Sheared turbulence
numerical methods and application to astrophysical disks

Geoffroy Lesur

Institute of Planetology and Astrophysics of Grenoble (France)
Protoplanetary disks

- Size: $10^{11} - 10^{15}$ cm
- Temperature: $10^3 - 10^1$ K
- Number density: $10^{10} - 10^{17}$ cm$^{-3}$
- Ionization fraction: $\sim 10^{-13}$
An accretion problem...

- Accretion discs are known to form around young stars and compact objects.
- Gas can fall on the central object only if it looses angular momentum.
- One needs a way to transport angular momentum outward to have accretion: «angular momentum transport problem»

First idea: molecular viscosity

- Theoretical accretion rate due to viscous transport is very small compared to observational constrains.

Other ways to extract angular momentum in discs?
Angular momentum extraction

• Local turbulence
 • Suggested by Shakura & Sunyaev (1973)
 • Turbulence leads to enhanced transport («mixing length theory»).
 • Definition of a turbulent viscosity ν_t

$$\nu_t = \alpha 10^{-3} \, \text{<} \, \alpha \, \text{<} \, 1 \quad \text{(observations)}$$
Angular momentum extraction

- Jets
 - Angular momentum extracted by a jet from the disc
 - Most of the gas remains in the disc
 - Many models need turbulence inside the disc to launch jets (e.g. Ferreira & Pelletier 1995)

Large scale phenomenon which requires large scale magnetic fields
Some disk instabilities

Local instabilities:

- Magnetorotational instability (MRI): shear driven instability but requires an ionised plasma (Velikhov 1959, Chandrasekhar 1960, Balbus & Hawley 1991)
- Subcritical shear instability: probably not efficient enough, if at all (Schartman et al. 2012)
- Baroclinic instabilities: Transport due to waves. Driven by the disk radial entropy profile (Petersen et al. 2007, Lesur & Papaloizou 2010)
- Gravitational instabilities: only for massive & cold enough disk (Gammie 2001)
- Rossby wave instability: requires a local maximum of vortensity (Lovelace et. al 1999)
- Vertical convective instability: Requires a heat source in the midplane (Cabot 1996, Lesur & Ogilvie 2010)

Global instabilities:

- Papaloizou & Pringle instability: density wave reflection on the inner edge (Papaloizou & Pringle 1985)
- Accretion-ejection instability: spiral Alfvén wave reflection on the inner edge (Tagger & Pellat 1999)
The shearing box model

Problem:

- Computing a full disk is computationally expensive
- Local resolution is poor
- Boundary conditions

Goal:

- Define a simplified setup which mimics the local properties of an accretion disks
- Simplifies numerical simulations & boundary conditions
- Better convergence properties
The incompressible shearing box model

\[\Omega(R_0) \equiv \Omega_0 \]

\[\nabla \cdot u = 0 \]

\[\partial_t u + u \cdot \nabla u = -\nabla P + B \cdot \nabla B \]

\[-2\Omega_0 \times u - \nabla \psi + \nu \Delta u \]

\[\partial_t B = \nabla \times (u \times B) + \eta \Delta B \]

With the effective potential: \[\psi = -q\Omega_0^2 x^2 \]

Assuming \[\Omega(R) \sim R^{-q} \]

This set of equations admits a simple solution (incompressible approximation):

\[u = -q\Omega_0 x e_y \rightarrow \text{Mean keplerian shear} \]
The incompressible shearing box model

Separate the mean shear from the fluctuations:

\[u = -q\Omega x e_y + v \]

Shearing box equations:

\[
\begin{align*}
\nabla \cdot v & = 0 \\
\partial_t v - q\Omega x \partial_y v + v \cdot \nabla v & = -\nabla P + B \cdot \nabla B - 2\Omega \times v \\
& \quad + q\Omega v_x e_y + v \Delta v \\
\partial_t B - q\Omega x \partial_y B & = \nabla \times (v \times B) - q\Omega B_x e_y + \eta \Delta B
\end{align*}
\]
Boundary conditions

- Use shear-periodic boundary conditions = «shearing-sheet»
- Allows one to use a sheared Fourier Basis
- Periodic in y and z (non stratified box)

Vertical and toroidal total magnetic flux conserved

- Mean vertical field
- Mean toroidal field
- Zero mean field
Spectral methods for shearing boxes

Shearing wave

Courtesy T. Heinemann
Spectral methods for shearing boxes

The shearing box involves equations of the type:

\[
\frac{\partial Q}{\partial t} - q\Omega x \frac{\partial Q}{\partial y} = H(Q)
\]

Assume \(Q\) can be decomposed into:

\[
Q(t, x) = \tilde{Q}(t) \exp \left[ik(t) \cdot x \right]
\]

One has:

\[
\frac{\partial Q}{\partial t} = \left[\frac{d\tilde{Q}}{dt} + i\tilde{Q} \frac{dk}{dt} \cdot x \right] \exp \left[ik(t) \cdot x \right]
\]

\[
\frac{d\tilde{Q}}{dt} + i\tilde{Q} \frac{dk}{dt} \cdot x - iq\Omega x k_y = \overline{H(Q)}
\]

Cancel explicit \(x\) dependency:

\[
\frac{dk}{dt} = q\Omega k_y \rightarrow k = k_0 + q\Omega t k_y e_x
\]

\[
\frac{d\tilde{Q}}{dt} = \overline{H(Q)}
\]
The Snoopy code
a spectral method for sheared flows

- MHD equations solved in the sheared frame
- Compute non linear terms using a pseudo spectral representation
- 3rd order low storage Runge-Kutta integrator
- Non-ideal effects: Ohmic, Hall, ambipolar (coming soon), Braginskii
- Available online http://ipag.osug.fr/~glesur/snoopy.html

Advantages:
- Shearing waves are computed exactly (natural basis)
- Exponential convergence
- Magnetic flux conserved to machine precision
- Sheared frame & incompressible approximation: no CFL constrain due to the background sheared flow/sound speed.
Magnetorotational instability

Main properties

- Due to an interaction between magnetic tension and epicyclic motions
- Not too strong magnetic fields required («weak field instability»)
- Need a sufficiently high ionization fraction

Balbus & Hawley 1991, Balbus 2003
MRI simulations

Typical simulation

Simulation parameters: Re=1000, Pm=1, \(\beta=1000 \)
3D map of \(v_y \) (azimuthal velocity)

It works!

Is it the end of the story?
Magnetic Prandtl numbers in astrophysics

- Prandtl number (Pm) compares the Ohmic diffusion time to the viscous diffusion time.
- In astrophysical objects, $Pm \ll 1$ or $Pm \gg 1$...

$Pm \sim 10^{-6}$ $Pm \sim 10^{-5} - 10^{-2}$ $Pm \sim 10^{-5} - 10^{4}$ $Pm \gg 1$

- Problem:

$0.1 < Pm < 100$
MRI simulations
Simulations with a mean vertical field

Longaretti & Lesur (2010)

Turbulent transport varies by 2 order of magnitude!

\[\alpha = \alpha(Pm, \beta) \]
MRI simulations
Simulations with a mean toroidal field
Simon & Hawley (2009)

\[\beta = 100 \]

- Weaker transport with a mean toroidal field
- Same trend with \(Pm \)

\[\alpha = \alpha(Pm, \beta, \text{topology}) \]
MRI simulations
Simulations with no mean field
aka «MRI dynamo»

See also F. Rincon’s talk

Fromang et al. 2007
MRI simulations

Simulations with a mean field

$E_{\text{Mag}}(k)$
$E_{\text{Kin}}(k)$

Energy injection

Turbulent transport

Prandtl number

1/H
1/l_η
1/l_ν

Turbulent cascade
MRI simulations
Typical spectrum

Mean z field, Pm=1/4

No mean field, Pm=4

\[K^{-3/2} \] for kinetic energy?

Lesur & Longaretti 2011

Fromang 2010

Stability, Energetics and Turbulent Transport in Astrophysical Fusion and Solar Plasmas

04/10/2013
Energy injection

- Injection scale not well defined
- MRI is active on a broad range of scales
Anisotropy

Mean z field, Pm=1/4

- No anisotropy associated to the guide field \(\frac{\delta B}{B_0^z} \gg 1 \)
- Strong x-y anisotropy due to the shear
Magnetic & Cross helicity

Fig. 4. Average relative magnetic helicity (left) and cross helicity (right) spectra in the $Pm = 0.25$ case (black lines). Instantaneous spectra are represented in light blue. The absolute value of relative helicities is plotted here, since the helicity sign is constantly changing.

Magnetic helicity cascade arguments seem to be irrelevant
MRI simulations
Simulations with a mean field

$E_{\text{Mag}}(k)$
$E_{\text{Kin}}(k)$

turbulent cascade

$1/H$ Energy injection $1/l_\eta$ $1/l_\nu$

Turbulent transport Prandtl number
Probing the turbulent cascade

Energy transfers are due to nonlinear terms

\[\partial_t \mathbf{v} = -\mathbf{v} \cdot \nabla \mathbf{v} + \mathbf{B} \cdot \nabla \mathbf{B} + \ldots \]
\[\partial_t \mathbf{B} = -\mathbf{v} \cdot \nabla \mathbf{B} + \mathbf{B} \cdot \nabla \mathbf{v} + \ldots \]

Consider the energy budget for a given Fourier mode

\[\partial_t \left| \hat{\mathbf{v}}_k \right|^2 = - \sum_{q+p=k} i(\hat{\mathbf{v}}_k^* \cdot \hat{\mathbf{v}}_q)(\hat{\mathbf{v}}_p \cdot \mathbf{k}) + \sum_{q+p=k} i(\hat{\mathbf{v}}_k^* \cdot \hat{\mathbf{b}}_q)(\hat{\mathbf{b}}_p \cdot \mathbf{k}) + \ldots \]
\[\partial_t \left| \hat{\mathbf{B}}_k \right|^2 = - \sum_{q+p=k} i(\hat{\mathbf{b}}_k^* \cdot \hat{\mathbf{b}}_q)(\hat{\mathbf{v}}_p \cdot \mathbf{k}) + \sum_{q+p=k} i(\hat{\mathbf{b}}_k^* \cdot \hat{\mathbf{v}}_q)(\hat{\mathbf{b}}_p \cdot \mathbf{k}) + \ldots \]

In the triad interaction, energy is transferred from \(k \) to \(q \). \(p \) is an intermediate.
Probing the turbulent cascade

Introduce shell filtered fields

\[\mathbf{v}_K(\mathbf{x}) = \sum_{K<|\mathbf{k}| \leq K+1} \hat{\mathbf{v}}(\mathbf{k}) \exp(\mathbf{i}\mathbf{k} \cdot \mathbf{x}) \]

\[\mathbf{B}_K(\mathbf{x}) = \sum_{K<|\mathbf{k}| \leq K+1} \hat{\mathbf{B}}(\mathbf{k}) \exp(\mathbf{i}\mathbf{k} \cdot \mathbf{x}) \]

One defines spectral transfer functions as Alexakis et al. (2007):

\[T_{vv}(Q, K) = - \int \mathbf{v}_K \cdot (\nabla \mathbf{v}_Q) \, d\mathbf{x}^3 \]

\[T_{bb}(Q, K) = - \int \mathbf{B}_K \cdot (\nabla \mathbf{B}_Q) \, d\mathbf{x}^3 \]

\[T_{bv}(Q, K) = \int \mathbf{v}_K \cdot (\mathbf{B} \cdot \nabla \mathbf{B}_Q) \, d\mathbf{x}^3 \]

\[T_{vb}(Q, K) = \int \mathbf{B}_K \cdot (\mathbf{B} \cdot \nabla \mathbf{v}_Q) \, d\mathbf{x}^3 \]

- \(T_{ij}(Q, K) \): Transfer rate of energy (kinetic or magnetic) from shell Q to shell K
- \textbf{CAUTION}: Transfer functions should be computed with the same numerical algorithm as the one used to evolve the flow
Transfers: visual definition

\[E_T(k) \]

\[T_{ij}(Q, K) > 0 \]

Graph with axes labeled: \(Q \), \(K \), \(1/H \), \(1/l_v \), \(k \).
Turbulent energy fluxes

Energy fluxes in spectral space:

\[\mathcal{F}_v(K_0, t) = \sum_{K=K_0}^{K_{\text{max}}} \sum_Q T_{vv}(Q, K) \]
(1)

\[\mathcal{F}_b(K_0, t) = \sum_{K=K_0}^{K_{\text{max}}} \sum_Q T_{bb}(Q, K) \]
(2)

\[\mathcal{F}_x(K_0, t) = \sum_{K=K_0}^{K_{\text{max}}} \sum_Q T_{vx}(Q, K) + T_{bv}(Q, K) \]
(3)

Energy fluxes driven by the mean shear (specific to shearing waves)

\[\mathcal{F}_{s,v}(K, t) = \sum_{k'} q\Omega k_y k_x(t) \frac{\mathbf{v}_{k'}^* \cdot \mathbf{v}_{k'}}{|k'(t)|} \frac{1}{2} \delta(|k(t)| - K) \]
(4)

\[\mathcal{F}_{s,b}(K, t) = \sum_{k'} q\Omega k_y k_x(t) \frac{\mathbf{B}_{k'}^* \cdot \mathbf{B}_{k'}}{|k'(t)|} \frac{1}{2} \delta(|k(t)| - K) \]
with: \(\mathbf{k}(t) = \mathbf{k'} + q\Omega k'_y t \mathbf{e}_x \)
Shear flux interpretation

\[\mathcal{F}_{s,i}(K, t) \]
Nonlinear transfer: Fluxes

- No inertial range
- Dominated by Magnetic energy flux
Nonlinear transfers: locality

Transfer function T_{uu} and $T_{bb}: K=1; 5; 20$

Fig. 7. Transfers function $T_{uu}(Q,K)$ and $T_{bb}(Q,K)$ in the $Pm = 0.25$ run for $K = 1; 5; 20$. These transfers are local in Fourier space (see text).

* T_{uu} and T_{bb} are local.
Nonlinear transfers: locality

Transfer function T_{ub} and T_{bu}: $K = 1, 5, 20$

- T_{ub} and T_{bb} have large «wings»: non locality (see also Alexakis et al. 2007).
- Direct communication from the largest scales to the dissipation scales.

Non locality is a plausible explanation to the Pm- α effect observed.
The MRI turbulent cascade

- nonlocal transfers observed in MRI turbulence
- Energy injection on a broad range of scale
- The global behaviour of MRI (and MHD) turbulence depends on small scale physics!
A Limitation to nonlocal transfers

- One can show (Aluie & Eyink 2010) that nonlocal transfers are bounded:

\[|T_{ub}(Q, K)| < (\text{const.}) Q^{1-\zeta_3^u/3} K^{-2\zeta_3^b/3} \]

- Which gives for Goldreich-Sridhar phenomenology:

\[|T_{ub}(Q, K)| \sim \varepsilon (K/Q)^{-2/3} \]

- If the scale separation is wide enough, one loses direct energy transfers between transport and dissipation scales

One should lose the Pm-alpha correlation at large enough Rm. However, this requires \(\sim 10,000^3 \) grid points.
Conclusions

• MRI driven turbulence is highly sensitive to small scale processes
• Strong anisotropy at all scales due to the shear
• Energy injection happens on a wide range of scales
• Helicities (magnetic & cross) don’t seem to be important
• Non-local energy transfers are clearly identified between the box scale and the dissipation scales

Current numerical results are biased by the absence of a proper scale separation
Thank you for your attention