetic field

there never diffuses outwards in the lab frame. Beyond the magnetically-supercritical core

radius, the velocity of the field lines becomes vanishingly small, indicating stationary field

lines and effective magnetic support in the envelope of the cloud.
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Figure 4.40: Radial midplane profile of the velocity of the magnetic field lines at different
times, as in Fig. 4.27. The inner (outer) “star” on a radial profile curve, present only after
a supercritical core forms, marks the initial (final) radius of the supercritical core.
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Figure 4.41 shows radial profiles of the velocities and direct attachment parameters for

the different species. (These profiles for the electrons are not given, since the electrons

remain well-coupled to the magnetic field lines during the entire calculation.) The direct

attachment parameter for species s is given by

∆s ≡ vs,r − vn,r

vf,r − vn,r

(4.1)

and quantifies the degree to which species s is coupled to the magnetic field. If ∆s ≈ 1,

then species s is attached to the field lines, whereas if ∆s ¿ 1, then species s is detached

from the magnetic field lines and its motion follows that of the neutrals. It is more useful

a diagnostic of magnetic attachment than the indirect attachment parameter, ωsτsn, in that

it takes into account more complicated physics than just cyclotron gyrations and elastic

s−n collisions (e.g., electrostatic attraction between the different charged species, inelastic

collisions, etc.). In fact, it is straightforward to show from equations (C.1) and (C.2) that

the two are related by

∆s = ωsτsn

(
σ⊥,sσH − σH,sσ⊥

σsσ⊥

)
, (4.2)

where σs = nsq
2
sτsn/ms is the conductivity of species s and the other quantities have the

same meanings as in Figure 4.23.

Outside of the magnetically-supercritical core, all the species (except for the neutrals)

remain well-attached to the magnetic field lines. It is only inside of the supercritical core

that the different species begin to follow the neutrals, as each species is peeled away from

the magnetic field via collisional forces. The negatively-charged grains are completely

detached from the magnetic field by t6, the neutral grains by t7, and the positively-charged

grains by t8. The ions do not begin to detach from the magnetic field until t4, well into the

dynamical contraction phase, and do not fully detach until t10. Indeed, at late times, the

radial velocity profiles of these species appear identical to those of the neutrals.

A closer inspection of the direct attachment parameter profiles reveals more detailed
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and interesting behavior than one would expect based solely on magnetic and collisional

forces. These parameters do not simply asymptote directly to zero, but rather asymptote

first to a small but nonzero value before finally settling at zero. For example, ∆g− asymp-

totes to ≈ 0.05 before falling to zero. Thus, negatively-charged grains remain mildly at-

tached to the field lines even when simpler estimates (e.g., ωgτgn ¿ 1) would suggest

otherwise. This is a result of electrostatic attraction between negatively-charged grains and

electron-shielded ions, which have yet to fully decouple from the magnetic field. Neutral

grains also couple to the magnetic field by inelastic charge-capture processes. Slightly

more complex behavior can be seen for the positively-charged grains, which are repelled

from the field lines by electron-shielded ions. Even electrostatic attraction between ions

and (fully-attached) electrons keeps the ions very mildly attached for t8 − t10, though this

effect is much subtler than for the grains because of extremely low electron abundances at

these high densities.

4.4.5 Contribution of Electric Current Density by Different Species

Figures 4.43 – 4.46 exhibit the contribution of different charged species to the total electric

current density (in the midplane) as a function of radius at different times. The current

density (in the midplane) carried by species s, js,φ, may be obtained from equation (C.1)

and written in terms of the total current density jφ (shown in Figure 4.42) and various

components of the resistivity tensor:

js,φ ≡ nsqsvs,φ =
(
σ⊥,sη⊥ + σH,sηH

)
jφ . (4.3)

(Absolute values have been taken; the cusps in the positive grain curves are due to the

current passing through zero as it changes sign.)

At early times the contributions of electrons and ions to the electric current density are

comparable and are approximately three orders of magnitude greater than the contribution
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Figure 4.42: Radial midplane profile of the magnitude of the total electric current density
in the φ−direction at different times, as in Fig. 4.27. The inner (outer) “star” on a radial
profile curve, present only after a supercritical core forms, marks the initial (final) radius
of the supercritical core.
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Figure 4.43: Radial midplane profile of the magnitude of the electric current density in the
φ−direction carried by the positively-charged grains at different times, as in Fig. 4.27. The
inner (outer) “star” on a radial profile curve, present only after a supercritical core forms,
marks the initial (final) radius of the supercritical core.
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Figure 4.44: Radial midplane profile of the magnitude of the electric current density in the
φ−direction carried by the negatively-charged grains at different times, as in Fig. 4.27. The
inner (outer) “star” on a radial profile curve, present only after a supercritical core forms,
marks the initial (final) radius of the supercritical core.
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Figure 4.45: Radial midplane profile of the magnitude of the electric current density in the
φ−direction carried by the ions at different times, as in Fig. 4.27. The inner (outer) “star”
on a radial profile curve, present only after a supercritical core forms, marks the initial
(final) radius of the supercritical core.
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Figure 4.46: Radial midplane profile of the magnitude of the electric current density in the
φ−direction carried by the electrons at different times, as in Fig. 4.27. The inner (outer)
“star” on a radial profile curve, present only after a supercritical core forms, marks the
initial (final) radius of the supercritical core.
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from negatively-charged grains. By t9, the increasing disparity between electron and ion

abundances (due to electron depletion onto grains) causes the ion current to become greater

than the electron current by a factor ≈ 100 (recall that, at this stage, xi/xe ' 125 — see

Figure 4.22). Finally, in the innermost region, the current density decays sharply due to the

increasing effect of Ohmic dissipation (see Figure 4.47). As discussed in Section 4.3, grains

become the main current carriers at roughly the same time as Ohmic dissipation becomes

important. Their contribution to the electric current density is more than two (four) orders

of magnitude greater than that of the ions (electrons).

4.4.6 Ambipolar Diffusion and Ohmic Dissipation

The relative importance of ambipolar diffusion and Ohmic dissipation as agents of mag-

netic diffusion is demonstrated in Figure 4.47, which shows radial midplane profiles of

the ratio of the ambipolar-diffusion and Ohmic-dissipation resistivities. At low densities

and large radii (and height), ambipolar diffusion dominates Ohmic dissipation. The two

processes become equally important only at a density ' 7 × 1012 cm−3, while at higher

densities Ohmic dissipation operates on a timescale shorter than that of ambipolar diffu-

sion. (See also Figure 4.23.) The region in which this occurs coincides with the region in

which the electric currents diminish (r . 2 AU). Note that magnetic decoupling is essen-

tially complete by the time Ohmic dissipation becomes important; i.e., ambipolar diffusion

is responsible for decoupling the gas from the magnetic field. Calculations that arrived at

the conclusion that Ohmic dissipation is the cause of magnetic decoupling (e.g., Nakano &

Umebayashi 1986a,b) were based on a value of the e-H2 cross section which is too large

by a factor of about 100 (see review by Mouschovias 1996, § 2.1).

4.4.7 Mass, Magnetic Flux, and Mass Infall Rate

In Figure 4.48 we show radial profiles of the cumulative mass within a radius r. There

are two regions where the mass distribution is markedly different: outside the hydro-
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Figure 4.47: Radial midplane profiles of the ratio of Ohmic and ambipolar resistivities.
The dotted line denotes the boundary when ambipolar diffusion and Ohmic dissipation
become equally important magnetic diffusion mechanisms. Above (below) this line, Ohmic
dissipation (ambipolar diffusion) dominates. Different curves correspond to different times,
as in Fig. 4.27.
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Figure 4.48: Radial profile of the cumulative mass within a (cylindrical) radius r at different
times, as in Fig. 4.27. The inner (outer) “star” on a radial profile curve, present only after
a supercritical core forms, marks the initial (final) radius of the supercritical core.
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static core (or before the hydrostatic core forms), where the geometry is disklike and

∂ ln M/∂ ln r ' 2 + (1/2)(∂ ln nn/∂ ln r) ≈ 0.9, and inside the hydrostatic core, where

the geometry becomes spherical and ∂ ln M/∂ ln r ' 3 + (∂ ln nn/∂ ln r) ≈ −1/3. For

radii less than the instantaneous critical thermal lengthscale, r . λT,cr(t), thermal-pressure

forces smooth out any spatial structure in the density and ∂ ln nn/∂ ln r ' 0. By the

end of the run, ' 12 M¯ has accumulated within the magnetically-supercritical core and

' 0.006 M¯ within the hydrostatic core.

Similar behavior is evident in Figure 4.49, which shows radial profiles of the cumulative

magnetic flux within a radius r. Note, however, that the clear break in the mass-radius

profile at the boundary of the hydrostatic core is hardly evident in the magnetic-flux–radius

profile. The magnetic flux does not make the full transition to spherical geometry like the

mass does, since the magnetic field is decoupled from every species except the tenuous

electron fluid (see Section 4.41). The magnetic flux threading the hydrostatic core is ≈
5 × 10−5 µG pc2 ≈ 4.8 × 1018 Wb. It is intriguing to note that this is relatively close

to the magnetic flux of a typical Ap star such as θ Aurigae, which has a radius 4.5 R¯

and magnetic field strength B ∼ 1 kG, giving a magnetic flux ∼ 3 × 1018 Wb (van

Rensbergen et al. 1984). Ap stars are believed to avoid the convective stage as protostars

and so retain the magnetic flux leftover from their formation. Coupled with θ Aurigae’s

young age (∼ 200 Myr), this suggests that its ∼ 1 kG magnetic field is a fossil field.

The neutral density (Figure 4.27) and velocity (Figure 4.39) profiles are used to cal-

culate the mass infall rate, ∂M/∂t, through any (cylindrical) radius r, which is given in

Figure 4.50. The mass infall rate varies considerably both spatially and temporally, a be-

havior also noted in magnetic calculations by Mouschovias & Morton (1992a,b), Ciolek &

Mouschovias (1994), Basu (1997), and Desch & Mouschovias (2001) and in nonmagnetic

calculations by Foster & Chevalier (1993). This behavior contrasts sharply with that of the

singular isothermal sphere model, which would predict a constant and uniform mass infall

rate of 0.975 C3/G (Shu 1977). (The inclusion of magnetic fields to this model, which
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Figure 4.49: Radial profile of the cumulative magnetic flux within a (cylindrical) radius r
at different times, as in Fig. 4.27. The inner (outer) “star” on a radial profile curve, present
only after a supercritical core forms, marks the initial (final) radius of the supercritical core.
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Figure 4.50: Radial profile of the mass infall rate through any (cylindrical) radius r in units
of M¯ yr−1 at different times, as in Fig. 4.27. The inner (outer) “star” on a radial profile
curve, present only after a supercritical core forms, marks the initial (final) radius of the
supercritical core.
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Figure 4.51: Radial profile of the mass infall rate through any (cylindrical) radius r normal-
ized to the local value of c3

s/G at different times, as in Fig. 4.27. The inner (outer) “star” on
a radial profile curve, present only after a supercritical core forms, marks the initial (final)
radius of the supercritical core. The horizontal dotted lines denote the constant mass infall
rates predicted by the Shu (1977) and Larson-Penston (1969) solutions.
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results in isothermal toroids, gives a larger but still time-independent and spatially uniform

accretion rate — see Li & Shu 1996.)

In order to compare our mass infall rate more quantitatively with those predictions by

the various self-similar solutions mentioned throughout this Thesis, we also plot in Figure

4.51 the mass infall rate normalized to c3
s/G, where cs is the instantaneous local isothermal

sound speed in the model cloud. The horizontal dotted lines denote the constant mass infall

rates predicted by the Shu (1977) and Larson-Penston (1969) solutions. At the boundary

of the magnetically-supercritical core the mass infall rate is initially 1.53× 10−6 M¯ yr−1

(= 0.96 c3
s/G), increasing to 2.00 × 10−6 M¯ yr−1 (= 1.26 c3

s/G) by the end of the

run. The maximum infall rate is 3.13 × 10−4 M¯ yr−1 (= 27.18 c3
s/G) and occurs at

r ' 1.6 AU. That the early ambipolar-diffusion–controlled phase is characterized by a

maximum mass infall rate comparable to the constant mass infall rate predicted by the Shu

(1977) solution intuitively makes sense; the Shu (1977) solution was obtained by assuming

quasi-static (i.e., negligible velocity) initial conditions, which is similar to the quasistatic

(i.e., negligible acceleration) evolution of the early, ambipolar-diffusion–controlled phase

that exists before the creation of a magnetically-supercritical core. Likewise, the mass infall

rate in the Larson-Penston (1969) solution was obtained by assuming highly dynamical

initial conditions, and so it is not surprising that the maximum mass infall rate found in

our simulation, which occurs once a point mass (the hydrostatic core) is formed in the

central region of the core, is limited by the (spatially-constant) mass infall rate found in the

Larson-Penston (1969) solution.

4.4.8 Radiation Flux and Luminosity

Under the FLD approximation, the radiation flux is given by

F = −
(

cλFLD

χR

)
∇E . (4.4)

154



Figure 4.52: Radial midplane (solid line) and vertical symmetry-axis (dashed line) profiles
of the radiation flux at different times, as in Fig. 4.27. To ease conversion to luminosity,
we have multiplied the flux by 4π and have given it in units of L¯ AU−2.
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In Figure 4.52, we give the r-component of the radiation flux along the midplane (solid

line) and the z-component of the radiation flux along the symmetry axis (dashed line). To

ease conversion to luminosity,

L(r) = r2 ∮
F(r, θ) · r̂ dΩ , (4.5)

in the figure we have multiplied the flux by 4π and given it in units of L¯ AU−2. (To obtain

the luminosity at the hydrostatic core boundary in L¯, simply multiply the value of the

plotted quantity evaluated at r ' 2 AU by ' 22.) The radiation flux is substantially larger

along the symmetry axis than along the midplane, because there is much less absorbing

material in the former direction than the latter. Near the boundary of the hydrostatic core

the two profiles attain a similar maximum ' 2.5 × 10−4 L¯ AU−2, corresponding to a

luminosity ' 10−3 L¯.
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Chapter 5

Parameter Study

5.1 Introduction

It is important to investigate the sensitivity of the above results to variations in the relevant

free parameters of the problem, of which three are poorly constrained either observationally

or experimentally: the initial mass-to-flux ratio of the parent molecular cloud, the grain size

distribution, and the relative abundance of the short-lived yet extremely potent radionuclide

26Al.

Tassis & Mouschovias (2007c) presented results from a parameter study that used nu-

merical simulations to follow the detailed evolution of magnetic molecular cloud cores up

to densities ≈ 1014 − 1016 cm−3 under the assumption of an isothermal and/or piece-wise

adiabatic equation of state. They showed that memory of the initial mass-to-flux ratio is

completely lost at late times. By now, it is well know that the principal consequence of a

larger (smaller) initial mass-to-flux ratio is to shorten (lengthen) the timescale for the for-

mation of a magnetically-supercritical core (e.g., Ciolek & Basu 2001). While there are

some small quantitative differences between simulations with varying initial mass-to-flux

ratios (see Tassis & Mouschovias 2007c, § 3), the extreme demand of computer time re-

quired to produce a suitable µ0 parameter study currently precludes this endeavor. Hence,

we find it unnecessary to vary the initial mass-to-flux ratio as part of our parameter study

at this time.

Grain size distributions in protostellar disks are notoriously difficult to constrain obser-

vationally (see, e.g., the introduction in McCabe et al. 2003). Analysis of spectral energy
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distributions from disks has suggested that both grain growth and the settling of large grains

to the disk midplane do, in fact, occur (Furlan et al. 2006). However, the degree of grain

growth and settling varies widely across different circumstellar environments. Unfortu-

nately, computational time constraints prevent a systematic study of the effects of various

initial grain size distributions on our results at the moment. In a future publication, we will

present results from a simulation that replaces our assumption of a single grain size with

an MRN distribution of grain sizes.

For now, we focus only on the sensitivity of our results to the possible presence of

26Al. While 26Al is a powerful radioactive ionization source (ζ26 = 1.94× 10−19 s−1), the

fact that it is relatively short-lived compared with 40K (half-life 0.716 Myr vs. 1.25 Gyr)

suggests that it may only become important if the initial mass-to-flux ratio of the parent

molecular cloud is relatively close to critical (so that the evolution is rapid) or if the core

happens to become enriched because of a nearby Supernova explosion (e.g., Looney et al.

2006, Ouellette et al. 2007 — but see also Williams & Gaidos 2007 and Boss et al. 2008

for two different points of view). In the next section we compare the results discussed in

Chapter 4 with those of a simulation in which 26Al is assumed to dominate the high-density

ionization rate.

5.2 26Al as an Alternative Radionuclide

Figures 5.1 and 5.2 are, respectively, the 26Al-analogues of Figures 4.21 and 4.22, showing

the evolution of quantities related to the chemistry as functions of central density: the

ionization rate at the center of the cloud, ζc, due to all processes (UV radiation, cosmic rays,

and radioactive decays) and the central abundances of different species, xs,c ≡ ns,c/nn,c

(where s = e, i, g−, g0, g+). The plateau reached by the ionization rate at high densities in

the 26Al model occurs at a value more than three orders of magnitude larger than in the 40K

model. As a result, the degree of ionization and the chemical abundances of all charged
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Figure 5.1: 26Al as the dominant radionuclide. Evolution of the central ionization rate due
to all processes (UV radiation, cosmic rays, and radioactive decays) as a function of the
central number density of neutrals, nn,c. The “star” marks the time at which a supercritical
core forms.
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Figure 5.2: 26Al as the dominant radionuclide. Evolution of the central abundances of
species xs (where s = e, i, g−, g0, g+) as functions of the central number density of
neutrals, nn,c. The “star” marks the time at which a supercritical core forms.
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species are significantly greater at high densities.

The larger abundances of ions and electrons have important effects on quantities related

to the magnetic conductivity of the gas, which are given in Figures 5.3 – 5.6 as functions

of central density. The magnetic diffusion coefficients related to ambipolar diffusion (AD),

Ohmic dissipation (OD), and the Hall effect (H) are shown in Figure 5.3. While Ohmic

dissipation becomes increasingly more important at high densities, ambipolar diffusion

remains the dominant magnetic diffusion mechanism. This is reinforced in Figure 5.7,

which shows the radial midplane profiles of the ratio of the ambipolar-diffusion and Ohmic-

dissipation resistivities.

In Figure 5.4, we show the parallel (||), perpendicular (⊥), and Hall (H) conductivi-

ties. Figures 5.5 and 5.6 show the fraction of the parallel and perpendicular conductivities,

respectively, carried by each species. (Absolute values have been taken; the cusps in the

positive grain curves are due to the conductivity passing through zero as it changes sign.)

The larger electron abundances ensures that the electrons continue to dominate the parallel

conductivity. However, the grains still dominate the perpendicular conductivity (and there-

fore the electric current) for central densities & 3 × 1012 cm−3, though by an appreciably

smaller percentage of the total current.

All other quantities remained practically unchanged from their values given in Chapter

4. This is because (1) the magnetic field is largely decoupled from the gas by the time

an ionization floor due to radioactivity is established and (2) the temperature evolution is

independent of the ionization rate at these late times.
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Figure 5.3: 26Al as the dominant radionuclide. Evolution of the central magnetic resistivi-
ties associated with ambipolar diffusion (AD), Ohmic dissipation (OD), and the Hall effect
(H) as functions of the central number density of neutrals, nn,c. The ”star” marks the time
at which a supercritical core forms.
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Figure 5.4: 26Al as the dominant radionuclide. Evolution of the central parallel (||), per-
pendicular (⊥), and Hall (H) magnetic conductivities as functions of the central number
density of neutrals, nn,c. The ”star” marks the time at which a supercritical core forms.
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Figure 5.5: 26Al as the dominant radionuclide. Evolution of the fraction of the central
parallel magnetic conductivity carried by each species as a function of the central number
density of neutrals, nn,c. The ”star” marks the time at which a supercritical core forms.
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Figure 5.6: 26Al as the dominant radionuclide. Evolution of the fraction of the central
perpendicular magnetic conductivity carried by each species as a function of the central
number density of neutrals, nn,c. The ”star” marks the time at which a supercritical core
forms.
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Figure 5.7: 26Al as the dominant radionuclide. Radial midplane profiles of the ratio of
Ohmic and ambipolar resistivities. The dotted line denotes the boundary when ambipo-
lar diffusion and Ohmic dissipation become equally important magnetic diffusion mecha-
nisms. Above (below) this line, Ohmic dissipation (ambipolar diffusion) dominates. Dif-
ferent curves correspond to different times, as in Fig. 4.27.
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Chapter 6

Summary

We can now add to the evolutionary picture laid down at the close of Chapter 1. In an

initially magnetically-subcritical cloud, ambipolar diffusion allows the neutrals to contract

quasistatically via their own self-gravity through nearly-stationary magnetic field lines, re-

distributing the amount of mass in the central flux tubes of the cloud. Once the neutral

infall creates a central region with a critical mass-to-flux ratio (at a central neutral number

density ' 104 cm−3 under the conditions investigated in this Thesis), it begins to collapse

more rapidly than its surroundings and is referred to as a supercritical core. The supercrit-

ical core evolves dynamically (though slower than free-fall) under near flux-freezing, until

the resurrection of ambipolar diffusion causes magnetic decoupling to set in at a density

≈ 1010 cm−3 and gradually, over several orders of magnitude, completely detach all but

the electrons from the magnetic field. Dust grains play a crucial role in the evolution of

both the cloud and the core, and by the time these densities are reached, the grains are

largely responsible for the electric charge of the gas, despite the fact that most grains are

charge-neutral. Perhaps more surprising, however, is the fact that the grains also carry the

electric current for densities & 3× 1012 cm−3. These densities are comparable to those for

which Ohmic dissipation dominates ambipolar diffusion (& 7× 1012 cm−3), which occurs

in a central region of size ≈ 2 AU.

Once magnetic decoupling has effectively removed any ties between the bulk plasma

and the magnetic field, the magnetic field is no longer dragged inwards, magnetic flux piles

up at a radius of ≈ 10 AU, and a magnetic wall is formed. Inside this radius, the magnetic

field becomes spatially uniform with a strength ≈ 0.2 G. Given the fact that the magnetic
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field is completely unaffected by the motion of gas through it at these densities and on

these lengthscales, it is not unreasonable to surmise that the protoplanetary disk that will

eventually form will be exposed to a uniform magnetic field strength of ≈ 0.2 G. It may be

no coincidence, therefore, that measurements of the remnant magnetization in meteorites

imply magnetic fields in the early solar nebula of strength ≈ 0.1− 0.2 G.

Magnetic fields are also responsible for quickly establishing and maintaining a disk-

like geometry all the way down to radial lengthscales on the order of 10 AU, inside of

which thermal-pressure effects become important. This provides a natural explanation for

observations of star-forming cores, such as L1551-IRS5, that reveal a disk-like geometry

over a broad range of lengthscales.

Throughout the entire collapse phase, the liberated gravitational energy escapes from

the gas only as efficiently as allowed by the dust grains, which are largely responsible for

the opacity at temperatures . 1500 K. While the gas remains strictly isothermal only

for central densities . 107 cm−3, the temperature does not exhibit an appreciably rapid

increase until densities ≈ 1011 cm−3 are attained in the core. A central temperature of

100 K is reached when the central density ' 6 × 1012 cm−3. For the densities considered

in this Thesis (. 1014 cm−3), the gas never evolves adiabatically.

The dramatic temperature increase inside ≈ 4 AU leads to the formation of a hydro-

static core, in which approximate balance is achieved between thermal-pressure and grav-

itational forces. At the boundary of the hydrostatic core (' 2 AU), there are prominent

shocks, particularly along the vertical symmetry axis where velocities rapidly decrease

from ≈ −1.2 km s−1 to zero in only ≈ 8 AU. This abrupt deceleration causes the gas

to rebound from overshooting hydrostatic force balance and subsequently oscillate about

the equilibrium. Rapid Ohmic dissipation causes the magnetic field lines inside the hydro-

static core to move outwards, halting only at the location of the magnetic wall caused by

ambipolar diffusion. A simple extrapolation of temperature based on our results indicates

that a temperature of 1000 K will not be reached until a central density ≈ 3 × 1015 cm−3.
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Therefore, the recoupling of the gas to the magnetic field, via thermal ionization and grain

sublimation, will most likely not occur until central densities of at least several×1015 cm−3

are attained.

At the end of the calculation, the mass and magnetic flux in the hydrostatic core are

0.006 M¯ and 5×10−5 µG pc2, respectively. The mass-to-flux ratio in the central flux tube

is ' 80 times the critical central value for collapse. The luminosity at the hydrostatic core

boundary is' 10−3 L¯. The mass infall rate is highly nonhomologous and time-dependent,

rising from ∼ c3
s/G at the boundary of the magnetically-supercritical core to a maximum

value ∼ 27c3
s/G at a radius of ' 1.6 AU, near the boundary of the hydrostatic core. The

quantitative similarity between the latter value and the (spatially constant) mass infall fate

associated with the Larson-Penston-Hunter self-similar hydrodynamic collapse solution is

no coincidence. By the time a spherical hydrostatic core is formed in our simulations, the

infall velocities are dynamic and the magnetic field has largely decoupled from the gas.

In order to assess the relevancy of these calculations to actual star-forming molecular

clouds and cores, a number of steps are being taken as this Thesis is being written. For

example, we are currently collaborating with Professor Leslie Looney and his graduate

student Hsin-Fang Chiang to perform synthetic interferometric observations of our simula-

tions for comparison with 1 and 3 mm data of Class 0 sources from the Combined Array for

Research in Millimeter Astronomy (CARMA). Simulation images will be convolved with

the synthesized beam, multiplied by the primary beam attenuation, Fourier transformed

into visibilities, and sampled with the same u− v coverage as the observations themselves.

Our simulations are also amenable to 7 mm studies once the Extended Very Large Array

(EVLA) comes online in 2010. Another avenue that is currently being explored is the cal-

culation of synthetic SEDs for quantitative comparison with observations of Class –I and

Class 0 YSOs. Radiation from grains is responsible for the excess infrared and millime-

ter emission; grain density and temperature distributions are therefore important inputs

to any SED calculation. These quantities are generated self-consistently by the simula-

169



tions presented in this Thesis. The construction of synthetic prestellar SEDs is particularly

timely, since the Herschel Space Observatory will be the only space facility dedicated to

the far-infrared and sub-millimeter part of the spectrum. In fact, prestellar SEDs peak in

the Herschel “prime” band.

Despite a concerted effort to treat the nonisothermal stage of magnetic star formation

as rigorously as possible, there still remains a great deal of work to be done, including both

improvements to and extensions of what has already been accomplished for this Thesis.

While much of this work deserves the undivided attention of a future graduate student or

postdoctoral researcher of star formation theory, we outline here a few possibilities and

give some idea of their feasibility.

First, dust coagulation ought to be computed in a time-dependent fashion. Unfortu-

nately, the exact details of how and even when grain growth occurs in protostellar cores

and disks are poorly constrained both experimentally and observationally. Due to recent

improvements in instrumentation, however, observational prospects are becoming increas-

ingly auspicious. A recent comprehensive study of the circumstellar disk surrounding the

T Tauri star IM Lupi using photometry, spectroscopy, millimeter interferometry, and multi-

wavelength imaging has obtained quantitative evidence of dust evolution in the disk (Pinte

et al. 2008). The details may not be so essential, however, since the effect of grain size

on the temperature evolution ought to be minimal, as least for the range of densities stud-

ied here; different grain sizes share roughly the same opacity for temperatures less than

≈ 400 K. On the other hand, the strength of the magnetic field at decoupling is a sensitive

function of grain size (e.g., Desch & Mouschovias 2001). One possible way to circum-

vent the uncertainties of grain growth, at least at the present time, would be to adopt a

nonuniform grain size distribution (such as the MRN distribution) and rerun the numerical

simulations undertaken for this Thesis. As is evident from the discussion in Section 2.4.2,

we have already modified the Zeus-MP code to handle such a distribution and preliminary

code testing has begun.
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Second, a relatively straightforward improvement that can be made to the numerical

code used in this Thesis would be to upgrade the radiative transfer module from one

that uses the grey FLD approximation to one that uses a multi-group FLD approximation.

Rather than average radiation properties over the entire frequency spectrum, multi-group

methods sort frequencies into different frequency bins, so that quantities associated with

radiation are only averaged over the (much smaller) bin width. In some sense, it is a com-

promise between a grey calculation and a full frequency-dependent calculation, which is

currently unrealizable.

Third, while the neglect of rotation was justifiably ignored in this Thesis, any calcula-

tion that endeavors to journey further along in the evolution of a protostellar core must in-

clude rotation. This would require modifying our numerical code to include both magnetic

braking and Hall electromotive forces. The inclusion of rotation is particularly important

to deciphering the formation and evolution of protoplanetary disks, including whether such

disks form as the result of laminar contraction of disk-like clouds or by outward turbu-

lent transfer of angular momentum. The answer to this question rests precariously on the

presently-unknown strength and topology of protoplanetary disk magnetic fields. For ex-

ample, magnetorotational instabilities (Balbus & Hawley 1991; Blaes & Balbus 1994; Jin

1996; Gammie 1996; Glassgold et al. 1997; Igea & Glassgold 1999; Wardle 1999; Sano &

Miyama 1999; Sano et al. 2000; Balbus & Terquem 2001; Fleming & Stone 2003; Kunz

& Balbus 2004; Salmeron & Wardle 2005; Fromang & Nelson 2006; Wardle 2007; Turner

et al. 2007) and/or nonideal MHD shear instabilities (Kunz 2008) may be important for out-

ward angular momentum transport within protoplanetary disks, provided that the magnetic

field is sufficiently weak and not too decoupled from the gas to allow the instabilities to

grow on a dynamical timescale. On the other hand, bipolar outflows and disk winds, which

are thought to transport angular momentum away from disks, may be due in part to strong

magnetic fields (Blandford & Payne 1982; Königl 1989; Wardle & Königl 1993; Shu et al.

1994; Li 1996; Salmeron et al. 2007). Determining which of these mechanisms dominates
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the transport of angular momentum in protoplanetary disks is one of the most important

unsolved problems in star and planet formation.

Finally, while there is a large body of work on star formation, very few studies attempt

to unite what we already know about the star-formation process with current investigations

into the physics of protoplanetary accretion disks. Disk studies often begin in medias res,

using well-known physics to evolve the system from a more uncertain initial state. Re-

cent advances in star formation calculations, including the ones presented in this Thesis,

are enabling ab initio protostellar accretion disk studies to become feasible. There are

already a few testaments to the promises of such an approach. For example, Dullemond

et al. (2006) constructed a simple model of disk formation and evolution from collapsing

star-forming cores. While this model relies upon an ad-hoc α-viscosity prescription to

model angular momentum transport within the disk, it naturally reproduces the observed

relation between the mass accretion rate and the stellar mass, Ṁacc ∝ M1.8
∗ (e.g., Natta

et al. 2006). Vorobyov & Basu (2007) followed the hydrodynamics of a non-axisymmetric

gravitating protostellar accretion disk (in the thin-disk approximation) that was formed

self-consistently by simulating the collapse of a molecular cloud core. A subsequent pa-

per by the same authors (Vorobyov & Basu 2008) studied the disk dynamics during the T

Tauri phase, also finding considerable agreement with observations. Nevertheless, realis-

tic models for magnetic protostellar accretion disks that self-consistently account for their

formation do not presently exist.

Unfortunately, other than the possible inclusion of rotation and an MRN grain size

distribution, all these improvements and extensions either will have to be attacked semi-

analytically or must wait until future developments in computer hardware (e.g., NCSA’s

Blue Waters) or software (e.g., a fully-implicit nonideal RMHD code) render more rigor-

ous calculations feasible. This is the price we pay for working in a field where so many

nonlinear processes converge at once to produce what may otherwise be considered a rela-

tively common occurrence and so taken for granted by anyone who has ever stared into the
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night sky.

So eine Arbeit wird eigentlich nie fertig,
man muß sie für fertig erklären,
wenn man nach Zeit und Umständen
das Möglichste getan hat.

Such a work is actually never finished;
one must declare it finished
when, given time and circumstances,
one has done all that is possible.

Johann Wolfgang von Goethe, Italienische Reise (1787)
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Appendix A

Rate Coefficients

For radiative recombination of atomic ions and electrons, αrr = 2.8× 10−12 (300 K/T )0.86

cm3 s−1; for the dissociative recombination of electrons and HCO+ ions, αdr = 2.0 ×
10−7 (300 K/T )0.75 cm3 s−1 (Umebayashi & Nakano 1990). The rate coefficient adopted

for charge exchange reactions between atomic and molecular ions is β = 2.5 × 10−9 cm3

s−1 (Watson 1976).

The rate coefficients involving gas-phase species and grains are taken from Spitzer

(1941, 1948), with refinements made by Draine & Sutin (1987) to account for the polariza-

tion of grains:

αeg0 = πa2

(
8kBT

πme

)1/2
[
1 +

(
πe2

2akBT

)1/2
]
Pe , (A.1)

αig0 = πa2

(
8kBT

πmi

)1/2
[
1 +

(
πe2

2akBT

)1/2
]
Pi , (A.2)

αeg+ = πa2

(
8kBT

πme

)1/2 [
1 +

(
e2

akBT

)] [
1 +

(
2

2 + (akBT/e2)

)1/2
]
Pe , (A.3)

αig− = πa2

(
8kBT

πmi

)1/2 [
1 +

(
e2

akBT

)][
1 +

(
2

2 + (akBT/e2)

)1/2
]
Pi . (A.4)

The sticking probabilities of electrons or ions onto grains, denoted Pe and Pi, are assigned

the values 0.6 and 1.0, respectively (Umebayashi 1983). Other quantities in these equations

have their usual meanings.
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The rate coefficients for charge transfer between charged grains are given by

αgα
+gα′
−

= πa2
sum

(
8kBT

πmred

)1/2 [
1 +

(
e2

asumkBT

)] [
1 +

(
2

2 + (asumkBT/e2)

)1/2
]

,

(A.5)

αgα
±gα′

0
= πa2

sum

(
8kBT

πmred

)1/2
[
1 +

(
πe2

2asumkBT

)1/2
]
Pαα′ , (A.6)

where the reduced mass of the two grains (labeled α and α′) is defined by

mred =
mαmα′

mα + mα′
, (A.7)

and asum = aα + aα′ is the sum of the radii of two grains α and α′. The probability of

two oppositely charged grains neutralizing each other upon contact is assumed to be unity.

The probability of charge being transferred to a neutral grain gα
0 from a charged grain gα′

± is

assumed to be proportional to the surface areas of the grains, so thatPαα′ = a2
αα′/(a

2
α+a2

α′).

In other words, of all the collisions between a neutral grain, α, and a charged grain, α′,

only a fraction Pα lead to charge exchange. The complementary probability Pα′ leaves the

charges unchanged.
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Appendix B

Generalized Ohm’s Law

B.1 Derivation

We consider equations (2.52) and (2.53), repeated here for convenience, which are to be

solved for the species drift velocities ws relative to the neutrals:

0 =
ωsτsn

1 + %s

( c

B
En + ws × b

)
−ws +

%s

1 + %s

wg0 , (B.1)

0 = wg0 −
∑

k

τ0

τk,inel

wk . (B.2)

We define, for brevity and clarity of presentation, the following quantities

Ψ1,s =

τ0

τs,inel

ωsτsn

1 + %s

1−
∑

k

τ0

τk,inel

%k

1 + %k

, Ψ1 =
∑

k

Ψ1,k ; (B.3a)

Ψ2,s =

τ0

τs,inel

ω2
sτ

2
sn

(1 + %s)2

1−
∑

k

τ0

τk,inel

%k

1 + %k

, Ψ2 =
∑

k

Ψ2,k ; (B.3b)

Ψ3,s =

τ0

τs,inel

ωsτsn

1 + %s

%s

1 + %s

1−
∑

k

τ0

τk,inel

%k

1 + %k

, Ψ3 =
∑

k

Ψ3,k . (B.3c)

We recall that the index k runs over all the charged species independently of the index s,

which denotes the charged species in question. Note that the denominator in the above
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expressions may be written with the help of equation (2.54b) as

τ0

τg0n

+
∑

k

τ0

τk,inel

1

1 + %k

, (B.4)

which shows its positive definite nature.

We first multiply equation (B.1) by τ0/τs,inel, sum over s, and use equation (B.2) to find

that

wg0 = Ψ1
c

B
En +

∑

k

Ψ1,kwk × b , (B.5)

where we have switched the summation index to k to avoid confusion with the species in

question, s. Next we take the cross product of equations (B.1) and (B.5) and the unit vector

b:

ws × b =
ωsτsn

1 + %s

( c

B
En × b−ws,⊥

)
+

%s

1 + %s

wg0 × b , (B.6)

wg0 × b = Ψ1
c

B
En × b−

∑

k

Ψ1,kwk,⊥ . (B.7)

Equation (B.7) is now substituted into equation (B.6) to obtain

ws × b =

(
ωsτsn

1 + %s

+
%s

1 + %s
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c

B
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(
ωsτsn
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)
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(B.8)

Inserting this expression into equation (B.5), we find that

wg0 = Ψ1
c

B
En +

(
Ψ2 + Ψ3Ψ1

) c

B
En × b−

∑

k

(
Ψ2,k + Ψ3Ψ1,k

)
wk,⊥ , (B.9)
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which is now ready to be inserted, along with equation (B.8), into equation (B.1):
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The symbol δsk is the Kronecker delta. This is our first main result: it gives the velocity of

each charged species in terms of the electric field in the frame of the neutrals. Another way

of interpreting this equation is obtained by defining the velocity of the magnetic field lines

with respect to the lab frame:

vf ≡ c

B
E × b . (B.11)

Then equation (B.10) provides the velocities of all the charged species in terms of the

neutral velocity and the field-line velocity. We made use of this concept earlier in Section

2.5.3.

Equation (B.10) can be separated into components parallel and perpendicular to the

magnetic field. The parallel component of the current density is easily obtained:

j || =
∑

s

nsqsws,|| (B.12a)

=
∑

s

nsqs

(
ωsτsn

1 + %s

+
%s

1 + %s

Ψ1

)
c

B
En,|| (B.12b)

=
∑

s

σs(1− ςs)En,|| (B.12c)

≡ σ||En,|| , (B.12d)

where we have introduced the conductivity of species s, σs = nsq
2
sτsn/ms, and ςs, given

in Appendix D, is the factor by which the conductivity of species s is altered because of

inelastic collisions. In the last step above, we have introduced the parallel conductivity, σ||,
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which is defined in situ. Note that ςs ≥ 0 for all s. In other words, by interfering with

the rate at which the charge carriers flow along the magnetic field, inelastic collisions are

responsible for decreasing (increasing) the parallel conductivity (resistivity) of the gas.

Finding the perpendicular components of the current density is not as straightforward

and amounts to solving a matrix equation. We first define the 4×1 column vectors C⊥ and

CH, whose entries are given by

(
C⊥)

s
= ωsτsn(1− ςs) (B.13a)

(
CH

)
s
= −ω2

sτ
2
sn(1−$s) . (B.13b)

We also define the 4× 4 matrix of coefficients A whose entries are given by

(
A

)
sk

=
[
1 + ω2

sτ
2
sn(1− ϕs)

]
δsk + ω2

kτ
2
knϑsk(1− δsk) . (B.14)

The expressions for ςs, $s, ϕs, and ϑsk are given below in Appendix D. Then the perpen-

dicular component of equation (B.10) takes on the form

C⊥ c

B
En,⊥ −CH c

B
En × b = AW⊥ , (B.15)

where W⊥ is the 4 × 1 column vector of unknown velocities of charge species relative to

neutrals, [we, wi, wg− , wg+ ]ᵀ.

We use Cramer’s method to solve the matrix equation (B.15). We define

D = det
[
A

]
. (B.16)

In addition, we use the notation D⊥
s to represent the determinant of A with the sth column

of A having been replaced by C⊥. Similarly, DH
s is the determinant of A with the sth
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column having been replaced by CH. Then, the solution of the system (B.15) is

ws,⊥ =
D⊥

s

D

c

B
En,⊥ − DH

s

D

c

B
En × b . (B.17)

Once the determinants have been computed, the current density perpendicular to the mag-

netic field may be obtained:

j⊥ =
∑

s

nsqsws,⊥ (B.18a)

=

∑
s nsqsD

⊥
s

D

c

B
En,⊥ −

∑
s nsqsD

H
s

D

c

B
En × b (B.18b)

=
∑

s

σs(1− ςs)

1 + ω2
sτ

2
sn(1− ϕs)

Υs(ς)En,⊥ +
∑

s

σsωsτsn(1−$s)

1 + ω2
sτ

2
sn(1− ϕs)

Υs($)En × b

(B.18c)

≡ σ⊥En,⊥ − σHEn × b . (B.18d)

In the last step, we have defined the perpendicular conductivity σ⊥ and the Hall conduc-

tivity σH, which include the effects of inelastic collisions. The function Υs is given in

Appendix D.

B.2 Modification due to a Grain Size Distribution

When considering a grain size distribution, rather than single-size grains, two changes must

be made to the above derivation. First, the inelastic collision timescales given by equations

(2.49) and (2.50) must be modified as follows:

τg+,inel → τgα
+,inel =

[
1

τgα
0 i,inel

+
ρgα

+

ρgα
0

1

τgα
+e,inel

+
∑

α′

(
1

τgα
0 gα′

+ ,inel

+
ρgα

+

ρgα
0

1

τgα
+gα′

0 ,inel

+
ρgα

+

ρgα
0

1

τgα
+gα′
− ,inel

)]−1

, (B.19a)
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τg−,inel → τgα
−,inel =

[
1

τgα
0 e,inel

+
ρgα
−

ρgα
0

1

τgα
−i,inel

+
∑

α′

(
1

τgα
0 gα′
− ,inel

+
ρgα
−

ρgα
0

1

τgα
−gα′

0 ,inel

+
ρgα
−

ρgα
0

1

τgα
−gα′

+ ,inel

)]−1

. (B.19b)

The summations over α′ (the grain size label) indicate that a grain of size α may give or

receive charges not only from other grains of its own size, but also from all other different-

size grains. Second, the summation index s in equations (B.12) and (B.18) should range

over all charged species, including all sizes of charged grains.
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Appendix C

Derivation of Species Velocities

En route to the derivation of a generalized Ohm’s law, the differential velocity of every

species can be obtained in terms of the current density:

nsqsws = σ||,sEn,|| + σ⊥,sEn,⊥ − σH,sEn × b

= σ||,sη||j || + σ⊥,s

(
η⊥j⊥ + ηHj × b

)− σH,s

(
η⊥j × b− ηHj⊥

)

= σ||,sη||j || +
(
σ⊥,sη⊥ + σH,sηH

)
j⊥ +

(
σ⊥,sηH − σH,sη⊥

)
j × b . (C.1)

Using equation (B.11), it is straightforward to show that

wf ≡ vf − vn =
cη⊥
B

j × b− cηH

B
j⊥ . (C.2)

We may then write the components of the current density in terms of the differential veloc-

ity of the field lines as
c

B
j × b = σ⊥wf,⊥ − σHwf × b , (C.3a)

− c

B
j⊥ = σHwf,⊥ + σ⊥wf × b . (C.3b)

Defining the indirect coupling coefficient Θs implicitly by

Θs

Θs + 1
≡

(
B

cnsqs

) [
σ⊥(σ⊥,sηH − σH,sη⊥)− σH(σ⊥,sη⊥ + σH,sηH)

]
, (C.4)
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and introducing

Λs ≡ −
(

B

cnsqs

) [
σ⊥(σ⊥,sη⊥ + σH,sηH) + σH(σ⊥,sηH − σH,sη⊥)

]
, (C.5)

equation (C.1) may now be written in component form as

ws,⊥ =
Θs

Θs + 1
wf,⊥ + Λswf × b , (C.6a)

ws × b =
Θs

Θs + 1
wf × b− Λswf,⊥ , (C.6b)

or, more explicitly,

vs,⊥ = vn,⊥
1

Θs + 1
+ vf,⊥

Θs

Θs + 1
+ (vf − vn) × b Λs , (C.7a)

vs × b = vn × b
1

Θs + 1
+ vf × b

Θs

Θs + 1
− (vf,⊥ − vn,⊥) Λs . (C.7b)

These equations were discussed in Section 2.5.3.
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Appendix D

Definitions

In the main text, as well as in the preceding appendices, we had delayed giving explicit defi-

nitions of ςs, $s, ϕs, Υs, and ϑsk for all (s, k) = e, i, g−, and g+ due to their complexity and

length. Here we give explicit expressions for these quantities for all the charged species.

Before we proceed, however, a few simplifications are in order. Since both (τe,inel/τen)

and (τi,inel/τin) À 1 for the density regime of interest in this paper, we may neglect the

influence of inelastic collisions on the electron and ion fluids. Using the results of Tassis

& Mouschovias (2007b), we may also assume that the velocity difference between a given

grain and a neutral particle is less than the sound speed of the gas. These are both excellent

assumptions and lead to a much more compact form of the following definitions than would

otherwise be possible.

The variable ςs first appeared in the definition of the parallel conductivity (B.12) and

again later in the definition of the perpendicular conductivity (B.18). For electrons and

ions, ςe = ςi = 0, because of the negligible influence of inelastic collisions on the electron

and ion fluids relative to that of elastic collisions. The expressions for the negative and

positive grains are given by

ςg± =
%g±

1 + %g±




τ0

τg0n

+
τ0

τg∓,inel

2

1 + %g∓
τ0

τg0n

+
τ0

τg+,inel

1

1 + %g+

+
τ0

τg−,inel

1

1 + %g−


 , (D.1)

and are clearly positive. As mentioned in Section 2.5.2, by interfering with the rate at

which the charge carriers flow along the magnetic field, inelastic collisions are responsible
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for decreasing (increasing) the parallel conductivity (resistivity) of the gas.

The derivation of the perpendicular conductivity involved many more definitions, all

of which are given below. For the same reason stated above for which ςe = ςi = 0, the

expressions for $s and ϕs vanish when s = e or i. The quantity Υs is equal to unity for

these species. The nontrivial $s, ϕs, and Υs for s = g−, g+ are given by

$g± =
ςg±

1 + %g±
+

%g∓

1 + %g∓




τ0

τg0n

+
τ0

τg+,inel

ςg+

1 + %g+

+
τ0

τg−,inel

ςg−
1 + %g−

τ0

τg0n

+
τ0

τg+,inel

1

1 + %g+

+
τ0

τg−,inel

1

1 + %g−


 ; (D.2)

ϕg± =
%g±

1 + %g±

2 + %g±

1 + %g±




τ0

τg0n

+
τ0

τg∓,inel

1

1 + %g∓
τ0

τg0n

+
τ0

τg+,inel

1

1 + %g+

+
τ0

τg−,inel

1

1 + %g−




+
τ0

τg±,inel

%g±

(1 + %g±)2




τ0

τg0n

%g±

1 + %g±
+

τ0

τg∓,inel

1

1 + %g∓

(
%g+

1 + %g+

+
%g−

1 + %g−

)

(
τ0

τg0n

+
τ0

τg+,inel

1

1 + %g+

+
τ0

τg−,inel

1

1 + %g−

)2


 ;

(D.3)

Υg±(ς) =

1 +
ω2

g∓τ 2
g∓nϑg±g∓

1 + ω2
g∓τ 2

g∓n(1− ϕg∓)

1− ςg∓
1− ςg±

1− ω2
g+

τ 2
g+nϑg−g+

1 + ω2
g+

τ 2
g+n(1− ϕg+)

ω2
g−τ 2

g−nϑg+g−

1 + ω2
g−τ 2

g−n(1− ϕg−)

; (D.4)

Υg±($) =

1 +
ω2

g∓τ 2
g∓nϑg±g∓

1 + ω2
g∓τ 2

g∓n(1− ϕg∓)

1−$g∓

1−$g±

1− ω2
g+

τ 2
g+nϑg−g+

1 + ω2
g+

τ 2
g+n(1− ϕg+)

ω2
g−τ 2

g−nϑg+g−

1 + ω2
g−τ 2

g−n(1− ϕg−)

. (D.5)

In equation (B.14), we had introduced ϑsk as a measure of the inelastic collisional coupling

between different pairs of charged species, s 6= k. This variable was also used in the

definition of Υs above. Since the effect of inelastic collisions on the electron and ion fluids

is negligible, ϑsk vanishes for (s, k) = e or i. The only remaining nonzero values of ϑsk
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involve the charged grain species, and are given by

ϑg±g∓ =
%g±

1 + %g±

τ0

τg∓,inel

1

1 + %g∓

×




1

1 + %g∓

(
1− τ0

τg±,inel

%g±

1 + %g±

)
− 1

1 + %g±

(
1− τ0

τg∓,inel

%g∓

1 + %g∓

)

(
τ0

τg0n

+
τ0

τg+,inel

1

1 + %g+

+
τ0

τg−,inel

1

1 + %g−

)2


 . (D.6)
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