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FIG. 1: Microturbulence in a tokamak simulation (Jeff Candy; from

the GYRO web site.).
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FIG. 2: Illustration of sheared ZFs in tokamaks. From review article

of Fujisawa (2009).
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FIG. 3: Bicoherency analysis is useful. From Fujisawa (2009).
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FIG. 4: From review article of Fujisawa (2009).

Goal: Gain some conceptual and analytical understanding

of self-consistent states of zonal flows and turbulence
(⇒ implement some sort of averaging procedure).
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Let’s begin with homoge-

neous turbulence. . .
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3D Navier–Stokes: replace macroscopic, inhomogeneous boundary

conditions,

∂t~u+ ~u · ~∇~u = · · · + (b.c.’s), (1)

with homogeneous, isotropic stirring:

∂t~u+ ~u · ~∇~u− · · · = ~̃f(~x, t), (2)

where ~̃f is Gaussian white noise spectrally concentrated at long

wavelengths:

〈 ~̃f〉 = ~0, 〈δ ~̃f(~x, t)δ ~̃fT (~x′, t′)〉 = F(~x− ~x′)δ(t− t′). (3)

Make the usual Reynolds decomposition

~̃u = ~U + δ~u (note 〈δ~u〉 = ~0). (4)

Then the mean velocity ~U obeys

∂t
~U + ~U · ~∇~U = −~∇ · 〈δ~u δ~u〉︸ ︷︷ ︸

Reynolds stress

+ · · · . (5)
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∂x〈. . . 〉 = 0

For homogeneous turbulence, one has 〈δ~u(~x, t)δ~u(~x, t)〉(~x), so

~∇ · 〈δ~u δ~u〉 = ~0. (6)

Also, can take ~U = ~0 ⇒ traditional focus on wave-number

spectrum E(k).

Now reinstate some boundary conditions and/or inhomogeneity:

let’s say it’s inhomogeneous in x,

homogeneous in y and z.

Now Reynolds stresses can drive flows:

∂t
~U(x) + Ux∂x

~U(x) = −∂x〈δux(~x)δ~u(~x)〉(x) + · · · . (7)

For example, in magnetized plasmas Reynolds stresses due to

microturbulence can drive poloidal zonal flows:

∂tUy(x) = −∂x〈δux δuy〉(x) + · · · . (8)
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∂t
~U + ~U · ~∇~U = −~∇ · 〈δ~u δ~u〉[E, ~U ] − D[~U ], (9a)

∂tE = N [E, ~U ] − D[E] + F︸︷︷︸
homogeneous forcing

. (9b)

Assume that one imposes no macroscopic inhomogeneity (periodic

b.c.’s, constant profile gradients, etc.). Then:

This system has statistically homogeneous solutions with
~U ≡ ~0. If one insists that the statistics are homogeneous, then

homogeneous solutions are all one gets.

But if one allows for the possibility of inhomogeneous statistics,

then a bifurcation may occur:

Inhomogeneous solutions can emerge by
spontaneous symmetry breaking

of the homogeneous state.
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convection ZFs

small ∆T : microscopic Gibbsian fluctuations homogeneous
microturbulence

macroscopically motionless no ZFs

translationally invariant in horizontal direction

larger ∆T : steady rolls steady ZFs

translational symmetry is broken

We will apply methodology used in the theory of convection and, more

generally, pattern formation to the problem of zonal-flow generation.

One possible scenario: Zonal flows emerge via a bifurcation from a

state of homogeneous turbulence (to an inhomogeneous state with

interacting ZFs and microturbulence).

We calculate the stability of those ZFs by determining the ‘Busse

stability balloon.’

Hence the title of our recent paper: J. Parker & J. Krommes, Zonal

flows as pattern formation: Merging jets and the ultimate jet length

scale (arXiv 1301.5059). – 14 –



Sidebar on realizability:

The characteristic function (Fourier transform) of a PDF is its

moment generating function.

The logarithm of the characteristic function is the cumulant

generating function.

The fact that P (x) ≥ 0 implies an infinite number of

realizability inequalities between the various moments Mn or

cumulants Cl.

P (x) → 〈e−ikx〉 =
∞∑

n=0

(−ik)n

n!
Mn, (10a)

ln〈e−ikx〉 =
∞∑

l=1

(−ik)l

l!
Cl. (10b)

E.g., M2 ≥ M2
1 , M4 −M2

2 ≥ (M3 −M1M2)
2/(M2 −M2

1 ).

A good statistical closure must be realizable.

– 15 –



One has the general cumulant expansion

P (x) =

∫
dk

2π
eikx exp

(
∞∑

l=1

(−ik)l

l!
Cl

)
. (11)

Marcienkiewicz (1939) Theorem: Either

retain just C1 and C2 (Gaussian approximation)

or

must retain all cumulants in order to ensure realizability.

Some possibilities:

inhomogeneous direct-interaction approximation (realizable, but

extremely complicated);

second-order cumulant expansion (CE2; realizable);

third-order cumulant expansion [CE3; not realizable, but maybe

can be patched up (Marston)].
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primitive amplitude equation

⇓

Reynolds decomposition with zonal average

⇓

(∂t − L)U = (Reynolds stress),

(∂t − L)δψ = Uδψ︸ ︷︷ ︸
ZF–eddy

+ δψ δψ − 〈δψ δψ〉︸ ︷︷ ︸
eddy–eddy

+δf (ext).

(12)

Two possibilities: Either

neglect eddy–eddy altogether (≡ CE2)

or

parametrize eddy–eddy by internal forcing (maybe plus

energy-conserving damping):

(∂t − L)δψ = Uδψ + (−ηδψ)︸ ︷︷ ︸
(neglect??)

+ δf (int) + δf (ext)

︸ ︷︷ ︸
δf

. (13)
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From

(∂t − L)δψ = Uδψ + δf, (14)

form the equation for the covariance C
.
= 〈δψ(~x, t)δψ(~x′, t)〉:

∂tC(t, t) = (Hermitian part of)(LC + UC + 〈δf(t)δψ(t)〉). (15)

Assume white-noise forcing: 〈δfδψ〉 = F (~x, ~x′). Then we arrive at

the forced CE2 equations:

∂tU(x) = . . . (zonal mean flow or ‘amplitude’ eq’n), (16a)

∂tC~k
(x, x′) = · · · + F~k

(x, x′) (eddy covariance eq’n). (16b)

Now discuss symmetry breaking in the statistical ensemble, which

can be ‘structurally stable’ or ‘structurally unstable’ to the

emergence of stable zonal flows. . .

‘Stochastic (≡ statistical) Structural Stability Theory’ (SSST)

(Farrell & Ioannou).
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The Rhines mechanism:

small-scale forcing

↓

inverse cascade

↓

stopped by anisotropic linear wave physics

↓

preferential excitation of zonal fluctuations

Even without the Rhines mechanism, zonal flows can still be

generated by direct coupling from turbulence to zonal scales.

For the time being, we will study just this latter mechanism.
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Farrell & Ioannou (various papers on SSST)

Farrell & Ioannou (2009) — Hasegawa–Wakatani model for

drift waves in plasmas (initial motivation for our work)
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Farrell & Ioannou (various papers on SSST)

Farrell & Ioannou (2009) — Hasegawa–Wakatani model for

drift waves in plasmas (initial motivation for our work)

Marston (various papers on ‘Direct Statistical Simulation’)

Srinivasan & Young (2012) — neutral curve for zonostrophic

instability of barotropic vorticity equation on a beta plane

(closely related to Hasegawa–Mima equation)
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Farrell & Ioannou (2009) — Hasegawa–Wakatani model for

drift waves in plasmas (initial motivation for our work)

Marston (various papers on ‘Direct Statistical Simulation’)

Srinivasan & Young (2012) — neutral curve for zonostrophic

instability of barotropic vorticity equation on a beta plane

(closely related to Hasegawa–Mima equation)

One may ask, Is there anything else left to do? Yes!

Analytically understand the nature of the stochastically stable

states with ZFs that are observed in simulations.

E.g., predict the characteristic jet wave number, jet spacing, etc.

Surprise: The jet wave number is not unique!
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As an oversimplified example, suppose the equations to be solved are

∂tU(x) + µ︸︷︷︸
damping

U = ∂xC(x, x)︸ ︷︷ ︸
Reynolds stress

, (17a)

∂tC(x, x′) + 2µC = U(x)︸ ︷︷ ︸
ZF

C(x, x′)︸ ︷︷ ︸
turb.

+ C(x, x′)U(x′) + F (x, x′).

(17b)

(In detail, there are other gradients, structure in the homogeneous

y direction, etc.; the real equations are complicated.) Change variables to

ρ
.
= x− x′, X

.
=

1

2
(x+ x′). (18)

Then C(x, x′) ≡ C(ρ | X) and

∂tU(X) + µU = ∂XC(X), (19a)

∂tC(ρ | X) + 2µC = [U(X + 1
2
ρ) + U(X − 1

2
ρ)]C(ρ | X) + F (ρ).

(19b)

Note that there is a steady solution with U = 0, C(ρ | X) = C(ρ).
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Assume C ∼ eiqX . Then the structure of the s.s. equations is

µU ∼ qC, 2µC ∼ UC + F (20)

or µ−1qC2 + 2µC − F = 0. (21)

There is a solution for q = 0 (homogeneous turbulence) and also a

continuous range of solutions for nonvanishing q. (Cf. the real

Ginzburg–Landau equation.)

Allows for the possibility of merging jets.

The problem is completely analogous to the calculation of the

Busse stability balloon for the Rayleigh–Bénard convection

problem.
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FIG. 5: Left: There is a continuous band of steady roll solutions

inside the neutral curve, but only a subset is stable (delimited by the

‘Busse stability balloon’). Right: The stability balloon is a volume in

parameter space.

We would like to do the analogous calculation for a relevant

plasma model. Hasegawa–Wakatani? No; too complicated.
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A prototypical vorticity equation (with forcing and dissipation) is

∂tζ + ~u · ~∇ζ − κ∂yφ = f̃︸︷︷︸
random
forcing

− (µζ − ν∇2
⊥
ζ)

︸ ︷︷ ︸
dissipation

. (22)

Various important physical models arise by specifying the relation

between vorticity ζ and stream function (or potential) φ. In general,

ζ = (∇2
⊥

− α̂)φ. (23)

Particular cases (all with eddy shearing, but no damped eigenmodes):

barotropic vorticity equation (infinite deformation radius): α̂ = 0.

quasigeostrophic equation (finite deformation radius): α̂ = L−2
d .

generalized Hasegawa–Mima equation (2D):

α̂ =





0 ZF mode (ky = 0)

1 DW mode (otherwise).
(24)
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∂tU(X, t) + (µ− ν∂2
X)U = −

∂

∂X
[∂x∂yC(0, 0, X, t)︸ ︷︷ ︸

Reynolds stress

, (25a)

∂tW (x, y | X, t) + (U1 − U2)∂yW − (U ′′

1 − U ′′

2 )

(
∇2

⊥
+

1

4
∂2

X

)
∂yC

− [2κ− (U ′′

1 + U ′′

2 )]∂X∂y∂xC = F − D[W ]︸ ︷︷ ︸
balance for

homogeneous
turbulence

. (25b)

Here

C(~x1, ~x2, t)
.
= 〈δφ(~x1, t)δφ(~x2, t)〉 ≡ C(~x1 − ~x2︸ ︷︷ ︸

~x

| 1
2
(~x1 + ~x2)︸ ︷︷ ︸

~X

)

and W (~x1, ~x2, t)
.
= 〈δζ(~x1, t)δζ(~x2, t)〉 = ∇2

⊥,1∇2
⊥,2C(~x1, ~x2, t).

First, calculate the neutral curve by extending the calculations

of Srinivasan & Young (2012) for the barotropic vorticity equation.
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FIG. 6: Above criticality, a continuous band of equilibria lies inside

the neutral curve.

Fourier expand the equations in all variables.

Galerkin truncation.

Solve numerically for the equilibria. (This is nontrivial.)
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Linearize around the ZF equilibrium; study perturbations.

The equilibrium is periodic in X, so perturbations can be

expanded as a Bloch state:

∆U(X, t) = eσteiQX
∑

p

∆Upe
ipqX , (26a)

∆W (x, y | X, t) = eσteiQX
∑

mnp

∆Wmnpe
imaxeinbyeipqX .

(26b)

Look for eigenvalues σ < 0 (∀Q).
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Begin with primitive forced, dissipative nonlinear equation (e.g.,

generalized Hasegawa–Mima equation).

Study from the point of view of ‘stochastic structural stability’.

I.e., study stability of homogeneous turbulent state;

spontaneous symmetry breaking ⇒ emergence of

inhomogeneous ZFs.

Model with inhomogeneous cumulant expansion (simplest: CE2).

Examine stability of steady ZFs to secondary instabilities;

calculate the Busse stability balloon.

The Busse stability balloon
constrains the wavelength
of the steady zonal flows

that can be generated from turbulence.

Implication: Analogous calculations may be useful in related

problems (e.g., MRI turbulence in accretion discs).
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Need better physical understanding of the boundaries of the

stability balloon.

CE2 completely ignores eddy–eddy interactions.

CE3 is better (Marston), although since it is not realizable one

must be tricky.

Anisotropic forcing may change the picture (Srinivasan).

White-noise forcing is artificial. What about linear instability?

Nontrivial to deal with: With linear instability, need some

kind of eddy–eddy term in order to permit a homogeneous

steady state of turbulence.

Explore a closure model (simpler than inhomogeneous DIA!).
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(For the fusion physicists:) How does the Dimits shift fit into

the picture? We don’t understand yet. . .

Relation to critical balance arguments?

Study a more complicated model in which eddy shearing and

coupling to damped eigenmodes compete ⇒ better

understanding of physical systems in which zonal flows are

self-consistently coupled to turbulence.
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(For the fusion physicists:) How does the Dimits shift fit into

the picture? We don’t understand yet. . .

Relation to critical balance arguments?

Study a more complicated model in which eddy shearing and

coupling to damped eigenmodes compete ⇒ better

understanding of physical systems in which zonal flows are

self-consistently coupled to turbulence.

Our understanding of zonal flow generation is quite

incomplete. It is a fertile area for further research

in various fields (fusion, astrophysics, geophysics,

etc.), but it’s a difficult topic. Patience is a virtue.
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