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Zonal flows exist in tokamaks; they are believed to
help regulate the level of tokamak microturbulence.
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FIG. 1: Microturbulence in a tokamak simulation (Jeff Candy; from

GYRO web site.).
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FIG. 2: lllustration of sheared ZFs in tokamaks. From review article

of Fujisawa (2009).
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FIG. 3: Bicoherency analysis is useful. From Fujisawa (2009).
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It is fruitful to treat self-generated ZFS
as a separate component of a saturated state.
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FIG. 4: From review article of Fujisawa (2009).

Goal: Gain some conceptual and analytical understanding

of self-consistent states of zonal flows and turbulence
(= implement some sort of averaging procedure).
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Statistical closures: A blessing and a curse...

g sZF>GAM
\ y
I Q

vV
turbulence Zonal flows Drift waves
:> no transport +

Y 4 %damping

transport
/ the new paradigm

Zonal flows

e PPPL
=PPEL _ THEORY



Statistical closures: A blessing and a curse...
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Use random forcing to model instability drive...

3D Navier—Stokes: replace macroscopic, inhomogeneous boundary
conditions,

i@+ d- Vi =---+ (b.c.’s), (1)

with homogeneous, isotropic stirring:

i+ a-Vii—--- = f(Z,1), (2)

where fis Gaussian white noise spectrally concentrated at long
wavelengths:

(F) =0, (5F(@t)0fT (@, t))) = F(@ — &)o(t —t'). (3)

Make the usual Reynolds decomposition

@ =U + 6@ (note (6@) = 0). (4)
Then the mean velocity U obeys
.U +U-VU = —V - (6GOT) +--- . (5)
N——
Reynolds stress
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The effect of the Reynolds stress
vanishes for homogeneous turbulence (9,(...) = 0)...

For homogeneous turbulence, one has (§u (%, t)du (L, t))(X) o]

V . (6@ @) = 0. (6)
Also, can take U = 0 = traditional focus on wave-number
spectrum E(k).
Now reinstate some boundary conditions and/or inhomogeneity:

P let’s say it’s inhomogeneous in x,

$® homogeneous in y and z.

Now Reynolds stresses can drive flows:
.U (x) + Up0,U () = —8y (0uy(8)06(Z)) () +--- . (7)

For example, in magnetized plasmas Reynolds stresses due to
microturbulence can drive poloidal zonal flows:

OtUy () = —0z(0ugy duy)(x) + -+ - . (8)
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Zonal flows can emerge by
spontaneous symmetry breaking
of a homogeneous turbulent state.

o.U +U -VU = —V - (@ da)[E,U] — D[U], (9a)
& = N[E,U] — DIE] + F_ (9b)

homogeneous forcing

Assume that one imposes no macroscopic inhomogeneity (periodic
b.c.’s, constant profile gradients, etc.). Then:

® This system has statistically homogeneous solutions with

U = 0. If one insists that the statistics are homogeneous, then
homogeneous solutions are all one gets.

® But if one allows for the possibility of inhomogeneous statistics,
then a bifurcation may occur:

([ . )
Inhomogeneous solutions can emerge by
spontaneous symmetry breaking

of the homogeneous state.
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Spontaneous symmetry breaking
is well known in physics...

)
-

(a

Spontaneous symmetry breaking simplified: - Athigh energy levels
{left) the ball settles in the center, and the result is symmetrical. At
lower energy levels (right ), the overall “mles” remaln symmerrical. ®:1st layer ©:2nd layer ©: 3rd layer

bue the "Mexican hat” potential comes into effect: "local” symimetry FIG. 3. Micrographs and sketches of the different crystal
structures, (a) Hexagonal; (b} bee; (e) fec. The center column

- i - corresponds to the structures in the micrographs. The graded

random) and not another. areas in the sketches are normal to the optical axis. The bars

correspond to 200 gm.

15 inevitably broken since eventually the ball must roll one way {at
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In a recent note® it was shown that the Gold-
stone theorem,”? that Loreatz-covariant field
theories in which spontaneous breakdown of
symmetry under an internal Lie group occurs
contain zero-mass particles, fails if and only if
the conserved currents associated with the in-
ternal group are coupled to gauge fields. The
purpose of the present note is to report that,
as a consequence of this coupling, the spin-one
quanta of some of the gauge fields acquire mass;
the longitudinal degrees of freedom of these par-
ticles (which would be absent if their mass were
zera) go over into the Goldstone bosons when the
coupling tends to zern. This phéenomenon 18 just
the relativistic analog of the plasmon phenome-
non to which Anderson” has drawn attention:
that the scalar zero-mass excitations of a super-
conducting neutral Ferml gas become longitudi-
nal plasmon modes of finite mass when the gas
is charged.

about the “vacuum® solution gy{x) =0, gglx) =g,

i . :
Mo (a9 )-e0pA }=0, (2a)
18— 4 2Vl a,) = 0, (2b)
EU_FI"-“"' =E¢G{ﬁ“{&qa1}-fwnﬂp}. (2c)

Eguation (2b) describes waves whose quanta have
(bare) mass 2g,{V' (g, )}*'*; Eqs. (2a) and (2c)
may be transformed, by the introduction of new
variables

B =A —leg )78 {ag. ),
TR u¥

A T e . ST (3)
717 TR T T T BT}
into the {orm
8 mPan A a2, 2k g 4l
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Symmetry breaking also happens in
Rayleigh-Bénard convection.
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There is a useful analogy between the convection problem
and the problem of zonal-flow generation.

convection ZFs

small AT: | microscopic Gibbsian fluctuations | homogeneous
microturbulence

macroscopically motionless no ZFs

translationally imvariant in horizontal direction

larger AT': steady rolls steady ZFs

translational symmetry is broken

$ We will apply methodology used in the theory of convection and, more
generally, pattern formation to the problem of zonal-flow generation.

® One possible scenario: Zonal flows emerge via a bifurcation from a
state of homogeneous turbulence (to an inhomogeneous state with
interacting ZFs and microturbulence).

$ We calculate the stability of those ZFs by determining the ‘Busse
stability balloon.’

® Hence the title of our recent paper: J. Parker & J. Krommes, Zonal

flows as pattern formation: Merging jets and the ultimate jet length

%PPPI' scale (arXiv 1301.5059). — 14 — THEORY



How does one handle the statistical closure problem
for inhomogeneous turbulence?

Sidebar on realizability:

® The characteristic function (Fourier transform) of a PDF is its
moment generating function.

® The logarithm of the characteristic function is the cumulant
generating function.

® The fact that P(x) > 0 implies an infinite number of
realizability inequalities between the various moments M,, or
cumulants C].

P@) - (e =3 T M, (100
In(e™*k®) = i (_li'k)lC'l. (10b)
=1 )

E.g., M2 2 M12, M4 — M22 2 (M3 — M1M2)2/(M2 — Mlz)

® A good statistical closure must be realizable.
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Presently, second-order cumulant expansion (CE2)
is popular. CE2 is realizable.

One has the general cumulant expansion

P(x) = o e**® exp <Z (Zik) C’l>. (11)

!
l:l l.

Marcienkiewicz (1939) Theorem: Either

® retain just C'; and C> (Gaussian approximation)

or

® must retain all cumulants in order to ensure realizability.
Some possibilities:

® inhomogeneous direct-interaction approximation (realizable, but
extremely complicated);

#® second-order cumulant expansion (CE2; realizable);

® third-order cumulant expansion [CE3; not realizable, but maybe
can be patched up (Marston)].
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‘Stochastic Structural Stability Theory’ (SSST)

primitive amplitude equation

U

Reynolds decomposition with zonal average
Y (12)
(8 — L)U = (Reynolds stress),
(8 — L)op = Usp + 8ep bap — (83 54p) +8F ().
v \ ~ _/
ZF—eddy eddy—eddy

Two possibilities: Either
® neglect eddy—eddy altogether (= CE2)
or

® parametrize eddy—eddy by internal forcing (maybe plus
energy-conserving damping):

(8 — LYoy = Udep + (—ndyp) + 6f ™) + 6> (13)
(neglzct??) 3;“
T — 17 — THEORY




Now discuss the stability of the statistical ensemble.

From
(8, — L)3 = Udtp + of, (14)
form the equation for the covariance C = (3¢ (&, t)dy (X', t)):
0:C(t,t) = (Hermitian part of)(LC + UC + (6f(t)o(t))). (15)

Assume white-noise forcing: (dfdvy) = F (&, Z’). Then we arrive at
the forced CE2 equations:

o U(x) = ... (zonal mean flow or ‘amplitude’ eq’n), (16a)
0 Cr(x,x') =+ + Fg(x,z') (eddy covariance eq’'n).  (16b)

Now discuss symmetry breaking in the statistical ensemble, which
can be ‘structurally stable’ or ‘structurally unstable’ to the
emergence of stable zonal flows. ..

‘Stochastic (= statistical) Structural Stability Theory’ (SSST)

(Farrell & loannou).

e PPPL
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Neglecting the eddy—eddy interactions precludes
inverse cascade and the Rhines mechanism.

The Rhines mechanism:

small-scale forcing

!

inverse cascade

l

stopped by anisotropic linear wave physics

!

preferential excitation of zonal fluctuations

® Even without the Rhines mechanism, zonal flows can still be
generated by direct coupling from turbulence to zonal scales.

® For the time being, we will study just this latter mechanism.
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The SSST/CE2 equations have been studied for
a variety of physical situations or models.

® Farrell & loannou (various papers on SSST)

® Farrell & loannou (2009) — Hasegawa—Wakatani model for
drift waves in plasmas (initial motivation for our work)

PAVSIC LRBORRTORY — 20.1/3 —
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The SSST/CE2 equations have been studied for
a variety of physical situations or models.

® Farrell & loannou (various papers on SSST)

® Farrell & loannou (2009) — Hasegawa—Wakatani model for
drift waves in plasmas (initial motivation for our work)

® Marston (various papers on ‘Direct Statistical Simulation’)

#® Srinivasan & Young (2012) — neutral curve for zonostrophic
instability of barotropic vorticity equation on a beta plane
(closely related to Hasegawa—Mima equation)
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The SSST/CE2 equations have been studied for
a variety of physical situations or models.

® Farrell & loannou (various papers on SSST)

® Farrell & loannou (2009) — Hasegawa—Wakatani model for
drift waves in plasmas (initial motivation for our work)

® Marston (various papers on ‘Direct Statistical Simulation’)

#® Srinivasan & Young (2012) — neutral curve for zonostrophic
instability of barotropic vorticity equation on a beta plane
(closely related to Hasegawa—Mima equation)

One may ask, Is there anything else left to do? Yes!

® Analytically understand the nature of the stochastically stable
states with ZFs that are observed in simulations.

® E.g., predict the characteristic jet wave number, jet spacing, etc.

[Surprise: The jet wave number is not unique!]
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The jet wave number is not unique.

QG

Space/Time Zonal flow U

14 jets

16 jets

nnnnnnnnnnnnnnn
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A simplified example is instructive.

As an oversimplified example, suppose the equations to be solved are

U (x)+ p U = 0,C(xz,x), (17a)
~~ ——
damping Reynolds stress
0:C(x,x') +2uC =U(z) C(z,x') + C(x, 2" )U(x") + F(xz,z’).
o o 17b
ZF  turb. (17b)

(In detail, there are other gradients, structure in the homogeneous
y direction, etc.; the real equations are complicated.) Change variables to

p=x—x, Xié(a:—l—a:’). (18)
Then C(z,x2’) = C(p | X) and
oU(X) 4+ pU = 0xC(X), (19a)
C(p| X)+2uC =[U(X + 2p) +U(X — 1p)IC(p | X) 4—(11;(0))-
b

® Note that there is a steady solution with U = 0, C(p | X) = C(p).
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The characteristic zonal wave number is not unique!

Assume C ~ e*9%X, Then the structure of the s.s. equations is

pU ~ qC, 2uC ~UC + F (20)

or p~tqC? +2uC — F = 0. (21)

There is a solution for ¢ = 0 (homogeneous turbulence) and also a
continuous range of solutions for nonvanishing q. (Cf. the real

Ginzburg—Landau equation.)

® Allows for the possibility of merging jets.

200 p —
0 = :
e 0 400 800 1200

(a)
0 50 100 150 200
Amplitude equation !

40

20

= 0
=20
-40

QL simulation

® The problem is completely analogous to the calculation of the
Busse stabzility balloon for the Rayleigh—Bénard convection

problem. opL
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The Busse stability balloon delimits the stable modes
inside the neutral curve.
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FIG. 5: Left: There is a continuous band of steady roll solutions
inside the neutral curve, but only a subset is stable (delimited by the
‘Busse stability balloon’). Right: The stability balloon is a volume in
parameter space.

$® We would like to do the analogous calculation for a relevant

~PPPL plasma model. Hasegawa—Wakatani? No; too complicated. , ...,
""""""""""""""" — 24 - THEORY
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Calculation of the stability balloon
for the generalized Hasegawa—-Mima equation.

A prototypical vorticity equation (with forcing and dissipation) is

~

Ol + -V — Kkdyp = \f/ — (¢ — uva. (22)

~"

random dissipation
forcing

Various important physical models arise by specifying the relation
between vorticity ¢ and stream function (or potential) ¢. In general,

¢ = (Vi —a)o. (23)
Particular cases (all with eddy shearing, but no damped eigenmodes):

® barotropic vorticity equation (infinite deformation radius): a = 0.
® quasigeostrophic equation (finite deformation radius): a = L;z.

® generalized Hasegawa—Mima equation (2D):

0 ZF mode (k, = 0)

a = (24)
1 DW mode (otherwise).
SEEE: a5 THEORY



The CE2 equations are nontrivial,
even for just generalized Hasegawa—Mima.

(25a)

d
AU (X, t) + (u — vd%)U = —8—X[§wayc(0, 0, X, 1),

Reynolds stress

1
oW (z,y | X,t) + (Uy — U2)0,W — (Uy — UY) (Vj + Za;) 9, C

— 2k — (U! + UY)|8x8,8,C = F — D[W] . (25b)
balar:ge for
homogeneous
turbulence
Here
C(Z1,%2,t) = (0Pp(X1,1)0 (T2, 1)) = C(@’l — j’% | %(53’1 + 7))
T X

and W({El, fz,t) = <5C(ZE1, t)&C(ZEz, t)) = Vi,1Vi,2C(£1, ZEz,t).

® First, calculate the neutral curve by extending the calculations

of Srinivasan & Young (2012) for the barotropic vorticity equation.

e PPPL
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Now calculate ZF equilibria for
wave numbers lying inside the neutral curve.

|

|

I

I

1
er,

Wave-number, k

FIG. 6: Above criticality, a continuous band of equilibria lies inside
the neutral curve.

® Fourier expand the equations in all variables.
® Galerkin truncation.

® Solve numerically for the equilibria. (This is nontrivial.)
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Finally, calculate the stability of the equilibria.

® Linearize around the ZF equilibrium; study perturbations.

® The equilibrium is periodic in X, so perturbations can be
expanded as a Bloch state:

AU (X,t) = e7'e'9% Y " AU, (26a)
2
AW (z,y | X,t) = e7te'@* Z AW, npe ™% eV ' PIX
mnp
(26b)

Look for eigenvalues o < 0 (VQ).
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The stability balloon for the generalized HME
is interesting and has not been completely analyzed.

0
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Summary...

® Begin with primitive forced, dissipative nonlinear equation (e.g.,
generalized Hasegawa—Mima equation).

® Study from the point of view of ‘stochastic structural stability’.

® |.e., study stability of homogeneous turbulent state;
spontaneous symmetry breaking = emergence of
inhomogeneous ZFs.

® Model with inhomogeneous cumulant expansion (simplest: CE2).

® Examine stability of steady ZFs to secondary instabilities;
calculate the Busse stability balloon.

r

The Busse stability balloon
constrains the wavelength
of the steady zonal flows

Ghat can be generated from turbulence.)

® Implication: Analogous calculations may be useful in related

problems (e.g., MRI turbulence in accretion discs).
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Loose ends and future research directions...

® Need better physical understanding of the boundaries of the
stability balloon.

® CE2 completely ignores eddy—eddy interactions.

® CE3 is better (Marston), although since it is not realizable one

must be tricky.
® Anisotropic forcing may change the picture (Srinivasan).

® White-noise forcing is artificial. What about linear instability?

# Nontrivial to deal with: With linear instability, need some
kind of eddy—eddy term in order to permit a homogeneous
steady state of turbulence.

o Explore a closure model (simpler than inhomogeneous DIA!).
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Future research (continued)...

® (For the fusion physicists:) How does the Dimits shift fit into
the picture? We don’t understand yet. ..

®» Relation to critical balance arguments?

® Study a more complicated model in which eddy shearing and
coupling to damped eigenmodes compete = better
understanding of physical systems in which zonal flows are
self-consistently coupled to turbulence.

HHHHHHHHHHHHHHHHH
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Future research (continued)...

® (For the fusion physicists:) How does the Dimits shift fit into
the picture? We don’t understand yet. ..

®» Relation to critical balance arguments?

® Study a more complicated model in which eddy shearing and
coupling to damped eigenmodes compete = better
understanding of physical systems in which zonal flows are
self-consistently coupled to turbulence.

(Our understanding of zonal flow generation is quite\
incomplete. It is a fertile area for further research
in various fields (fusion, astrophysics, geophysics,
etc.), but it’s a difficult topic. Patience is a virtue.)
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