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Theory and numerics of hyperbolic balance laws provide
unifying theme in computational plasma physics

I Hyperbolic balance laws describe wide variety of physics:
neutral fluid flow, magnetohydrodynamics, electromagnetism
(linear and non-linear dielectrics), shallow-water flows, etc.

I Are building blocks for systems with dissipation, chemical
reactions, etc.

Outline

I Definition, examples and properties, of hyperbolic balance laws

I Numerical schemes, in particular discontinuous Galerkin
scheme

I Applications: two-fluid magnetic reconnection, FRC formation
and jet propagation in vacuum.
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Extention of standard theory/numerics provide a
framework for solving broad class of kinetic equations

Question
Can one develop accurate and stable schemes for solution of (gyro)
kinetic equations that conserve invariants, maintain positivity and use as
few grid points as possible?

Proposed Answer
Explore high-order hybrid discontinuous/continuous Galerkin
finite-element schemes, enhanced with flux-reconstruction and a better
choice of velocity space basis functions.
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Hyperbolic balance laws describe phenomena with finite
propagation speeds

Consider the N dimensional system of m balance laws

∂tU +

N∑
i=1

∂iFi(U) = S(U, x, t)

Here x ∈ RN , U(x, t) ∈ Rm, Fi(U) is the flux S(U, x, t) ∈ Rm are
source terms.

Informally

If a small perturbation around a equilibrium U0(x) propagates with
finite speed then system is hyperbolic.
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We can make this formal by looking at eigenstructure of
flux Jacobian

Definition (Hyperbolic Equations)

If for any admissible U the flux Jacobian

A(U, n) ≡
N∑
i=0

niDFi(U)

where [n1, . . . , nN ] is a unit vector, has real eigenvalues, λp and a
complete set of right eigenvectors, rp, p = 1, . . . ,m, the system
said to be hyperbolic.

System is strictly hyperbolic if eigenvalues are distinct, weakly
hyperbolic otherwise, and isotropic if eigensystem does not depend
on ni.
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Example: Euler equations for neutral fluid flow

Neutral inviscid flow is described by Euler equations

∂n

∂t
+ n∇ · u + u · ∇n = 0

∂u

∂t
+ u · ∇u +

1

mn
∇p =

q

m
(E + u×B)

∂p

∂t
+ u · ∇p+ γp∇ · u = 0.

This is weakly hyperbolic, isotropic system with eigenvalues
{u± cs, u, u, u}, where cs =

√
γp/mn.

This system is interesting in itself, and is also a building block for
Navier-Stokes equations, two-fluid equations, and MHD equations.
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Hyperbolic balance laws have number of properties that
are important for schemes to satisfy

I Hyperbolic balance laws allow for discontinuous solutions. I.e.
shocks, rarefactions and contact discontinuities can develop
even from smooth initial conditions. Schemes must be able to
handle this, i.e. be shock capturing.

I Even if true shocks do not form (due to diffusion), small scale
fluctuations and sharp gradients need to be captured.

I If a hyperbolic balance law is isotropic, so must be the
numerical scheme, i.e. be grid and coordinate independent.
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Three additional mathematical properties are important

I Schemes must preserve invariant domains. For example,
n ≥ 0, p ≥ 0 and Pij is semi-positive definite.

I Schemes must satisfy entropy inequalities. For example,
physical entropy should increase across shocks. This is really
important as otherwise solutions are no longer unique. I.e if
η(U) is an entropy and gi(U) are entropy fluxes, then we
must have

∂tη(U) +

N∑
i=1

∂igi(U) ≤ 0 (1)

I Involutions must be satisfied. I.e. constraints like ∇ ·B = 0,
∇ ·E = %c/ε0 etc must be maintained.
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Discontinuous Galerkin algorithms represent state-of-art
for solution of hyperbolic partial differential equations

I DG algorithms hot topic in CFD and applied mathematics. First
introduced by Reed and Hill in 1973 for neutron transport in 2D.

I General formulation in paper by Cockburn and Shu, JCP 1998.
More than 700 citations.

I DG combines key advantages of finite-elements (low phase error,
high accuracy, flexible geometries) with finite-volume schemes
(limiters to produce positivity/monotonicity, locality)

I Certain types of DG have excellent conservation properties for
Hamiltonian systems, low noise and low dissipation.

I DG is inherently super-convergent: in FV methods interpolate p
points to get pth order accuracy. In DG interpolate p points to get
2p− 1 order accuracy.
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What does a typical DG solution look like?
Discontinuous Galerkin schemes use function spaces that allow
discontinuities across cell boundaries.

Figure: The best L2 fit of x4 + sin(5x) with piecewise linear (left) and quadratic
(right) basis functions.
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Discontinuous Galerkin schemes are applicable to
phase-space advection equations described as Hamiltonian
dynamical system

For example,

∂f

∂t
+ {f,H} = 0

where H(z1, z2) is the Hamiltonian and canonical Poisson bracket
is

{g, h} ≡ ∂g

∂z1
∂h

∂z2
− ∂g

∂z2
∂h

∂z1
.

Defining phase-space velocity vector α = (ż1, ż2), with
żi = {zi, H} leads to phase-space conservation form

∂f

∂t
+∇ · (αf) = 0.
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Example: Incompressible Euler equations in two dimensions
serves as a model for E ×B nonlinearities in gyrokinetics

A basic model problem is the incompressible 2D Euler equations
written in the stream-function (φ) vorticity (ζ) formulation. Here
the Hamiltonian is simply H(x, y) = φ(x, y).

∂ζ

∂t
+∇ · (uζ) = 0

where u = ∇φ× ez. The potential is determined from

∇2φ = −ζ.
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It is important to preserve quadratic invariants
The incompressible Euler equations has two quadratic invariants,
energy

∂

∂t

∫
K

1

2
|∇φ|2dΩ = 0

and enstrophy

∂

∂t

∫
K

1

2
ζ2dΩ = 0.

Similar invariants can be derived for Vlasov-Poisson and
Hasegawa-Wakatani equations. In addition, Vlasov-Poisson also
conserves momentum.

Question
Can one design schemes that conserve these invariants?
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A DG scheme is used to discretize phase-space advection
equation

To discretize the equations introduce a mesh Kj of the domain K.
Then the discrete problem is stated as: find ζh in the space of
discontinuous piecewise polynomials such that for all basis
functions w we have∫

Kj

w
∂ζh
∂t

dΩ +

∫
∂Kj

w−n ·αhζ̂h dS −
∫
Kj

∇w ·αhζh dΩ = 0.

Here ζ̂h = ζ̂(ζ+h , ζ
−
h ) is the consistent numerical flux on ∂Kj .
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A continuous finite element scheme is used to discretize
Poisson equation

To discretize the Poisson equation the problem is stated as: find
φh in the space of continuous piecewise polynomials such that for
all basis functions ψ we have∫

K
ψ∇2φhdΩ = −

∫
K
ψζhdΩ

Questions
How to pick basis functions for discontinuous and continuous
spaces? We also have not specified numerical fluxes to use. How
to pick them? Do they effect invariants?
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Hybrid DG/CG schemes for Hamiltonian systems have
good conservation properties

I With proper choice of function spaces and a central flux, both
quadratic invariants are exactly conserved by the semi-discrete
scheme.

I With upwind fluxes (preferred choice) energy is still conserved,
and the scheme is stable in the L2 norm of the solution.

I For Vlasov-Poisson system, momentum conservation is not
exact, but the errors decrease rapidly with spatial resolution,
even on a coarse velocity grid.

Questions
Can this scheme be modified to conserve momentum exactly? Can
time discretization exactly conserve these invariants? Perhaps try
symplectic integrators ...
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Only recently conditions for conservation of discrete energy
and enstrophy were discovered

Energy Conservation
Liu and Shu (2000) have shown that discrete energy is conserved for 2D
incompressible flow if basis functions for potential are a continuous
subset of the basis functions for the vorticity irrespective of numerical
flux chosen! We discovered extension to discontinuous phi for the Vlasov
equation.

Enstrophy Conservation
Enstrophy is conserved only if central fluxes are used. With upwind
fluxes, enstrophy decays and hence the scheme is stable in the L2 norm.

DG with central fluxes like high-order generalization of the well-known
Arakawa schemes, widely used in climate modeling and recently also in
plasma physics.
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Under-construction code Gkeyll provides unified
computational framework for broad class of fluid and
kinetic equations

I Gkeyll is written in C++ and scripted using Lua 1.

I Package management and builds are automated via scimake and
bilder, both developed at Tech-X Corporation.

I Linear solvers from Petsc2 are used for inverting stiffness matrices.

I MPI is used for parallelization via the txbase library developed at
Tech-X Corporation.

Used presently for reconnection with multi-fluid moment equations
and being developed for gyrokinetic simulations of edge turbulence.

1http://www.lua.org
2http://www.mcs.anl.gov/petsc/
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Simulation journal with results is maintained at
http://www.ammar-hakim.org/sj

Results are presented for the
equation systems.

I Incompressible Euler equations

I Hasegawa-Wakatani equations

I Vlasov-Poisson equations

Figure: [Movie] Swirling flow problem. The
initial Gaussian pulses distort strongly but
regain their shapes after a period of
1.5 seconds.
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Two-Fluid magnetic reconnection in a current sheet

Figure: Electron momentum (left) and ion momentum (right) at t = 40. Inward
traveling shocks are visible in both the fluids. Thin jets flowing along the X axis are
also visible. Ion flow is unstable due to counter flowing fluid jets.
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Energy of fluids and fields, reconnection rates can be
computed

Figure: Electromagnetic energy (EE), fluid
thermal energy (IE), fluid kinetic energy
(KE) and total energy (TE) as a function
of time.

Figure: Reconnected flux verses time. The
reconnected flux increases rapidly after the
reconnection occurs at about t = 10. The
flux saturates due to the conducting wall.
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Double shear problem is a good test for resolution of
vortex shearing in E ×B driven flows

Vorticity at t = 8
with different grid
resolutions and
schemes. Third
order DG scheme
runs faster and
produces better
results than DG2
scheme.
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Initial studies of Hasegawa-Wakatani drift-wave turbulence
are carried out

Figure: [Movie] Number density from Hasegawa-Wakatani drift-wave turbulence
simulations with adiabacity parameter D = 0.1 with (left) and without (right) zonal
flow modification.
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Algorithms have been tested with nonlinear Landau
damping problem

Figure: [Movie] Distribution function from nonlinear Landau damping problem.
Hyper-collisions are being implemented for phase-mixing to unresolved scales in
velocity.
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A particle, momentum and energy conserving
Lenard-Bernstein collision operator is implemented

A simple collision operator is
implemented:

CLB [f ] =
∂

∂v

(
ν(v − u)f + νv2t

∂f

∂v

)
Figure shows relaxation of an
initial step-function
distribution function to
Maxwellian due to collisions.
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Conclusions: DG algorithms are promising for fluid and
kinetic problems

I A discontinuous Galerkin scheme to solve a general class of
Hamiltonian field equations is presented.

I The Poisson equation is discretized using continuous basis
functions.

I With proper choice of basis functions energy is conserved.

I With central fluxes enstrophy is conserved. With upwind
fluxes the scheme is L2 stable.

I Momentum conservation has small errors but is independent
of velocity space resolution and converges rapidly with spatial
resolution.
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Future work: extend scheme to higher dimensions, general
geometries and do first physics problems

I The schemes have been extended to higher dimensions and
Serendipity basis functions are being explored (with Eric Shi).
Testing is in progress.

I Maxwellian weighted basis functions for velocity space discretization
will be developed to allow coarse resolution simulations with the
option of fine scale resolution when needed.

I A collision model is implemented. It will be tested with standard
problems and extended to higher dimensions.

I Extensions will be made to take into account complicated edge
geometries using a multi-block structured grid.
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