PIC Simulations of Particle Acceleration in Relativistic Magnetized Astrophysical Flows

Lorenzo Sironi (ITC-Harvard) with: A. Spitkovsky, J. Arons, R. Narayan
PCTS Workshop, April 11th 2013
Outline

• Diversity and similarity of relativistic astrophysical flows

• How do microphysical plasma instabilities affect the flow structure, and the particle energy spectrum?

• Particle-in-cell studies of non-thermal particle acceleration:
 - strongly vs weakly magnetized shocks
 - uniform vs alternating fields

• Conclusions and applications
Relativistic flows in astrophysics

- AGN jets $\Gamma \sim$ a few tens
- PWNe $\Gamma \sim 10^3 - 10^7$
- GRBs $\Gamma \sim 10^2 - 10^3$
- Crab Nebula: Gehrels et al. 02
 (Chandra website)
- Cygnus A: Carilli et al. 96
Relativistic astrophysical flows:

- are collisionless. How to dissipate without collisions?
- can vary in composition (pairs or electron-proton)
- can vary in magnetization (magnetic/kinetic energy ratio)

\[\sigma = \frac{B_0^2}{4\pi \gamma_0 n_0 m_pc^2} \]
Relativistic astrophysical flows are expected to:

- accelerate particles up to non-thermal energies (electrons and UHECRs), with a power-law energy distribution.
- amplify magnetic fields (or generate them from scratch).
- exchange energy between protons and electrons.
The limitation of phenomenological models

We have no information about (or direct probe of) the nature of the fuel and the mechanics of the engine, but we can only observe the exhausts.
The PIC method

Particle-in-Cell (PIC) method:

1. Particle currents deposited on a grid

2. Electromagnetic fields solved on the grid (Yee’s mesh) via Maxwell’s equations (Greenwood ‘04)

3. Lorentz force interpolated to particle locations (Boris pusher)

😊 No approximations, plasma physics at a fundamental level

😢 Tiny length and time scales need to be resolved ➔ huge simulations, limited time coverage

• Relativistic 3D e.m. PIC code TRISTAN-MP (Buneman ‘93, Spitkovsky ‘05)
Survey of relativistic shocks

\[\sigma = \frac{B_0^2}{4\pi \gamma_0 n_0 m_p c^2} \]

\(\sigma = 0.1 \)

\(\sigma = 0 \)

Downstream Upstream

Shock

Downstream Upstream

\(B_0 = 0 \)

\(B_0 \)

\(\gamma_0 \)

Coherent Larmor loop & particle bunching

Counter-streaming filamentation (Weibel) instability

(background)

\(B_d \)

(self-generated)

\(p^+ \)

\(p^+ \)
The filamentation (Weibel) instability

Electromagnetic streaming instability that works by filamentation of the plasma

Growth length scale -- skin depth

Growth rate -- plasma frequency

\[L \approx \frac{c}{\omega_{pe}} = 10 \text{ km} \sqrt{\frac{\gamma}{n_0}[\text{cm}^{-3}]} \]

\[T \approx \frac{1}{\omega_p} = 30 \mu s \sqrt{\frac{\gamma}{n_0}[\text{cm}^{-3}]} \]
Composition:

1. Electron-positron shocks

2. Electron-proton shocks
What triggers the shock?

- **High-**\(\sigma\) shocks: mediated by magnetic reflection

\[\sigma = 0.1\]

\(\gamma_0 = 15\)

\(e^- - e^+\)

(LS and Spitkovsky 11)

- **Low-**\(\sigma\) shocks: mediated by oblique & filamentation instabilities

\[\sigma = 0\]

\(\gamma_0 = 15\)

\(e^- - e^+\)

(Spitkovsky 08)
\(\sigma=0 \) shocks in 3D

Mediated by the filamentation (Weibel) instability, which generates small-scale sub-equipartition magnetic fields.

\[\sigma=0 \quad \gamma_0=15 \quad e^-e^+ \text{ shock} \]

(LS et al. 13)
Turbulence \leftrightarrow Particle acceleration

Returning particles \leftrightarrow Self-generated turbulence

Self-generated turbulence \leftrightarrow Particle acceleration

\[\sigma=0.1 \ \theta=90^\circ \ \gamma_0=15 \ e^-e^+ \text{ shock} \]

\[\sigma=0 \ \gamma_0=15 \ e^-e^+ \text{ shock} \]

Spectrum fitted by a Maxwellian (entropy generation without collisions)

Spectrum fitted by a Maxwellian + power-law tail. The tail $dn/d\gamma \propto \gamma^{-\rho}$ has slope $\rho=2.4\pm0.1$ and contains $\sim1\%$ of particles and $\sim10\%$ of energy.

(Sha and Spitkovsky 09a)

(Spitkovsky 08)
First-order Fermi process:
Particles bounce between upstream and downstream, gaining energy from the converging flows
The Fermi process in $\sigma=0$ shocks

Particle acceleration via the Fermi process in self-generated Weibel turbulence
The nonthermal tail has slope $p=2.4\pm0.1$ and contains $\sim1\%$ of particles and $\sim10\%$ of energy.

By scattering off small-scale Weibel turbulence, the maximum energy grows as $\gamma_{\text{max}} \propto t^{1/2}$.

Instead, most models of particle acceleration in shocks assume $\gamma_{\text{max}} \propto t$.

Conclusions are the same in 2D and 3D.

(LS et al. 13)
For higher σ, the returning particles are confined closer to the shock by the pre-shock magnetic field, and the Weibel turbulence occupies a smaller region around the shock.
The shock reaches a steady state, and the turbulence stays confined close to the shock.
Spectral evolution for $\sigma=10^{-3}$

Thickness of the turbulent layer saturates \Rightarrow Maximum particle energy saturates

If $0<\sigma<10^{-3}$, the maximum energy initially grows as $\gamma_{\text{max}} \propto t^{1/2}$ but then it saturates, when the shock reaches a steady state.

(LS et al. 13)
Electron-positron perpendicular shocks are efficient particle accelerators if $\sigma \leq 10^{-3}$.

If $0 < \sigma \leq 10^{-3}$, the Lorentz factor at saturation scales with magnetization as $\gamma_{\text{sat}} \propto \sigma^{-1/4}$.

Relativistic perpendicular shocks are poor accelerators if $\sigma > 10^{-3}$.

\[
\gamma_{\text{max}} \propto t^{1/2} \quad \& \quad L_B \propto \sigma^{-1/2}
\]

\[
\gamma_{\text{sat}} \simeq 4 \gamma_0 \sigma^{-1/4}
\]

\[
\frac{m_i}{m_e} = 1 \quad \gamma_0 = 15
\]
Composition:

1. Electron-positron shocks

2. Electron-proton shocks
Electron-proton shocks

Due to efficient energy transfer ahead of the shock, the energy of the incoming electrons is comparable to the ion bulk energy, and the shock behaves like an electron-positron shock.

\[\frac{m_i}{m_e} = 25 \]

\[\frac{m_i}{m_e} = 1 \]
At late times, when electrons and protons are nearly in equipartition, the acceleration efficiency for the two species is the same (~1% by number, ~10% by energy). The maximum energy of both species grows as $\gamma_{\text{max}} \propto t^{1/2}$.

$\gamma_{\text{max},i} \sim \frac{\gamma_{\text{max},e} m_e}{m_i} \approx 0.25 \gamma_0 (\omega_{\text{pi}} t)^{1/2}$

$\gamma_{\text{sat},i} \sim \frac{\gamma_{\text{sat},e} m_e}{m_i} \approx 2 \gamma_0 \sigma^{-1/4}$
Dependence on the magnetization

Electrons are efficiently heated regardless of σ, almost in equipartition with the protons.

Magnetized electron-proton perpendicular shocks are efficient particle accelerators only if $\sigma \leq 3 \times 10^{-5}$.

(LS et al. 13)
Dependence on the mass ratio

The efficiency of electron heating is independent from the mass ratio.

The acceleration efficiency and the max energy of the accelerated particles are independent from the mass ratio.

(LS et al. 13)
Summary

Fully-kinetic PIC simulations can probe from first principles the microphysics of relativistic astrophysical flows: shock formation, electron heating, particle acceleration.

Composition and magnetization are key parameters that determine the shock structure and the efficiency of particle heating/acceleration.

- Strongly magnetized $(\sigma > 10^{-3})$ quasi-perpendicular shocks are mediated by magnetic reflection, and are poor particle accelerators. Electrons are heated to equipartition with protons.

- Weakly magnetized $(\sigma < 10^{-3})$ shocks are mediated by counter-streaming instabilities, and are efficient particle accelerators (~1% by number, ~10% by energy). The maximum energy grows as $\gamma_{\text{max}} \propto t^{1/2}$ until it saturates at $\gamma_{\text{sat}} \propto \sigma^{-1/4}$.