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PART I

Introduction
The tendency for entropy to increase in isolated
systems is expressed in the second law of
thermodynamics – perhaps the most pessimistic
and amoral formulation in all human thought.

Gregory Hill and Kerry Thornley
Principia Discordia (1965)

I.1. Bogoliubov’s timescale hierarchy
The content of this course is best summarized through the Bogoliubov hierarchy of

timescales, which is related to the relaxation of an arbitrary perturbation in a plasma.
Fill a volume with N particles, each randomly placed and with random velocity. The
system will attempt to adjust itself into a statistical equilibrium. There are four stages
in this adjustment:1

(1) Pair correlations are established and Coulomb potentials are shielded on Debye
scales. This occurs on plasma-frequency timescales, ∼ω−1

p . This is a reversible
process.

(2) The velocity distribution relaxes to a local Maxwellian on collisional timescales,
∼ν−1; i.e., local thermodynamic equilibrium is established. Note that ν−1 =
ω−1
p (Λ/ lnΛ) ≫ ω−1

p for plasma parameter Λ .
= nλ3D ≫ 1. This gives irreversibility

in velocity space.

(3) Macroscopic force balance emerges on a crossing time ∼L/vth ∼ ν−1(L/λmfp) ≫
ν−1. (Note: This timescale was not included in Bogoliubov’s original hierarchy, but
it appears in the Chapman–Enskog–Braginskii expansion and is thus important in
this course.)

(4) Hydrodynamic diffusion occurs on macroscopic spatial and temporal scales, and
attempts to relax the system to a global, space- and time-independent Maxwellian.
(Boundary conditions that enforce density or temperature gradients prevent this
from occurring.) This occurs on a diffusive timescale ∼L2/D; e.g., ∼ν−1(L/λmfp)

2

in an unmagnetized plasma, or ∼ν−1(L/ρ)2 across the magnetic field in a magne-
tized plasma. This results in spatial irreversibility.

Each of these timescales is associated with a part of this course:

(1) At t = 0, begin with an arbitrary initial distribution of point particles (Klimon-
tovich, Liouville, BBGKY; §II).

(2) For ωpt ≳ 1, Debye-shielding clouds are established (two-particle correlation
function; Vlasov physics; §§II,III).

(3) For νt ≳ 1, the particle distribution function approaches a local Maxwellian
(Balescu–Lenard and Landau collision operators and their derivatives; discrete
particle effects; Fokker–Planck and Langevin equations; test-particle superposition
principle; §§IV–VIII).

(4) For νt ≫ 1, the particle distribution function attempts to relax to a global

1There is, of course, turbulent transport, but that is a different course.
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Figure 1. Trajectories of (a) a neutral particle and (b) a charged particle.

Maxwellian, but cannot because of macroscopic boundary conditions or source
(classical transport theory: Spitzer–Härm, Chapman–Enskog, and Braginskii;
§IX).

In a sense, this course is all about the interplay between collective processes and binary
processes and how one affects the other.

I.2. Time (Ir)reversibility(?)
The clearest qualitative illustration of this involves the trajectories of particles. Neutral

particles in an ionized gas move independently along straight-line trajectories between
distinct collisions that occur when particles come within roughly an atomic radius of
one another (see figure 1(a)). In contrast, charged particles’ trajectories are determined
by collective interactions as the weak Coulomb electric field from all nearby charged
particles give successive, random, but usually small-angle deflections (“scatterings”) of
their direction of motion (see figure 1(b)). The cumulative effect of many small-angle
Coulomb collisions is examined in HW01.

Now, all of these collisions are, in fact, encoded in Newton’s equations of motion for
the charged particles:

dr

dt
= v and

dv

dt
=

q

m

[
E(t, r) +

v

c
×B(t, r)

]
. (I.2.1)

But note that setting

t→ t′
.
= −t, r → r′

.
= r, v → v′ .= −v,

E → E′ .= E(−t, r), B → B′ = −B(−t, r),
in (I.2.1), which amounts to a reversal of the time axis, results in

dr′

dt′
= v′ and

dv′

dt′
=

q

m

[
E′(t′, r′) +

v′

c
×B′(t′, r′)

]
.

Thus, the equations of motion for charged particles in electromagnetic fields are time-
reversible. This should not be particularly surprising: such equations can be derived
from a Hamiltonian, and so the emergence of time reversibility makes sense. But, even
though this is a simple consequence, its implications are profound. For then how does
irreversibility emerge? How does entropy increase? Why don’t we see things running
backwards all the time if the governing equations allow for it? These questions have been
debated ever since Boltzmann and Maxwell invented kinetic theory.

The main antagonist early on was Josef Loschmidt (1821–1895), who (among others)
argued that Boltzmann’s H theorem, which implies irreversibility and the second law of
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thermodynamics, cannot possibly be correct if based on classical mechanics. This is now
known as “Loschmidt’s paradox”. The complaint is not without subtlety, but – to me, at
least – Loschmidt seemed a bit of a crackpot. Apparently, he wanted to. . .

. . . destroy the terroristic nature of the second law [of thermodynamics], which
has made it appear to be an annihilating principle for all living beings of the
Universe; and at the same time open up the comforting prospect that mankind is
not dependent on mineral coal or the Sun for transforming heat into work, but
rather may have available forever an inexhaustible supply of transformable heat.

This is quite a leap from simply wondering why particle trajectories cannot simply be
reversed. Boltzmann’s famous response to this? “Go ahead, reverse them!”

Another levied attack was based on a theory by Poincaré, called the recurrence
theorem, which states that a dynamical system with constant energy in a compact phase
space must eventually return to its initial state within arbitrary precision for almost all
initial conditions. Ernst Zermelo (1871–1953), offering a new and more general proof of
this theorem, used it to say that entropy can surely decrease as the system recurs to its
initial configuration. Nietzsche loved this idea of eternal recurrence, claiming that “if the
Universe has a goal, that goal would have been reached by now”. (He believed that the
Universe had always existed.) He continued:

If the Universe may be conceived as a definite quantity of energy, as a definite
number of centers of energy – and every other concept remains indefinite and
therefore useless – it follows therefrom that the Universe must go through a
calculable number of combinations in the great game of chance which constitutes
its existence. In infinity, at some moment or other, every possible combination must
once have been realized; not only this, but it must have been realized an infinite
number of times. And inasmuch as between every one of these combinations and
its next recurrence every other possible combination would necessarily have been
undergone, and since every one of these combinations would determine the whole
series in the same order, a circulate movement of absolutely identical series is thus
demonstrated: the Universe is thus shown to be a circular movement which has
already repeated itself an infinite number of times, and which plays its game for all
eternity.

Such a cycle – and more modest ones – are called “Poincaré cycles”, and their period is
called the recurrence time. Boltzmann’s answer to this was to point out that the recur-
rence time is incredibly long. He estimated that a system consisting of 1018 atoms cm−3,
with average velocity 0.5 km s−1, would reproduce all of its coordinates to within 10−7 cm
precision and all of its velocities to within 100 cm s−1 in a time of 1010

19

years (!)
Boltzmann put it to Zermelo rather bluntly: “You should live so long.”

The difficulty here is that kinetic theory is fundamentally a probabilistic description,
and its laws govern trajectories towards the most probable behavior of a system. Ir-
reversibility emerges from the fact that usually the initial state is very unusual, being
restricted to a very small part of the total available phase space. In other words,

There is irreversibility of the basic laws of physics, but there is something special
about the initial state of the system that we are considering: this initial state is
very improbable. By this we mean that it corresponds to a relatively small volume
in phase space (or a small entropy). The time evolution then leads to a region with
relatively large volume (or large entropy), which corresponds to a very probable
state of the system. In principle, after a very long time the system will return to
the improbable initial state, but we shall not see this happening. . . As a physicist,
you will want to make an idealization in which the number of particles in your
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system tends to infinity and the time of eternal return also tends to infinity. In this
limit you have true irreversibility. (Ruelle 1991)

Or, you could take Maxwell’s eventual view (1867):

I carefully abstain from asking the molecules which enter [the volume under
consideration] where they last started from. I only count them and register their
mean velocities, avoiding all personal enquiries which would only get me in trouble.

With that, let’s get started. . .

PART II

Klimontovich, Liouville, and the BBGKY hierarchy
We can measure the globula of matter and the
distances between them, but Space plasm itself is
incomputable.

Vladimir Nabokov
Ada, or Ardor (1969)

Useful references for concepts presented in this part include Chapter 2.1 of Ichimaru
(2004), Chapter 7.1 of Krall & Trivelpiece (1973), Chapter 3 of Nicholson (1983), Section
II.4 of Klimontovich (1967), and §§1.3,8 of Krommes (2018).

II.1. The Klimontovich equation as a microscopic description of a
plasma

A complete description of a plasma would emerge if one were to have knowledge
of all the coordinates and momenta of all of the constituent particles, as well as the
electromagnetic fields in which they move and which they self-consistently produce. While
this description would obviously be untenable with which to work – one is usually only
interested in the macroscopic observables such as density, flow velocity, pressure, etc. –
let us nevertheless adopt this microscopic standpoint and see where it leads.

Start by defining the function

Fα(t, r,v) =

Nα∑
i=1

δ(r −Rαi(t))δ(v − Vαi(t)), (II.1.1)

which completely specifies the positions Rαi(t) and velocities Vαi(t) of Nα particles of
species α as functions of time. Graphically,

Note that

lim
drdv→0

∫
drdv Fα(t, r,v)

is either unity or zero, depending upon whether there is a particle at (r,v) at time t, so
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that

∫
drdv Fα(t, r,v) = Nα. (II.1.2)

Thus, the microscopic state of the plasma at any time t would be known if one were
to know Rαi and Vαi at t = 0 and their temporal evolution. Hamilton’s equations of
motion provide us with the latter:

dRαi

dt
= Vαi and

dVαi

dt
=

qα
mα

(
Em +

Vαi

c
×Bm

)
, (II.1.3)

where qα and mα are the charge and mass of species α, and

Em = Em(t,Rαi(t)) and Bm = Bm(t,Rαi(t)) (II.1.4)

are the “microphysical” electric and magnetic fields evaluated at the particle position Rαi

at time t. The adjective “microphysical” here is meant to indicate that Em and Bm are
the fields self-consistently generated by the particles themselves. These satisfy Maxwell’s
equations:

∇×Em = −1

c

∂Bm

∂t
, (II.1.5)

∇×Bm =
1

c

∂Em

∂t
+

4π

c

∑
α

qα

∫
dv vFα(t, r,v), (II.1.6)

∇·Em = 4π
∑
α

qα

∫
dv Fα(t, r,v), (II.1.7)

∇·Bm = 0. (II.1.8)

Because Maxwell’s equations are linear, we can add to these fields any that may be
externally imposed: Em → Em + Eext and Bm → Bm + Bext. This will be useful for
describing magnetized plasmas threaded by an external magnetic field. Before we proceed
any further, two things are worth noting:

(1) The electric and magnetic fields in (II.1.3) omit the contribution from particle
(αi). In other words, a particle does not interact electromagnetically with itself.

(2) Writing (r,v) and drdv all the time is exhausting. Denote x = (r,v) and dx =
drdv, i.e., x is the phase-space coordinate and dx is a small volume of phase
space. Likewise, Xαi = (Rαi,Vαi).
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Now, let us consider how Fα(t,x)
.
= Fα(t, r,v) evolves:2

∂Fα
∂t

=
∂

∂t

Nα∑
i=1

δ(x−Xαi(t))

=

Nα∑
i=1

dXαi

dt
· ∂

∂Xαi
δ(x−Xαi(t))

= −
Nα∑
i=1

dXαi

dt
· ∂
∂x

δ(x−Xαi(t))

= −
Nα∑
i=1

{
Vαi ·∇+

qα
mα

[
Em(t,Rαi(t)) +

Vαi

c
×Bm(t,Rαi(t))

]
· ∂
∂v

}
δ(x−Xαi(t))

= −
Nα∑
i=1

{
v ·∇+

qα
mα

[
Em(t, r) +

v

c
×Bm(t, r)

]
· ∂
∂v

}
δ(x−Xαi(t))

= −
{
v ·∇+

qα
mα

[
Em(t, r) +

v

c
×Bm(t, r)

]
· ∂
∂v

} Nα∑
i=1

δ(x−Xαi(t))

= −
{
v ·∇+

qα
mα

[
Em(t, r) +

v

c
×Bm(t, r)

]
· ∂
∂v

}
Fα(t,x)

=⇒
[
∂

∂t
+ v ·∇+

qα
mα

(
Em +

v

c
×Bm

)
· ∂
∂v

]
Fα(t,x) = 0 (II.1.9)

Equation (II.1.9) is called the Klimontovich equation. While it is equivalent to phase-
space conservation, it is not a statistical equation. With proper initial conditions, it
is completely deterministic. Together with Maxwell’s equations (II.1.5)–(II.1.8), the
densities and fields are determined for all time.

The Klimontovich equation (II.1.9) can be thought of as expressing the incompress-
ibility of the substance Fα(t,x) as it moves in phase space: DFα/Dt = 0, where D/Dt
is the phase-space Lagrangian (i.e., comoving) derivative. Nicholson (1983) writes, “is it
any wonder that a point particle is incompressible?” Phase-space trajectories that follow
the characteristics of (II.1.9) and start from an interval dx where Fα = 0 will carry that
null information along with them. Likewise with intervals where limdx→0

∫
dxFα(x) = 1.

Thus, the phase space is populated in a very choppy way. For that reason, as well as the
simple fact that, despite some mathematics, we haven’t actually simplified anything, the
Klimontovich equation as a description of the plasma is not worth much practical use.
It does, however, form the basis of a statistical description of the plasma. But, for that,
we need some kind of averaging process. . .

II.2. The Liouville (“Leé-ooo-ville”) distribution
Just as the microscopic state of a plasma is completely specified by the coordinates

and momenta of its constituent particles, the statistical properties of the plasma are com-
pletely determined by the probabilistic distribution of said particles. Thus, we introduce

2Make sure you understand each of these steps. Namely, ask yourself: what if dXαi/dt involved
a drag force ∝Vαi? Because the property X(t)δ(x−X(t)) = xδ(x−X(t)) does not imply that
X(t)δ′(x−X(t)) = xδ′(x−X(t)), what is required of dXαi/dt for the following to hold?
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the distribution function PN of the coordinates and momenta of all of the N .
=
∑
αNα

particles in the system. Specifically,

PN
∏
α

dXα1dXα2 . . . dXαNα

gives the probability that, at time t, the phase-space coordinates of the particles of species
α have the values Xα1, Xα2, . . . , XαNα

in the range dXα1dXα2 . . . dXαNα
. This 6N -

dimensional phase space is called the “Γ space”. The microscopic state of the plasma
is expressed in the Γ space by a point {Xαi}. You can read all about this in §2.1.B of
Ichimaru (2004) and §7.2 of Krall & Trivelpiece (1973), but let me flag a few important
points:

(1) The system points {Xαi} do not interact with one another and so PN satisfies a
continuity equation of the Liouville kind:

DPN
Dt

.
=
∂PN
∂t

+
∑
α

Nα∑
i=1

dXαi

dt
· ∂PN
∂Xαi

= 0; (II.2.1)

i.e., the probability density is conserved along a characteristic trajectory in phase
space.

(2) Because PN is a probability, we have∫ ∏
α

dXα1dXα2 . . . dXαNα
PN

.
=

∫
dXall PN = 1,

where I’ve introduced the shorthand dXall to indicate integration over all of the
Γ space (including all species).

(3) In thermodynamic equilibrium, PN equals the Gibbs distribution

DN
.
=

1

Z exp

(
−H
T

)
, (II.2.2)

where H = H(Γ) is the Hamiltonian (kinetic plus potential energy), T is the
(species-independent!) equilibrium temperature (in energy units), and

Z .
=

∫ ∏
α

dXα1 . . . dXαNα
exp

(
−H
T

)
(II.2.3)

is the partition function. We will primarily be concerned with non-equilibrium
systems, and so we will need to know how PN evolves in time from a given starting
distribution PN (0). We’ll return to thermodynamic equilibrium now and then to
help develop our intuition (e.g., in §IV.6).

(4) It is profitable to think of PN in the statistical-mechanics ensemble sense: imagine
N replicas of our plasma, all macroscopically identical but microscopically differ-
ent, with the system points {Xαi} scattered over the Γ space. Then PN can be
defined from

PN
∏
α

dXα1dXα2 . . . dXαNα

.
= lim

N→∞

Ns

N , (II.2.4)

where Ns is the number of those system points contained in an infinitesimal volume∏
α dXα1 . . . dXαNα in the Γ space around {Xαi}. (Why can we do this for a

plasma? Hint: think about the accuracy of using a statistical description of an
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N -body system to describe any one realization of the system. What happens to
the model’s predictive power when N is not very large?)

II.3. Reduced distribution functions
With a probability distribution in hand, we can perform an ensemble average over

all these realizations of the plasma.3 This will turn our spiky “fine-grained” Fα into the
smooth “coarse-grained” distribution. (Greg Hammett’s words: “deterministic within any
particular realization, stochastic between different realizations”.) For example,∫

dXα2 . . . dXαNα

∏
β

dXβ1dXβ2 . . . dXβNβ
PN

is the joint probability that particle α1 has coordinates in (Xα1) to (Xα1 + dXα1)
irrespective of the coordinates of particles α2, . . . , αNα, β1, β2, . . . , βNβ , etc. This
reduced distribution function is called the one-particle distribution function. It can be
normalized to one’s tastes. I choose the following:4

fα(t,x)
.
= Nα

∫
dXα2 . . . dXαNα

∏
β

dXβ1dXβ2 . . . dXβNβ
PN , (II.3.1)

The operative word here is “irrespective”. Of course the probability of, say, an electron
being at some phase-space position x is impacted by an ion being nearby at x′ ≈ x,
but this information is not in fα. The influence of a near neighbor on the distribution
of a particle is contained in a less reduced description, e.g., the two-particle distribution
function:

fαβ(t,x,x
′)
.
= NαNβ

∫
dXα2 . . . dXαNαdXβ2 . . . dXβNβ

∏
γ

dXγ1dXγ2 . . . dXγNγ PN .

(II.3.2)
Then fαβ(t,x,x′)dxdx′/NαNβ is the joint probability that particle α1 is at x in interval
dx and particle β1 is at x′ in interval dx′, irrespective of all other particles.

Note three things:

(1) The species labels α and β could refer to the same type of particle (α = β), in
which case β1 → α2. (The exact numerical labels we affix to a particular particle
do not matter.) In this case, Nβ → Nα − 1.

(2) The two-particle distribution function fαβ is still a reduced distribution, but, as
opposed to the one-particle distribution function fα, it contains some information
about two-body interactions. If the particles do not interact, then fαβ = fαfβ , the
product of one-particle distribution functions. . . simple.

(3) One could of course generalize this process. For example, the three-particle distri-

3Krommes (2018) adorns random variables drawn from PN with a tilde. I find this notation
cumbersome and so do not employ it, but you should always be alert when dealing with random
variables.
4The reason for the Nα is so that

∫
dv fα(t,x) is the number density nα, a customary

normalization for the one-particle distribution function. Others might introduce a prefactor
V for volume, which makes

∫
dv fα(t,x) equal to the fraction of the mean number density

nα
.
= Nα/V in that volume.
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bution function is

fαβγ
.
= NαNβNγ

∫
dXall

dXα1dXβ1dXγ1
PN ; (II.3.3)

the four-particle distribution function is

fαβγδ
.
= NαNβNγNδ

∫
dXall

dXα1dXβ1dXγ1dXδ1
PN ;

and so on.

We combine this machinery with the Klimontovich distribution (II.1.1) as follows.
Each term in Fα =

∑
i δ(x −Xαi) describes the location of a particle in terms of its

initial conditions, and PN describes the probability of a particle having a certain set of
initial conditions, and so the reduced descriptions of PN can be expressed in terms of the
averages of products of Fα over all possible initial conditions. These averages are defined
by

⟨G(Fα, Fβ , . . . , Fγ)⟩ .=
∫

dXall PN G(Fα, Fβ , . . . , Fγ). (II.3.4)

Let’s put this to work.

II.4. Towards the Vlasov equation
Integrate the Klimontovich distribution (II.1.1) at a particular time over the Liouville

distribution (see (II.3.4)):

⟨Fα(t,x)⟩ .=
Nα∑
i=1

∫
dXall PN δ(x−Xαi(t))

= Nα

∫
dXall PN δ(x−Xα1(t)) (particle labels are arbitrary)

= Nα

∫
dXα2 . . . dXαNα

∏
β

dXβ1dXβ2 . . . dXβNβ
PN

.
= fα(t,x) (def’n of one-particle distribution function, (II.3.1)). (II.4.1)

Similarly, the average electromagnetic fields are obtained by averaging the microscopic
fields Em and Bm, which depend upon the positions of the (point-like) particles, over
the probable locations of all of the particles:

E
.
= ⟨Em⟩ =

∫
dXall PN Em and B

.
= ⟨Bm⟩ =

∫
dXall PN Bm. (II.4.2)

Using (II.4.1) and (II.4.2) in the Maxwell equations (II.1.5)–(II.1.8) gives

∇×E = −1

c

∂B

∂t
, (II.4.3)

∇×B =
1

c

∂E

∂t
+

4π

c

∑
α

qα

∫
dv vfα(t, r,v), (II.4.4)

∇·E = 4π
∑
α

qα

∫
dv fα(t, r,v), (II.4.5)

∇·B = 0. (II.4.6)

Simple. This is because Maxwell’s equations are linear.
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The difficulty is that the Klimontovich equation (II.1.9) is not. It has a quadratic
nonlinearity, which it what makes it so hard to solve. Let’s see that. The integral of
(II.1.9) over the Liouville distribution is

∂

∂t
⟨Fα⟩+ v ·∇⟨Fα⟩+

〈
qα
mα

(
Em +

v

c
×Bm

)
· ∂Fα
∂v

〉
= 0. (II.4.7)

The first two terms in (II.4.7) involve only the one-particle distribution function fα
(see (II.4.1)). The third and final term can be manipulated further by decomposing the
microscopic electromagnetic fields into their mean and fluctuating parts:

Em = ⟨Em⟩+ δE
.
= E + δE and Bm = ⟨Bm⟩+ δB

.
= B + δB. (II.4.8)

The fields E and B are smooth and coarse-grained; they are the “macroscopic” fields
obtained by averaging the microscopic fields over all possible positions of the plasma
particles, weighted by the Liouville distribution. The remainders, δE and δB, are spiky
and fine-grained; they capture the influence of the discrete nature of the particles on the
electromagnetic fields. Using (II.4.8) in the Klimontovich equation (II.4.7) and likewise
writing Fα = fα + δFα, we obtain[

∂

∂t
+ v ·∇+

qα
mα

(
E +

v

c
×B

)
· ∂
∂v

]
fα(t,x) = −

〈
qα
mα

(
δE +

v

c
× δB

)
· ∂δFα
∂v

〉
(II.4.9)

If there are externally imposed electric and magnetic fields, they can be added to E and
B, respectively.

At this point, some derivations discuss the size of the right-hand side of (II.4.9) versus
its left-hand side, the latter of which should look quite familiar to you. Let’s postpone
that for now and just see if we can obtain a general set of equations describing the
statistical mechanics of a plasma.

II.5. The BBGKY hierarchy
Let us concern ourselves with non-relativistic plasmas, such that the microscopic

magnetic field can be dropped and the Coulomb potential gives an electrostatic field

Em = − ∂

∂r

∑
α

qα

∫
dx′ Fα(t,x

′)

|r − r′| . (II.5.1)

Thus, δB = 0, B = Bext, and

δE = − ∂

∂r

∑
α

qα

∫
dx′ δFα(t,x

′)

|r − r′| . (II.5.2)

In this case,

E = Eext + ⟨Em⟩ = Eext −
∂

∂r

∑
α

qα

∫
dx′ fα(t,x

′)

|r − r′| . (II.5.3)

Then, using (II.4.9), the equation governing the one-particle distribution function is[
∂

∂t
+ v ·∇+

qα
mα

(
E +

v

c
×B

)
· ∂
∂v

]
fα(t,x)

=

〈
∂

∂r

∑
β

qαqβ
mα

∫
dx′ δFβ(t,x

′)

|r − r′| · ∂
∂v

δFα(t,x)

〉
. (II.5.4)



14 M. W. Kunz

Recall that, on scales L ≳ λD, individual particle particles are shielded and what remains
are fields due to the collective action of a large number of particles. Also recall that the
Coulomb potential is long-range, and so the fields decay on distances long compared to
the interparticle spacing (λD ≫ δr). This gives collective behavior: interaction of particles
with the mean (“macroscopic”) fields generated by all other particles. This means that
the entire left-hand side of (II.5.4) consists of terms that vary smoothly in phase space,
since it’s entirely insensitive to the discrete nature of the plasma. The right-hand side, by
contrast, is very sensitive, and is ultimately responsible for collisional effects. Note that
it is quadratic in δF . To solve this equation, we must write ⟨δFβδFα⟩ in terms of fα.

First, rearrange (II.5.4) to obtain

ḟα(t,x)
.
=

[
∂

∂t
+ v ·∇+

qα
mα

(
E +

v

c
×B

)
· ∂
∂v

]
fα(t,x)

=
∑
β

qαqβ
mα

∫
dx′ ∂

∂r

1

|r − r′| ·
∂

∂v

〈
δFα(t,x)δFβ(t,x

′)
〉
. (II.5.5)

Next, write〈
δFα(t,x)δFβ(t,x

′)
〉
=
〈
(Fα − fα)(Fβ − fβ)

〉
=
〈
FαFβ

〉
−
〈
fαFβ

〉
−
〈
Fαfβ

〉
+
〈
fαfβ

〉
=
〈
FαFβ

〉
− fαfβ − fαfβ + fαfβ

=
〈
Fα(t,x)Fβ(t,x

′)
〉
− fα(t,x)fβ(t,x

′). (II.5.6)

We must calculate the correlation ⟨FαFβ⟩ in (II.5.6) using the Klimontovich distributions
Fα(t,x) =

∑Nα

i=1 δ(x−Xαi(t)) and Fβ(t,x′) =
∑Nβ

j=1 δ(x
′−Xβj(t)). To do so, first split

up the sums into like-particle and unlike-particle pieces:

〈
Fα(t,x)Fβ(t,x

′)
〉
=

∫
dXall

Nα∑
i=1

Nβ∑
j=1

PN δ(x−Xαi(t))δ(x
′ −Xβj(t))

= δαβ

∫
dXall

Nα∑
i=1

Nα∑
j=1

PN δ(x−Xαi(t))δ(x
′ −Xαj(t))

+ (1− δαβ)

∫
dXall

Nα∑
i=1

Nβ∑
j=1

PN δ(x−Xαi(t))δ(x
′ −Xβj(t)).

(II.5.7)

Next, separate out i = j in the like-particle piece:

〈
Fα(t,x)Fβ(t,x

′)
〉
= δαβ

[∫
dXall

Nα∑
i=1

PN δ(x−Xαi(t))δ(x
′ − x)

+

Nα∑
i=1

Nα∑
j ̸=i

∫
dXall PN δ(x−Xαi(t))δ(x

′ −Xαj(t))

]

+ (1− δαβ)

∫
dXall

Nα∑
i=1

Nβ∑
j=1

PN δ(x−Xαi(t))δ(x
′ −Xβj(t)).

(II.5.8)

Now use the definitions of the one- and two-particle distribution functions (see (II.3.1)
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and (II.3.2)) to find

〈
Fα(t,x)Fβ(t,x

′)
〉
= δαβ

[
δ(x′ − x)fα(t,x) +

(
Nα − 1

Nα

)
fαα(t,x,x

′)

]
+ (1− δαβ)fαβ(t,x,x

′)

= δαβδ(x− x′)fα(t,x) + fαβ(t,x,x
′) +O

(
1

Nα

)
. (II.5.9)

Substituting (II.5.9) into (II.5.5) and dropping the O(1/Nα) term, we see that the first
term ∝δαβδ(x − x′) vanishes. This is because self-interactions with the Coulomb force
are excluded, i.e., ∫

dr′ δ(r − r′)
∂

∂r

1

|r − r′| = 0.

Thus, equation (II.5.5) becomes

ḟα = −
∑
β

qαqβ
mα

∫
dx′ ∂

∂r

1

|r − r′| ·
∂

∂v

[
fα(t,x)fβ(t,x

′)− fαβ(t,x,x
′)
]
. (II.5.10)

At this point, it’s worth reiterating the definitions of fα and fαβ . fα is the one-
particle distribution function – the probability that a particle of species α has phase-
space position x at time t in the interval dx regardless of all other particles. No
particle–particle interactions are encoded in fα. fαβ , on the other hand, is the joint
probability that a particle of species α has phase-space position x at time t and a
particle of species β has phase-space position x′ at time t, regardless of all other
particles. Now, suppose all particles were truly uncorrelated (i.e., no collisions). Then
fαβ(t,x,x

′) = fα(t,x)fβ(t,x
′), and the right-hand side of (II.5.10) would vanish. This

would return the Vlasov equation, ḟα = 0. This suggests that we introduce some function,
say, gαβ(t,x,x′), which captures their difference:

fαβ = fαfβ + gαβ . (II.5.11)

This is the first step in what is known as the Mayer cluster (or cumulant) expansion.
It splits the statistically independent pieces of fαβ , which have multiplicative proba-
bilities, apart from the statistically dependent piece. It’s almost always useful to split
off the piece of a joint probability distribution that corresponds to uncorrelated events.
Nicholson (1983) on page 54 of his textbook has a cute analogy concerning correlated
and uncorrelated coin tosses and die rolls. I prefer Yahtzee: the difference between rolling
each die separately versus putting them all in the can and shaking them all and rolling
them all out at the same time, so that their mutual collisions influence which side of each
die faces up when the system comes to rest.

So, now we have from (II.5.10) and (II.5.11) that

ḟα =
∑
β

qαqβ
mα

∫
dx′ ∂

∂r

1

|r − r′| ·
∂

∂v
gαβ(t,x,x

′) (II.5.12)

This is the first step in what is known as the BBGKY hierarchy (Bogoliubov, Born, Green,
Kirkwood, Yvon; 1935–1949): the evolution of the one-particle distribution depends on
correlations between two particles.
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Let us proceed to find an equation for how the two-particle correlation gαβ evolves:

∂

∂t
gαβ(t,x,x

′) =
∂

∂t

[
fαβ(t,x,x

′)− fα(t,x)fβ(t,x
′)
]

=
∂

∂t

[〈
Fα(t,x)Fβ(t,x

′)
〉
− δαβδ(x− x′) fα(t,x)− fα(t,x)fβ(t,x

′)
]

=

〈
∂Fα(t,x)

∂t
Fβ(t,x

′) + Fα(t,x)
∂Fβ(t,x

′)

∂t
− δαβδ(x− x′)

∂fα(t,x)

∂t

− ∂fα(t,x)

∂t
fβ(t,x

′)− fα(t,x)
∂fβ(t,x

′)

∂t

〉
. (II.5.13)

Using the Klimontovich equation (II.1.9) and the kinetic equation for the one-particle
distribution function (II.5.12), and defining

a
.
=

qα
mα

[
E(t, r) +

v

c
×B(t, r)

]
,

a′ .=
qβ
mβ

[
E(t, r′) +

v′

c
×B(t, r′)

]
,

equation (II.5.13) becomes

∂gαβ(t,x,x
′)

∂t

=

〈[
− v ·∇Fα(t,x)− a · ∂Fα(t,x)

∂v
− qα
mα

δE(t, r) · ∂Fα(t,x)
∂v

]
Fβ(t,x

′)

+ Fα(t,x)

[
− v′ ·∇′Fβ(t,x

′)− a′ · ∂Fβ(t,x
′)

∂v′ − qβ
mβ

δE(t, r′) · ∂Fβ(t,x
′)

∂v′

]
− δαβδ(x− x′)

[
− v ·∇fα(t,x)− a · ∂fα(t,x)

∂v

+
∑
γ

qαqγ
mα

∫
dx′′ ∂

∂r

1

|r − r′′| ·
∂gαγ(t,x,x

′′)

∂v

]
−
[
− v ·∇fα(t,x)− a · ∂fα(t,x)

∂v

+
∑
γ

qαqγ
mα

∫
dx′′ ∂

∂r

1

|r − r′′| ·
∂gαγ(t,x,x

′′)

∂v

]
fβ(t,x

′)

− fα(t,x)

[
− v′ ·∇′fβ(t,x

′)− a′ · ∂fβ(t,x
′)

∂v′

+
∑
γ

qβqγ
mβ

∫
dx′′ ∂

∂r′
1

|r′ − r′′| ·
∂gβγ(t,x

′,x′′)

∂v′

]〉
. (II.5.14)

Using (II.5.9) with fαβ = fαfβ + gαβ (see (II.5.11)) in (II.5.14) gives〈
Fα(t,x)Fβ(t,x

′)
〉
= fα(t,x)fβ(t,x

′) + gαβ(t,x,x
′) + δαβδ(x− x′)fα(t,x);

substituting this into (II.5.14) eliminates a lot of terms! Suppressing the time argument
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for economy of notation,

∂gαβ(x,x
′)

∂t
= − qα

mα

〈
δE(r) · ∂Fα(x)

∂v
Fβ(x

′)

〉
− qβ
mβ

〈
Fα(x) δE(r′) · ∂Fβ(x

′)

∂v′

〉
−
(
v ·∇+ a · ∂

∂v
+ v′ ·∇′ + a′ · ∂

∂v′

)
gαβ(x,x

′)

− fβ(x
′)
∑
γ

qαqγ
mα

∫
dx′′ ∂

∂r

1

|r − r′′| ·
∂gαγ(x,x

′′)

∂v

− fα(x)
∑
γ

qβqγ
mβ

∫
dx′′ ∂

∂r′
1

|r′ − r′′| ·
∂gβγ(x

′,x′′)

∂v′

− δαβδ(x− x′)
∑
γ

qαqγ
mα

∫
dx′′ ∂

∂r

1

|r − r′′| ·
∂gαγ(x,x

′′)

∂v
, (II.5.15)

where the following identity has been used:(
v ·∇+ a · ∂

∂v
+ v′ ·∇′ + a′ · ∂

∂v′

)
δαβδ(x− x′) = 0.

Writing

δE(r) = − ∂

∂r

∑
γ

qγ

∫
dx′′ δFγ(x

′′)

|r − r′′| ,

δE(r′) = − ∂

∂r′

∑
γ

qγ

∫
dx′′ δFγ(x

′′)

|r′ − r′′| ,

equation (II.5.15) becomes[
∂

∂t
+ v ·∇+ a · ∂

∂v
+ v′ ·∇′ + a′ · ∂

∂v′

]
gαβ(x,x

′)

=
∑
γ

qαqγ
mα

∫
dx′′ ∂

∂r

1

|r − r′′| ·
∂

∂v

〈
Fα(x)Fβ(x

′)δFγ(x
′′)
〉

+
∑
γ

qβqγ
mβ

∫
dx′′ ∂

∂r′
1

|r′ − r′′| ·
∂

∂v′

〈
Fα(x)Fβ(x

′)δFγ(x
′′)
〉

− fβ(x
′)
∑
γ

qαqγ
mα

∫
dx′′ ∂

∂r

1

|r − r′′| ·
∂gαγ(x,x

′′)

∂v

− fα(x)
∑
γ

qβqγ
mβ

∫
dx′′ ∂

∂r′
1

|r′ − r′′| ·
∂gβγ(x

′,x′′)

∂v′

− δαβδ(x− x′)
∑
γ

qαqγ
mα

∫
dx′′ ∂

∂r

1

|r − r′′| ·
∂gαγ(x,x

′′)

∂v
. (II.5.16)

Things are starting to look better.
Note the appearance in (II.5.16) of the triple correlation ⟨FαFβ δFγ⟩. Following a

similar calculation that led to (II.5.9) for ⟨FαFβ⟩ gives〈
Fα(x)Fβ(x

′)Fγ(x
′′)
〉
= fαβγ(x,x

′,x′′)

+ δαβδ(x− x′) fαγ(x,x
′′) + δαγδ(x− x′′) fαβ(x,x

′) + δβγδ(x
′ − x′′) fαγ(x,x

′′)

+ δαβδβγδ(x− x′)δ(x′ − x′′)fα(x), (II.5.17)
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so that〈
Fα(x)Fβ(x

′)δFγ(x
′′)
〉
= fαβγ(x,x

′,x′′)− fαβ(x,x
′)fγ(x

′′)

+ δαβδ(x− x′)
[
fαγ(x,x

′′)− fα(x)fγ(x
′′)
]
+ δαγδ(x− x′′)fαβ(x,x

′)

+ δβγδ(x
′ − x′′)fαγ(x,x

′′) + δαβδβγδ(x− x′)δ(x′ − x′′)fα(x). (II.5.18)

To make further progress, write the three-particle distribution function fαβγ using the
Mayer cluster expansion,

fαβγ(x,x
′,x′′) = fα(x)fβ(x

′)fγ(x
′′)

+ fα(x)gβγ(x
′,x′′) + fβ(x

′)gαγ(x,x
′′) + fγ(x

′′)gαβ(x,x
′)

+ hαβγ(x,x
′,x′′), (II.5.19)

where hαβγ is the three-particle correlation function. Using (II.5.19) alongside fαβ =
fαfβ + gαβ (see (II.5.11)), equation (II.5.18) becomes〈
Fα(x)Fβ(x

′)δFγ(x
′′)
〉
= fα(x)gβγ(x

′,x′′) + fβ(x
′)gαγ(x,x

′′)

+ δβγδ(x
′ − x′′)

[
fα(x)fγ(x

′′) + gαγ(x,x
′′)
]
+ δαγδ(x− x′′)

[
fα(x)fβ(x

′) + gαβ(x,x
′)
]

+ δαβδ(x− x′)
[
δβγδ(x

′ − x′′)fα(x) + gαγ(x,x
′′)
]
+ hαβγ(x,x

′,x′′). (II.5.20)

Plugging (II.5.20) back into (II.5.16) gives, after much simplification,(
∂

∂t
+ v ·∇+ a · ∂

∂v
+ v′ ·∇′ + a′ · ∂

∂v′

)
gαβ(t,x,x

′)

−
∑
γ

qαqγ
mα

∫
dx′′ ∂

∂r

1

|r − r′′| ·
∂fα(t,x)

∂v
gβγ(t,x

′,x′′)

−
∑
γ

qβqγ
mβ

∫
dx′′ ∂

∂r′
1

|r′ − r′′| ·
∂fβ(t,x

′)

∂v′ gαγ(t,x,x
′′)

=
∂

∂r

qαqβ
|r − r′| ·

(
1

mα

∂

∂v
− 1

mβ

∂

∂v′

)[
fα(t,x)fβ(t,x

′) + gαβ(t,x,x
′)
]

+
∑
γ

qγ

∫
dx′′

(
1

mα

∂

∂r

qα
|r − r′′| ·

∂

∂v
+

1

mβ

∂

∂r′
qβ

|r′ − r′′| ·
∂

∂v′

)
hαβγ(t,x,x

′,x′′)

+ self-interaction terms that vanish. (II.5.21)

Ugh! The evolution of gαβ depends on hαβγ !
We could keep going, but the set of equations we’ll get is just as difficult to solve than

the original Klimontovich equation. We must break the hierarchy at some point, in order
to obtain a closed system of equations.

II.6. Closing the chain of statistical equations
There is a natural small parameter in a weakly coupled plasma:

Λ−1 .
= (nλ3D)

−1 ≪ 1; (II.6.1)

i.e., there are many particles in a Debye sphere. Recall that this also means that the
average potential energy of the plasma is small compared to the average kinetic energy.
To the extent that the potential energy due to interactions can be neglected, the plasma
behaves like an ideal gas; thus, Λ−1 measures the size of departures of the thermodynamic
properties of the plasma from those of an ideal gas.
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Before explaining what this means for our BBGKY hierarchy, let us compare this
situation with that of a gas of neutral particles. In that situation, the range of the
interaction force r0 is much smaller than the mean spacing δr of the particles ∼n−1/3.
Then it makes sense to expand particle correlations in the small parameter nr30, and thus
neglect the triple correlation. In other words, particle–particle collisions are sufficiently
rare due to the small cross section that three-body collisions are much rarer than two-
body collisions, with the presence of a third body affecting the collision between two
bodies at an asymptotically small level. In a plasma, by contrast, r0 ≈ λD ≫ n−1/3

implies nr30 ≫ 1. This is because Debye screening limits the range of the interaction
potential, but to a value that is still large compared to the average interparticle separation
(i.e., the Coulomb force is long range compared to the scattering force of direct two-body
collisions, but has its long range attenuated by Debye screening). However, this does
not mean that three-body interactions are more important than two-body interactions,
despite nr30 ≫ 1 for a plasma. This is because, even though a charged particle is
interacting with all the particles in its Debye sphere and thus undergoes ∼Λ simultaneous
Coulomb collisions, such collisions are weak, in the sence that the effect of, say, particle
A on particle B’s orbit is small enough that the collision between particle B and another
particle C is practically unaffected. This is because collisions in an ionized plasma result
in small-angle (rather than large-angle) deflections. Another way of saying this is that the
joint distribution fαβ of two particles in a small volume (n−1 ≪ V ≪ λ3D) is determined
by the many particles outside of the volume rather than by the separation of the two
particles from one another; i.e., fαβ ≈ fαfβ . We will prove this explicitly in due course,
but for now we use these arguments to order

fα ∼ O(1),

gαβ ∼ O(Λ−1),

hαβγ ∼ O(Λ−2),

. . .

Thus, the BBGKY hierarchy can be truncated by dropping, say, three-body interactions
(hαβγ → 0). In this case, our closed set of kinetic equations is:

(
∂

∂t
+ v ·∇+ a · ∂

∂v

)
fα(t,x) =

∑
β

qαqβ
mα

∫
dx′ ∂

∂r

1

|r − r′| ·
∂gαβ(t,x,x

′)

∂v
, (II.6.2)

(
∂

∂t
+ v ·∇+ a · ∂

∂v
+ v′ ·∇′ + a′ · ∂

∂v′

)
gαβ(t,x,x

′)

−
∑
γ

qαqγ
mα

∫
dx′′ ∂

∂r

1

|r − r′′| ·
∂fα(t,x)

∂v
gβγ(t,x

′,x′′)

−
∑
γ

qβqγ
mβ

∫
dx′′ ∂

∂r′
1

|r′ − r′′| ·
∂fβ(t,x

′)

∂v′ gαγ(t,x,x
′′)

=
∂

∂r

qαqβ
|r − r′| ·

(
1

mα

∂

∂v
− 1

mβ

∂

∂v′

)[
fα(t,x)fβ(t,x

′) + gαβ(t,x,x
′)
]
, (II.6.3)
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where

a
.
=

qα
mα

[
E(t, r) +

v

c
×B(t, r)

]
,

a′ .=
qβ
mβ

[
E(t, r′) +

v′

c
×B(t, r′)

]
,

E(t, r) = Eext(t, r)−
∂

∂r

∑
γ

qγ

∫
dx′′ fγ(t,x

′′)

|r − r′′| ,

B(t, r) = Bext(t, r).

Physical description of each term in (II.6.3):

(1) RHS term ∝fαfβ : establishes a two-particle correlation between initially uncorre-
lated particles α and β caused by a binary Coulomb interaction.

(2) RHS term ∝gαβ : drives changes to an existing two-particle correlation caused by
a binary Coulomb interaction between α and β.

(3) LHS first term ∝ġαβ : conservatively advects the two-particle correlation gαβ
through phase space; the a · ∂/∂v and a′ · ∂/∂v′ terms represent the effect of
the mean field on the two-particle correlation.

(4) LHS second term ∝fαgβγ : modifies correlations between α and β, due to Coulomb
interactions between particle α and all other particles γ in the bath that are
correlated with β. This is an important shielding term, in which a typical particle
in the bath both mediates and modifies the correlation between particles α and β.

(5) LHS third term ∝fβgαγ : modifies correlations between α and β, due to Coulomb
interactions between particle β and all other particles γ in the bath that are
correlated with α. This is another important shielding term.

II.7. The Vlasov equation
Solutions to (II.6.3) are difficult to come by. We will obtain one solution – the Balescu-

Lenard equation – in due course (§IV). For now, let us drop two-particle correlations
(gαβ → 0) to find the Vlasov equation:

ḟα
.
=

[
∂

∂t
+ v ·∇+

qα
mα

(
E +

v

c
×B

)
· ∂
∂v

]
fα(t,x) = 0 (II.7.1)

Thus, the one-particle distribution function fα is our old familiar friend, customarily
referred to as the distribution function of the plasma. The assumption here is that the
phase densities at different points in 6D phase space are completely independent (but for
collective interactions via electromagnetic fields). Let us use (II.6.3) to see whether this
is a good assumption.

First, by ordering ∂/∂v ∼ v−1
th and |r − r′| ∼ λD, we find that the “collision operator”

on the right-hand side of (II.6.2) satisfies(
∂f

∂t

)
c

∼ q2

m
v3th

λD
vth

g ∼ v3th
n
ωpg.

Second, adopting f ∼ nv−3
th and ∂g/∂t ∼ ωpg, where ωp is the plasma frequency, equation
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(II.6.3) implies

ωpg ∼ q2

λ2D

f2

mvth
∼ q2

λ2D

f

mvth

n

v3th
∼ ωp

λ3D

1

v3th
f.

Thus, (
∂f

∂t

)
c

∼ 1

nλ3D
ωpf =

1

Λ
ωpf ≪ ωpf. (II.7.2)

As Λ→ ∞, we obtain the Vlasov equation.
Before we do anything with the Vlasov equation, a comment is in order. Consider the

following excerpt from page 38 of Ichimaru (2004):

It is interesting to note a formal similarity between the Vlasov equation and
the Klimontovich equation. . . Yet it is quite important also to note the funda-
mental difference in the physical contents between the two equations: while the
Klimontovich equation deals with the microscopic distribution function, containing
all the fine structures arising from the individuality of the particles, the Vlasov
equation is concerned with a coarse-grained distribution function obtained from a
statistical average of the microscopic distribution function. The fluctuations due to
discreteness of the particles have not been retained in the Vlasov equation.

PART III

Properties of the Vlasov equation
By now, you should be familiar with the Vlasov equation and how to solve it. But there
is a reason for revisiting it. Actually, there are two reasons: (1) we are going to solve the
Landau problem in a slightly more sophisticated way than is standard, which will allow
for a straightforward solution of the gαβ equation (II.6.3) to obtain the Balescu-Lenard
operator; and (2) it is worthwhile revisiting the notion of phase mixing and the generation
of small-scale structure in velocity space. This course is on irreversibility – it’s probably
best to understand reversibility first! This will afford a preview of key concepts in the
course: entropy, conservation of free energy, dielectric response to a test particle, etc.

III.1. Time reversibility and entropy
First, let us look at the Vlasov equation (II.7.1), rewritten here:

ḟα(t,x)
.
=

[
∂

∂t
+ v ·∇+

qα
mα

(
E +

v

c
×B

)
· ∂
∂v

]
fα(t,x) = 0. (III.1.1)

Note that setting t → t′
.
= −t, r → r′

.
= r, v → v′ .

= −v, fα → f ′α
.
= fα(−t, r,−v),

E → E′ .= E(−t, r), and B → B′ .= −B(−t, r) in (III.1.1) changes nothing:[
∂

∂t′
+ v′ ·∇′ +

qα
mα

(
E′ +

v′

c
×B′

)
· ∂

∂v′

]
f ′α(t

′,x′) = 0.

Thus, the Vlasov–Maxwell set of equations is time-reversible. All information about the
phase-space fluid elements is preserved for all time.

Next, calculate the evolution of the entropy,

S .
= −

∑
α

∫
dx fα ln fα, (III.1.2)
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in a Vlasov plasma:
dS
dt

= −
∑
α

∫
dx

∂fα
∂t

(
1 + ln fα

)
= 0. (III.1.3)

Entropy is constant. What a comforting thought.5 In what follows, we will investigate
how this constancy is maintained (and ultimately broken) in a plasma with fluctuations.

III.2. Linearized Vlasov equation
It will be useful for later in the course to consider a spatially homogeneous, charge-

neutral plasma in the electrostatic limit (i.e., the v×B term is dropped). Allowing for
fluctuations in the electric field and the distribution function about this equilibrium,
denoted by a δ, the Vlasov equation (III.1.1) becomes(

∂

∂t
+ v ·∇

)
δfα +

qα
mα

δE · ∂f0α
∂v

= − qα
mα

δE · ∂δfα
∂v

, (III.2.1)

where f0α is the equilibrium distribution function of species α. The fluctuating electric
field δE is determined from Poisson’s equation:

δE(t, r)
.
= −∇φ(t, r) = − ∂

∂r

∑
β

qβ

∫
dx′ δfβ(t,x

′)

|r − r′| , (III.2.2)

where φ is the electrostatic potential and, as before, β is a dummy species index over
which to sum. Thus, the right-hand side of (III.2.1) is nonlinear in the fluctuation
amplitudes; let us drop it under the assumption that the fluctuations of interest are
small. Then, our linearized Vlasov equation reads(

∂

∂t
+ v ·∇

)
δfα −

∑
β

qαqβ
mα

∂f0α
∂v

· ∂
∂r

∫
dx′ δfβ(t,x

′)

|r − r′| = 0. (III.2.3)

This equation is customarily solved using Laplace–Fourier techniques. We will use a
Green’s function approach, which will also allow us to consider a non-zero right-hand
side of (III.2.3) if there are sources/sinks or perhaps initial conditions turned on at some
special time (e.g., t = 0).

III.3. Green’s functions
The idea behind the Green’s function approach to solving (III.2.3) is to write(

∂

∂t
+ L

)
Gαβ(t,x; t

′,x′) = δαβδ(t− t′)δ(x− x′), (III.3.1)

where L is the Vlasov operator satisfying

LGαβ = v ·∇Gαβ −
∑
γ

qαqγ
mα

∂f0α
∂v

· ∂
∂r

∫
dx′′ Gγβ(t,x

′′; t′,x′)

|r − r′′| (III.3.2)

for some fα = fα(t,x), and solve for the Green’s function, Gαβ(t,x; t′,x′). Once we know
Gαβ , then

δfα(t,x) =
∑
β

∫
dx′Gαβ(t,x; 0,x

′) δfβ(0,x
′) (III.3.3)

5In fact, any integral of a function Q = Q(f) is conserved by the Vlasov equation; such quantities
are commonly referred to as Casimir invariants.
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for some t > 0, given the initial condition δfα(0,x); or, if there is an additional
source/sink Sαβ(t), then

δfα(t,x) =
∑
β

∫
dx′Gαβ(t,x; 0,x

′) δfβ(0,x
′)

+

∫ t

0

dt′
∑
β

∫
dx′Gαβ(t,x; t

′,x′)Sαβ(t
′). (III.3.4)

To remind you: the reason you can use this technique is because of the linearity of the
operator. One can divide up the source into a collection of impulses:

S(t) =

∫ ∞

−∞
dt′ δ(t− t′)S(t′),

the response to each being given by the appropriate Green’s function. Note that the
Green’s function does not care about the nature of the source. (We’re always integrating
forwards in time in this course, so backward-propagating solutions will not be discussed.)

We wish to solve (III.2.3) using this technique. Before doing so, let us establish some
conventions. . .

III.4. Fourier and Laplace transforms
The (3D spatial) Fourier and inverse-Fourier transforms are, respectively,

f(k) =

∫
dr

(2π)3
e−ik · rf(r), (III.4.1a)

f(r) =

∫
dk eik · rf(k). (III.4.1b)

The convention here is the same as is used in the textbooks by Nicholson (1983), Krall
& Trivelpiece (1973), Ichimaru (2004), and Montgomery (1971) (although K&T are
inconsistent – their Chapter 10 and the latter part of Chapter 11 shift the factor of 2π to
be in the inverse-Fourier transform). Klimontovich (1967) and Krommes (2018) both use
the definitions f(k) =

∫
dr exp(−ik · r)f(r) and f(r) = (2π)−3

∫
dk exp(ik · r)f(k). So,

be aware of factors of (2π)3 differing between these notes and those texts.
This Fourier convention is such that:

f(r) = 1 ⇐⇒ f(k) = δ(k),

f(r) = exp(±iq · r) ⇐⇒ f(k) = δ(k ∓ q),

which is why I prefer it. Another advantage is that the Dirac delta is then simply related
to the Kronecker delta via

δ(k − k0) ⇐⇒ |∆k|−1δk,k0 ,

where |∆k| (= ∆kx∆ky∆kz in 3D) is the spacing between the discrete wavenumbers in
the Fourier series

f(r) =
∑
k

eik · rfk, where k =

(
2πnx
Lx

,
2πny
Ly

,
2πnz
Lz

)
(III.4.2)

with integer (nx, ny, nz) and domain size (Lx, Ly, Lz).
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In HW01 you will prove the following:

i .

∫
dr

(2π)3
e−ik · rf(r ) = 1

2π2k

∫ ∞

0

dr r sin kr f(r ), where r .
= |r| in 3D;

(III.4.3)

ii .

∫
dr

(2π)2
e−ik · rf(R) =

1

2π

∫ ∞

0

dRRJ0(kR) f(R), where R
.
= |r| in 2D;

(III.4.4)

iii .

∫
dr

(2π)3
e−ik · r

∫
dr′

(2π)3
e−ik′ · r′

f(r − r′) = f(k)δ(k + k′). (III.4.5)

Thus, the Fourier transform of the 3D Coulomb potential is∫
dr

(2π)3
e−ik · r

∫
dr′

(2π)3
e−ik′ · r′ 1

|r − r′| =
1

2π2k2
δ(k + k′). (III.4.6)

This will come in handy.
The (temporal) Laplace and inverse-Laplace transforms are, respectively,

f(ω) =

∫ ∞

0

dt eiωtf(t), (III.4.7a)

f(t) =

∫
L

dω

2π
e−iωtf(ω), (III.4.7b)

where “L” denotes the Laplace (or Bromwich) contour, which is a straight line in the
complex plane parallel to the real ω axis and intersecting the imaginary ω axis at Im(ω) =
σ:

If there exists a real number σ > 0 such that |f(t)| < exp(σt) as t→ ∞, then the Laplace
transform integral exists for all values of ω such that Im(ω) ⩾ σ. This convention follows
Nicholson (1983). The reason I like this convention is that performing the integration
along the Laplace contour often brings in a 2πi from residues, thus cancelling the 2π in
the denominator of (III.4.7b).

III.5. The Vlasov response function
Back to (III.2.3), with our Fourier and Laplace transforms in hand. Note that, since

we have taken the background to be spatially homogeneous, Gαβ can only depend on the
combination r − r′; this follows from translational invariance. Then, writing

Gαβ(t,x; t
′,x′) =

∫
dk eik · (r−r′)Gαβ(t,k,v; t

′,v′), (III.5.1)
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and likewise for 1/|r − r′|, equation (III.3.1) becomes(
∂

∂t
+ ik ·v

)
Gαβ(t,k,v; t

′,v′)−
∑
γ

qαqγ
mα

4πik

k2
· ∂f0α
∂v

∫
dv′′Gγβ(t,k,v

′′; t′,v′)

= δαβδ(t− t′)δ(v − v′). (III.5.2)

Next, we Laplace transform in time to transform the ∂/∂t operator. Gαβ may then be
analytically continued into the lower half of the ω plane; there it has poles, corresponding
to the roots of the plasma dielectric function D(ω,k) (defined below).6 The Laplace
contour extends from −∞ to +∞ along a path in the upper half plane in such a way
that all poles lie below it. For t > 0, we can close the contour with an infinite semi-circle
in the lower half plane, with Cauchy’s theorem used for the inverse transform. For t < 0,
we can close the contour in the upper half plane, giving Gαβ = 0 for t < 0.

Proceeding, we find

Gαβ(ω,k,v;v
′) =

δαβδ(v − v′)

−iω + ik ·v

+
∑
γ

qαqγ
mα

4πik

k2
· ∂f0α/∂v

−iω + ik ·v

∫
dv′′Gγβ(ω,k,v

′′;v′). (III.5.3)

To eliminate the integral of Gγβ , do
∑
α qα

∫
dv of (III.5.3), which yields∑

α

qα

∫
dvGαβ(ω,k,v;v

′) =
qβ

−iω + ik ·v

+
∑
α

q2α
mα

∫
dv

4πik

k2
· ∂f0α/∂v

−iω + ik ·v

[∑
γ

qγ

∫
dv′′Gγβ(ω,k,v

′′;v′)

]
. (III.5.4)

Changing the dummy index α and dummy integration variable v on the left-hand side
of (III.5.4) to γ and v′′, respectively, we obtain∑

γ

qγ

∫
dv′′Gγβ(ω,k,v

′′;v′) =
1

D(ω,k)

qβ
−iω + ik ·v , (III.5.5)

where

D(ω,k)
.
= 1 +

∑
γ

q2γ
mγ

4πk

k2
·
∫

dv′′ ∂f0γ/∂v
′′

ω − k ·v′′ (III.5.6)

is the dielectric function describining longitudinal waves in a Vlasov plasma. (It is
customary to add a small imaginary positive number, +i0, to the denominator of the
integrand when causality must be respected.) Plugging (III.5.5) into (III.5.3), we obtain
the Vlasov response function

Gαβ(ω,k,v;v
′) =

δαβδ(v − v′)

−iω + ik ·v

+
qαqβ
mα

4πik

k2
· ∂f0α
∂v

1

D(ω,k)

1

−iω + ik ·v
1

−iω + ik ·v′

(III.5.7)

The first term on the right-hand side of (III.5.7) represents a free-particle propagator

6Here, and throughout these notes, we are assuming that the plasma is stable, so that all the
poles of D lie in the lower half of the complex plane.
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(thus, the δαβ factor – a particle doesn’t change flavors or interact just by propagating).
The second term accounts for the effect of Coulomb interactions; it is the polarization
response of the plasma to the test particle represented by the first term. You should know
all about D(ω,k) from the Waves course.

To get δfα(t,x), we just integrate Gαβ(t,x; 0,x
′). Or, better yet, let us obtain

δfα(ω,k,v) in terms of Gαβ(ω,k,v;v′) and then inverse-Fourier-Laplace transform that
instead:

δfα(t,x) =
∑
β

∫
dx′Gαβ(t,x; 0,x

′)δfβ(0,x
′)

=⇒ δfα(ω,k,v) =
∑
β

∫
dv′Gαβ(ω,k,v;v

′)δfβ(t = 0,k,v′). (III.5.8)

Using (III.5.7) for Gαβ , equation (III.5.8) becomes

δfα(ω,k,v) =
δfα(t = 0,k,v)

−iω + ik ·v

+
∑
β

qαqβ
mα

4πik

k2
· ∂f0α
∂v

1

D(ω,k)

1

−iω + ik ·v

∫
dv′ δfβ(t = 0,k,v′)

−iω + ik ·v′ .

(III.5.9)

Voila! Then

δfα(t,k,v) =

∫
L

dω

2π
e−iωtδfα(ω,k,v)

=

∫
L

dω

2π
e−iωt δfα(t = 0,k,v)

−iω + ik ·v

+
∑
β

qαqβ
mα

4πik

k2
· ∂f0α
∂v

∫
L

dω

2π

e−iωt

D(ω,k)

1

−iω + ik ·v

∫
dv′ δfβ(t = 0,k,v′)

−iω + ik ·v′ .

(III.5.10)

To do the integrals in (III.5.10), the Laplace contour must be shifted, with δfα(ω,k,v)
being analytically continued everywhere to Im(ω) → −∞ without the contour crossing
the poles:

If it’s been awhile since you performed such a task, here is a reminder along with some cautionary
statements. Push the contour down towards Im(ω) → −∞, draping it over and encircling the
poles as you go. The contributions from the horizontal parts of the contour are exponentially
small in time (one hopes. . . keep reading); and the contributions to the integral from the
segments leading towards and away from the poles cancel. All that’s left are those circles around
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the poles, and those give the residues by Cauchy’s formula: ±2πi times the sum of the residues
for a counter-clockwise (clockwise) contour. Regarding the “one hopes”. . . if δfβ(t = 0,k,v) is
proportional to, say, a Maxwellian distribution, then the final integral in (III.5.10) will contain
a term ∝ exp(−ω2/k2∥v

2
th), which can be large at large Im(ω). In this case, the integral along the

horizontal part of the contour vanishes only at t→ ∞, and the above approach isn’t necessarily
the best way to determine the finite-time behavior of δfα (it relies on the smallness of exp(−iωt)).
Other requirements are that the initial conditions are entire and that there are a finite number
of simple poles.

Then the potential

φ(ω,k) =
4π

k2
1

D(ω,k)

∑
β

qβ

∫
dv′ δfβ(t = 0,k,v′)

−iω + ik ·v′ (III.5.11)

must have the form ∑
j

cj
−i(ω − ωj)

+A(ω),

where cj are the residues and A(ω) is the analytic part of the solution, so that

φ(t,k) =

∫
L

dω

2π
e−iωt 4π

k2
1

D(ω,k)

∑
β

qβ

∫
dv′ δfβ(t = 0,k,v′)

−iω + ik ·v′

=

∫
L

dω

2π
e−iωt

[∑
j

cj
−i(ω − ωj)

+A(ω)

]
=
∑
j

cje
−iωjt (III.5.12)

by Cauchy’s residue theorem. Evidently, the k-space electrostatic potential φ(t,k) is a
sum of damped modes. The poles here are the zeros of the dielectric function, D(ω,k) = 0
(there can also be a pole due to δfβ(t = 0,k,v′) if, say, δfβ(t = 0,k,v′) ∝ δ(v′ − V0)).
Let us rewrite (III.5.9) using this:

δfα(ω,k,v) =
δfα(t = 0,k,v)

−iω + ik ·v +
qα
mα

ik

−iω + ik ·v · ∂f0α
∂v

[∑
j

cj
−i(ω − ωj)

+A(ω)

]
.

(III.5.13)
Here we have the “kinetic pole” (ω = k ·v) and the poles representing the linear modes
(ω = ωj). Following through with the inverse-Laplace transform and using the residue
theorem, equation (III.5.13) gives

δfα(t,k,v) =

[
δfα(t = 0,k,v)− qα

mα
ik · ∂f0α

∂v

∑
j

cj
−iωj + ik ·v

]
e−ik ·vt

+
qα
mα

ik · ∂f0α
∂v

∑
j

cje
−iωjt

−iωj + ik ·v (III.5.14)

= ballistic response, which oscillates without decaying
+ eigenmode solution, which is found from D(ω,k) = 0.

Note that the analytical part of φ(ω,k), denoted A(ω), must satisfy A(k ·v) = 0 in order
for (III.5.14) to return the correct initial value at t = 0.

Let us summarize. The electrostatic potential φ(t,k) (see (III.5.12)) is a sum of damped
eigenmodes, φ ∝ exp(−iωjt) with Im(ωj) < 0. However, the solution for δfα (see
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Figure 2. Illustration of phase mixing (from Joseph Parker, D.Phil. Thesis at Oxford, 2015).
The distribution function f(t, z, v∥) = sin(z − v∥t) exp(−v2∥) solves the free-streaming equation,
∂f/∂t+ v∥∂f/∂z = 0, thus acquiring fine-scale structure in velocity space.

(III.5.14)) does not decay: there is a part of δfα(t) – the “ballistic response” proportional
to exp(−ik ·vt) – that oscillates without decaying. (In fact, it has a growing part, which
keeps the free energy conserved as the potential decays. More on this shortly.) This is
Landau damping: the transfer of (free) energy from the electric-field fluctuations to the
perturbations of the distribution function.

The important thing to note here from the standpoint of irreversibility is that δfα
acquires sharper and sharper structure in velocity space:

1

δf

∂δf

∂v
∼ −ikt→ ∞ as t→ ∞.

This is due to phase mixing (see figure 2). Eventually, the velocity-space gradients of
δf become so large that collisions can no longer be ignored. We haven’t derived the
collision integral operator yet, but from (II.6.2) and (II.6.3) we can see that it has a
piece involving two applications of ∂/∂v (the other piece involves just one application of
∂/∂v and represents a drag force – more later). Thus,(

∂δf

∂t

)
c

∼ ν v2th
∂2δf

∂v2
∼ −νv2thk2t2δf =⇒ δf ∼ exp

(
−1

3
νk2v2tht

3

)
. (III.5.15)
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Collisions decay δf ! The characteristic timescale here is tcoll ∼ ν−1/3(kvth)
−2/3.

Let us continue with the Vlasov model to see what is conserved during Landau
damping.

III.6. Free-energy conservation in the Vlasov treatment
It is straightforward to show by using the Poisson equation (II.4.5), ∇·E = −∇2φ =∑
α 4πqα

∫
dv fα, and the Vlasov equation (III.1.1) that the rate of change of the electric

energy satisfies

d

dt

∫
dr

E2

8π
=

∫
dr

∇φ

4π
· ∂∇φ

∂t
= −

∫
dr

φ

4π

∂

∂t
∇2φ (integrate by parts)

= −
∫

dr
φ

4π

∂

∂t

(
−
∑
α

4πqα

∫
dv fα

)
(use Poisson)

=

∫
dr φ

∑
α

qα

∫
dv

∂fα
∂t

=

∫
dr φ

∑
α

qα

∫
dv

(
−v ·∇fα +

qα
mα

∇φ · ∂fα
∂v

)
(use Vlasov)

= −
∫

dr

∫
dv
∑
α

qαφv ·∇fα︸ ︷︷ ︸
=

∫
dr∇φ ·

∫
dv

∑
α qαvfα by parts

+

∫
dr

∇φ2

2

∑
α

q2α
mα

·
∫

dv
∂fα
∂v︸ ︷︷ ︸

= 0 by parts

= −
∫

drE · j, (III.6.1)

where

j
.
=
∑
α

qα

∫
dv vfα (III.6.2)

is the current density. Thus, the rate of change of the electric energy equals minus the rate
at which the electric field does work on the charges (“Joule heating”). Nothing surprising
there.

That energy goes into the particles:

dU

dt

.
=

d

dt

∑
α

∫
dr

∫
dv

mαv
2

2
fα

=
∑
α

∫
dr

∫
dv

mαv
2

2

(
−v ·∇fα +

qα
mα

∇φ · ∂fα
∂v

)
(use Vlasov)

= −
∑
α

qα

∫
dr

∫
dv fαv ·∇φ (integrate by parts)

=

∫
drE · j (def’n of current density, (III.6.2)) (III.6.3)

=⇒ d

dt

(
U +

∫
dr

E2

8π

)
= 0 (III.6.4)

This is just energy conservation. (Collisions do not change this, a fact you’ll soon prove.
With magnetic fields, the conservation law includes

∫
drB2/8π.)
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If the perturbations are damped, then U must increase. This is sometimes referred
to as “heating”, but let us examine in detail the evolution of the temperature of the
equilibrium. Consider a Maxwellian equilibrium,

f0α =
nα

π3/2v3thα
exp

(
− v2

v2thα

)
, v2thα

.
=

2Tα
mα

, (III.6.5)

which is homogeneous in space but with some possible time dependence, Tα = Tα(t).
We say that this time dependence is slow, in the sense that the time evolution of
the equilibrium temperature occurs on a time scale teq that is much greater than the
characteristic time scale ω−1 of the (Landau-damped) fluctuations. Formally,

f0α(t,v) = ⟨f(t, r,v)⟩ .= 1

∆t

∫ t+∆t/2

t−∆t/2
dt′

1

V

∫
dr f(t′, r,v), (III.6.6)

where ω−1 ≪ ∆t ≪ teq and V denotes the spatial volume under consideration. Decom-
posing fα = f0α + δfα, we have

U = V
∑
α

∫
dv

mαv
2

2
f0α︸ ︷︷ ︸

= 3
2nαTα

+
∑
α

∫
dr

∫
dv

mαv
2

2
δfα, (III.6.7)

Averaging (III.6.7) over time using (III.6.6), the fluctuating part vanishes and we are left
with

⟨U⟩ = V
∑
α

3

2
nαTα. (III.6.8)

Thus, from (III.6.4), we have∑
α

3

2
nα

dTα
dt

= − d

dt

1

V

∫
dr

⟨E2⟩
8π

; (III.6.9)

that is, the heating rate of the equilibrium equals the rate of decrease of the mean energy
of the electromagnetic fluctuations.

Now, we saw from (III.5.12) that φ(t,k) =
∑
j cj exp(−iωjt). If we wait long enough,

only the slowest-decaying mode will be important, with all others exponentially small;
call the frequency and decay rate of this mode ωk and γk < 0, so that Ek = −ikφk ∝
−ik exp(−iωkt− |γk|t). If |γk| ≪ ωk, then (III.6.9) becomes∑

α

3

2
nα

dTα
dt

=
∑
k

2|γk|
|Ek|2
8π

> 0. (III.6.10)

In words, the rate of Landau damping of the electric-field fluctuations equals the heating
rate of the equilibrium.7

There is a subtlety here worth confronting. Recall from (III.1.3) that entropy is a
constant in a Vlasov system, but here we have heating of the equilibrium. Indeed, for

7Prof. Ilya Dodin, when he was teaching this section of the course in Spring 2022 while I was on
sabbatical, rightly pointed out that the above approach (and what follows in the remainder of this
section) is a bit dodgy and relies too heavily on the non-trivial assumption that ω−1 ≪ ∆t≪ teq.
Doing the calculation correctly, by rigorously taking into account the evolution of the plasma
properties as the Landau damping heats the equilibrium, is not easy but can be done (see Dodin
2022).
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each species, the entropy of the background is

S0
.
= −

∫
dx f0 ln f0

= −
∫

dx f0

{
ln

[
n
(m
2π

)3/2]
− 3

2
lnT − mv2

2T

}
= V

{
−n ln

[
n
(m
2π

)3/2]
+

3

2
n lnT +

3

2
n

}

=⇒ T
dS0

dt
= V 3

2
n
dT

dt
> 0. (III.6.11)

Thus, heating is associated with the increase of S0. But if entropy cannot increase without
collisions, where is the missing (negative) entropy?

The mean entropy associated with the perturbed distribution function δf is

⟨δS⟩ = −
∫

dx
〈
(f0 + δf) ln(f0 + δf)− f0 ln f0

〉
= −

∫
dx

〈
(f0 + δf)

(
ln f0 +

δf

f0
− δf2

2f0
+ . . .

)
− f0 ln f0

〉
= −

∫
dx

⟨δf2⟩
2f0

+ . . . , (III.6.12)

after using ⟨δf⟩ = 0. For the total entropy to be constant, any increase in S0 must be
accompanied by a decrease in ⟨δS⟩. The latter can only be achieved by increasing ⟨δf2⟩:

T
dS

dt
= T

dS0

dt
+ T

d⟨δS⟩
dt

= T
dS0

dt
+

d

dt
T ⟨δS⟩ − ⟨δS⟩dT

dt

=

(
V 3

2
n− ⟨δS⟩

)
dT

dt
+

d

dt
T ⟨δS⟩

≈ V 3

2
n
dT

dt
− d

dt

∫
dx

T ⟨δf2⟩
2f0

must be
= 0. (III.6.13)

If we reaffix the species label α, sum over species, and use (III.6.9), we obtain

dW

dt

.
=

d

dt

∫
dr

[∑
α

∫
dv

Tα⟨δf2α⟩
2f0α

+
⟨E2⟩
8π

]
= 0 (III.6.14)

This is the free energy of the fluctuations (i.e., energy minus entropy).
Thus, during Landau damping, the free energy is conserved while the electric-field

fluctuations decay. This means that the entropy of the fluctuations increases negatively
to offset the increase in the entropy of the background equilibrium. In this sense, the
phase-mixed fluctuations make the plasma more ordered. We will see that, with collisions
decaying the δf piece, the overall entropy will increase since then there isn’t enough ⟨δS⟩
to compensate for the rise in S0. In other words, collisions restore disorder by disrupting
the phase-space organization of δf caused by phase mixing.
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III.7. Free-energy conservation for a weakly damped plasma
oscillation

It is instructive to show explicitly that free energy is conserved for a particular solution
to the linear Vlasov equation (III.5.14),

δfα(t,k,v) = δfα(0,k,v)e
−ik ·vt +

qα
mα

ik · ∂f0α
∂v

∑
j

cje
−iωjt

[
1− e−i(k ·v−ωj)t

i(k ·v − ωj)

]
,

(III.7.1)
with f0α being Maxwellian so that ∂f0α/∂v = −(2v/v2thα)f0α. As in §III.6, we focus
on the slowest-decaying mode, for which |γk| ≪ ωk. To establish a definite ordering,
take ωk ∼ ωpe and γk to be no larger than ∼ϵ3ωpe with ϵ ≪ 1 (we will verify this
frequency separation a posteriori), and consider the coarse-graining time interval ∆t
to satisfy ωpe∆t ∼ ϵ−2. Thus, ω−1

k ≪ ∆t ≪ γ−1
k ∼ teq, as in §III.6. To ensure weak

damping, we adopt ωk ∼ ϵ−1kvthe and assume that the velocities of the Landau-resonant
particles satisfy v(res) ∼ ωk/k ∼ ϵ−1vthe, i.e., they are in the tail of the distribution.
Then kvthe∆t ∼ ϵ−1. These orderings focus on free-energy conservation occurring on
timescales longer than both the inverse plasma frequency and the inverse phase-mixing
rate. As we are seeking a growing |δf2α|, we can drop the initial-value term δfα(0) in
(III.7.1), which obviously does not grow. Then

δfα(t,k,v) ≈ − qα
Tα

(k ·v)f0α cke−iωkt−|γk|t
[
1− e−i(k ·v−ωk)t

k ·v − ωk

]
. (III.7.2)

Our goal is to compute∑
α

∫
dv

Tα|δfα(t,k,v)|2
2f0α

=
∑
α

∫
dv

q2α
2Tα

(k ·v)2f0α
∣∣∣ck e−iωkt−|γk|t

∣∣∣2︸ ︷︷ ︸
= |φk|2

∣∣∣∣1− e−i(k ·v−ωk)t

k ·v − ωk

∣∣∣∣2

=
∑
α

∫
dv

q2α
Tα

(k̂ ·v)2f0α
k2|φk|2

2

∣∣∣∣1− e−i(k ·v−ωk)t

k ·v − ωk

∣∣∣∣2,
(III.7.3)

where k̂
.
= k/k, and show that its time derivative is equal to −(8π)−1d|Ek|2/dt.

Our ordering makes clear that there are two populations of particles in our distribution
function: those which are non-resonant (k ·v ≪ ωk) and take part in a mean (oscillating)
flow of the plasma, and those which are resonant (k ·v ≈ ωk) and are responsible for
the Landau damping. The former are easier to treat, so let’s start there. In the limit
k ·v ≪ ωk, the non-resonant contribution to (III.7.2) is

δf (n.r.)α (t,k,v) ≈ qα
Tα

k ·v
ωk

f0α

(
φk − cke

−ik ·vt
)
, (III.7.4)

and so (III.7.3) becomes∑
α

∫
dv

Tα|δf (n.r.)α (t,k,v)|2
2f0α

≈
∑
α

∫
dv

q2α
Tα

(k̂ ·v)2

ω2
k

f0α

(
k2|φk|2

2
+
k2|ck|2

2

)
−
∑
α

∫
dv

q2α
Tα

(k ·v)2

ω2
k

f0α cos[(k ·v − ωk)t]. (III.7.5)

The second line on the right-hand side of (III.7.5) integrates away in the long-time limit
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of interest (i.e., time enough for many oscillations and for phase mixing but not so much
time that the perturbation has completely decayed away), since the integrand becomes
rapidly varying in velocity space. The second term on the first line is time-independent
to leading order in ϵ, and thus will vanish upon taking the time derivative for (III.6.14).
What remains is

∑
α

∫
dv

Tα|δf (n.r.)α (t,k,v)|2
2f0α

≈
∑
α

q2α
Tα

k2|φk|2
2

∫
dv

(k̂ ·v)2

ω2
k

f0α

=
∑
α

ω2
pα

ω2
k

k2|φk|2
8π

=
∑
α

ω2
pα

ω2
k

|Ek|2
8π

, (III.7.6)

where

ω2
pα

.
=

4πq2αnα
mα

(III.7.7)

is the (square of the) plasma frequency of species α. What is this energy? Returning to
(III.7.4), its first term from which (III.7.6) stems has an interesting first moment:

δuα(t,k)
.
=
qα
Tα

kφk

ωk
· 1

nα

∫
dv vvf0α︸ ︷︷ ︸

= (Tα/mα)I

=
qα
mα

kφk

ωk
=

qα
mα

Ek

(−iωk)
. (III.7.8)

This equation states that the rate of change of the fluid velocity (i.e., −iωkδuα) is equal
to the (electric) force divided by the mass – Newton’s second law of motion. Equation
(III.7.6) then captures the kinetic energy of the bulk plasma as it is accelerated by the
oscillating electric field:

∑
α

∫
dv

Tα|δf (n.r.)α (t,k,v)|2
2f0α

≈
∑
α

1

2
mαnα|δuα(t,k)|2. (III.7.9)

Now for the resonant contribution to (III.7.3). The difficulty is that last squared term
in the long-time limit: for the Landau-resonant particles satisfying x = k ·v − ωk ≈ 0,
the factor

1− e−ixt

x
=

1− cosxt

x︸ ︷︷ ︸
finite as

t → ∞, even
at x = 0

+ i
sinxt

x︸ ︷︷ ︸
= it as
t → ∞

at x = 0

≈ i
sinxt

x
=

eixt − e−ixt

2x
=

i

2

∫ t

−t
dt′ eixt

′

→ iπδ(x) as t→ ∞ (III.7.10)

by definition of the delta function. So we must square a delta function. . . dangerous!
Before doing so, note that (III.7.10) implies

δf (res)α (t,k,v) ∝ e−iωkt

[
1− e−i(k ·v−ωk)t

k ·v − ωk

]
→ e−iωkt iπδ(k ·v−ωk) as t→ ∞ (III.7.11)

for the resonant particles. This delta-function solution is an example of a Case–van
Kampen mode (Van Kampen 1955; Case 1959). Now, back to squaring that delta function.
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Here is one way to do that:

∂

∂t

∣∣∣∣1− e−ixt

x

∣∣∣∣2 =
∂

∂t

[
2− 2 cos(xt)

x2

]
= 2

sinxt

x
−−−→
t→∞

2πδ(x)

=⇒
∣∣∣∣1− e−ixt

x

∣∣∣∣2 −−−→
t→∞

2πtδ(x). (III.7.12)

Apologies for this interruption and what will be a long aside, but one must be incredibly careful
here about what is meant by |δ(x)|2. Because such a thing will always appear inside of an
integral, and that integral has limits that we are taking to infinity in order to make sense of that
delta function, the context matters. Here’s an example, based on equations (E.31)–(E.35) of
Krommes’ opus. Consider the function f(t) = cos t, and compute its square over a time interval
T , which we let tend to infinity:

lim
T →∞

∫ T /2

−T /2

dt cos2 t = lim
T →∞

T
2π

∫ 2π

0

dt cos2 t = lim
T →∞

T
2
. (III.7.13)

So, we may write ∫ ∞

−∞
dt |f(t)|2 =

T
2
. (III.7.14)

Alternatively, in Fourier space we have

f(ω) =

∫ ∞

−∞
dt eiωt cos t =

1

2
2π

[
δ(ω + 1) + δ(ω − 1)

]
.

Now square it:
|f(ω)|2 = π2[δ2(ω + 1) + δ2(ω − 1)

]
.

What are we to make of these squared delta functions? Using the formula δ(x − a)f(x) =
δ(x− a)f(a), we have δ2(ω − 1) = δ(ω − 1)δ(ω = 0) and δ2(ω + 1) = δ(ω + 1)δ(ω = 0), and so∫ ∞

−∞

dω

2π
|f(ω)|2 = πδ(ω = 0).

By Parseval’s theorem, this must be equal to (III.7.14), implying that

δ(ω = 0) =
T
2π

=⇒ |δ(ω)|2 =
T
2π
δ(ω) (III.7.15)

Now, return to (III.7.13) and let the integral run instead from −T to T ; surely the result is
twice our previous answer. In this case, |δ(ω)|2 = (T /π)δ(ω). (See why the context matters?)
Apparently, sending T → ∞ is different than sending T /2 → ∞, and we chose the former when
deriving (III.7.12). Indeed, setting x = 0 in (III.7.10) gives δ(0) = t/π. When dealing with delta
functions, be extremely attentive to the context. Back to our regularly scheduled program. . .

Using (III.7.15) to compute the resonant contribution in (III.7.3), we find

∑
α

∫
dv

Tα|δf (res)α (t,k,v)|2
2f0α

≈
∑
α

∫
dv

q2α
Tα

(k̂ ·v)2f0α
k2|φk|2

2
2πtδ(k ·v − ωk)

=
∑
α

∫
dv

q2α
Tα

(k̂ ·v)2f0α
k2|φk|2

2

2πt

k
δ(k̂ ·v − ωk/k)

=
∑
α

2ω2
kω

2
pα

k3v2thα

π

nα
F0α

(ωk

k

) |Ek|2
8π

2t, (III.7.16)
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where in the last line we have introduced the one-dimensional distribution function,

F0α(u)
.
=

∫
dv f0α(v)δ(k̂ ·v − u) (III.7.17)

=
nα√
πvthα

e−u
2/v2thα for a Maxwellian,

obtained by integrating out the velocity space perpendicular to k. The time derivative
of (III.7.16) is

d

dt

∑
α

∫
dv

Tα|δf (res)α (t,k,v)|2
2f0α

≈
∑
α

4ω2
kω

2
pα

k3v2thα

π

nα
F0α

(ωk

k

) |Ek|2
8π

= −
∑
α

2ωkω
2
pα

k2
π

nα
F ′
0α

(ωk

k

) |Ek|2
8π

. (III.7.18)

This is the entropic contribution to the free energy due to the Landau-resonant piece
of the perturbed distribution function; note that it is positive, corresponding to an
decreasing entropy. The combination of pre-factors to the electric-field energy in (III.7.18)
may be simplified as follows. When |γ| ≪ ω (i.e., slow damping), we can expand our
eigenfrequency equation D(ω,k) = 0 to obtain

D(ω,k) + iγ
∂

∂ω
D(ω,k) ≈ 0. (III.7.19)

The imaginary part of this gives

γ = − ImD(ω,k)

∂

∂ω
ReD(ω,k)

. (III.7.20)

Using

D(ω,k) = 1 +
∑
α

q2α
mα

4πk

k2
·
∫

dv′ ∂f0α/∂v
′

ω − k ·v′ (by def’n, (III.5.6))

= 1−
∑
α

ω2
pα

k2
1

nα

∫
du

F ′
0α(u)

u− ω/k
(by def’n, (III.7.17))

=

[
1−

∑
α

ω2
pα

k2
1

nα
PV

∫
du

F ′
0α(u)

u− ω/k

]
+ i

[
−
∑
α

ω2
pα

k2
π

nα
F ′
0α

(ω
k

)]
, (III.7.21)

where the last equality follows from Plemelj’s formula (“PV” denotes the principal value),
(III.7.20) becomes

γ = −

∑
α

ω2
pα

k2
π

nα
F ′
0α

(ω
k

)
∂

∂ω

∑
α

ω2
pα

k2
1

nα
PV

∫
du

F ′
0α(u)

u− ω/k

. (III.7.22)
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An analytic expression for the principal value integral can be obtained by expanding8∫
du

F ′
0α(u)

u− ω/k
≈
∫

du
F ′
0α(u)

(−ω/k)

[
1 +

ku

ω
+

(
ku

ω

)2

+ . . .

]

= − k

ω

∫
duF ′

0α(u)

[
ku

ω
+

(
ku

ω

)2

+ . . .

]

≈ k2

ω2
nα. (III.7.23)

Then (III.7.22) becomes

γ = −

∑
α

ω2
pα

k2
π

nα
F ′
0α

(ω
k

)
∂

∂ω

∑
α

ω2
pα

k2
k2

ω2

= −

∑
α

ω2
pα

k2
π

nα
F ′
0α

(ω
k

)
− 2

ω

∑
α

ω2
pα

ω2︸ ︷︷ ︸
≈1 in

this limit

=⇒ 2γk =
∑
α

ωkω
2
pα

k2
π

nα
F ′
0α

(ωk

k

)
. (III.7.24)

Note that, for F0α Maxwellian, this equation implies γk/ωk ∼ ϵ−3 exp(−1/ϵ2), so that
the damping rate is exponentially small. Thus, equation (III.7.18) may be written as

d

dt

∑
α

∫
dv

Tα|δf (res)α (t,k,v)|2
2f0α

≈ −4γk
|Ek|2
8π

= −2
d

dt

|Ek|2
8π

. (III.7.25)

Again, a decreasing entropy is associated with the Landau-resonant particles.
Finally, we combine (III.7.25) with its non-resonant counterpart (III.7.6) to obtain

d

dt

∑
α

∫
dv

Tα|δfα(t,k,v)|2
2f0α

≈ − d

dt

|Ek|2
8π

, (III.7.26)

which is (by Parseval’s theorem) equivalent to the free-energy conservation law, (III.6.14).
Q.E.D.

Summary: Landau damping is the process of transferring free energy from fluctuations
in the electric field to fluctuations in the distribution function. The latter acquire fine-
scale structure in velocity space, which gets progressively finer with time: if δf ∼
exp(−ikvt), then (i/δf)(∂δf/∂v) ∼ kt → ∞ as t → ∞. This is called phase mixing,
and is a consequence of the shearing of phase space as particles at the same position
have differing velocities. Phase mixing explains why δf need not decay for its moments
(e.g., the potential φ) to decay:

φ =
4π

k2

∑
α

qα

∫
dv δfα︸ ︷︷ ︸

fine-scale
structure
cancels

∝ e−|γ|t → 0.

8This is a good expansion, since it guarantees that the damping is small (because ku/ω ≪ 1
implies that not many particles in the distribution are Landau resonant). If ω ∼ kvth, then the
damping would be strong since the waves would interact with a majority of the population.
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In other words, a perturbation initially “visible” as φ phase-mixes away. This lost (free)
energy goes into δf2, where it gives a negative entropy that exactly offsets the heating
of the background. The total entropy only increases once the fast velocity dependence of
δf is removed – and that is accomplished through collisions.

III.8. Landau damping via Newton’s 2nd law
I used to assign the following calculation (taken from Lifshitz & Pitaevskii 1981

and brought to my attention by Alex Schekochihin) as part of a problem set, but it’s
sufficiently pedagogical that it’s worth including it here in my notes.

Imagine an electron moving along the z axis with speed v0. Slowly turn on a wave-
like electric field: E(t, z) = E0 cos(ωt − kz) eϵtẑ, where ω is the frequency as k is the
wavenumber of the wave. The adverb “slowly” is captured by the eϵt factor with ϵ ≪ 1.
We’ll take ϵ→ +0 at the end of the calculation; its only purpose is to establish an arrow
of time. The goal is to solve perturbatively for the motion of the electron by assuming
that E0 is so small that it changes the electron’s trajectory only a little bit over several
wave periods. The solution illustrates the physical mechanism of Landau damping.

The equations of motion are

dz

dt
= vz, (III.8.1)

dvz
dt

= − e

me
E0 cos(ωt− kz)eϵt. (III.8.2)

The solution to lowest order in E0 is trivial: z(t) = v0t and vz(t) = v0 = const. Write
z(t) = v0t + δz(t) and vz(t) = v0 + δvz(t) and calculate the first-order changes δz and
δvz. Equation (III.8.1) becomes

dδvz
dt

= − e

me
E(t, z(t)) ≈ − e

me
E(t, v0t) = −eE0

me
Re e[i(ω−kv0)+ϵ]t. (III.8.3)

Integrating this gives

δvz(t) = −eE0

me

∫ t

0

dt′ Re e[i(ω−kv0)+ϵ]t
′

= −eE0

me
Re

e[i(ω−kv0)+ϵ]t − 1

i(ω − kv0) + ϵ

= −eE0

me

ϵ eϵt cos[(ω − kv0)t]− ϵ+ (ω − kv0)e
ϵt sin[(ω − kv0)t]

(ω − kv0)
2 + ϵ2

. (III.8.4)

Integrating again,

δz(t) =

∫ t

0

dt′ δvz(t
′) = −eE0

me

∫ t

0

dt′ Re
e[i(ω−kv0)+ϵ]t − 1

i(ω − kv0) + ϵ

= −eE0

me

{
Re

e[i(ω−kv0)+ϵ]t − 1

[i(ω − kv0) + ϵ]2
− ϵt

(ω − kv0)2 + ϵ2

}
= −eE0

me

{
[ϵ2 − (ω − kv0)

2][eϵt cos[(ω − kv0)t]− 1] + 2ϵ (ω − kv0) e
ϵt sin[(ω − kv0)t]

[(ω − kv0)2 + ϵ2]2

− ϵt

(ω − kv0)2 + ϵ2

}
. (III.8.5)
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The first-order correction to the electric field evaluated at the particle position is

δE(t, z(t)) = E(t, z(t))− E(t, v0t) = δz(t)
∂E(t, v0t)

∂z
= δz(t) k sin[(ω − kv0)t]E0e

ϵt,

(III.8.6)
with δz(t) given by (III.8.5). The work done by the field on the electron per unit time is
the power gained by the electron (and thus lost by the wave). Denoting an average over
timescales satisfying ω−1 ≪ t≪ ϵ−1 by ⟨ · ⟩, this power is

P (v0) = −e⟨E(t, z(t))vz(t)⟩ = −e⟨[E(t, v0t) + δE(t, z)][v0 + δvz(t)]⟩

= −e
〈
E(t, v0t)v0︸ ︷︷ ︸

vanishes
under

averaging

+E(t, v0t)δvz(t)︸ ︷︷ ︸
only cos2

term survives
averaging

+ δE(t, z(t))v0︸ ︷︷ ︸
only sin2

term survives
averaging

〉
+O(δ2)

≈ e2E2
0

me
e2ϵt
〈

ϵ

(ω − kv0)2 + ϵ2
cos2[(ω − kv0)t] +

2kv0ϵ(ω − kv0)

[(ω − kv0)2 + ϵ2]2
sin2[(ω − kv0)t]

〉
=
e2E2

0

2me
e2ϵt

[
ϵ

(ω − kv0)2 + ϵ2
+

2kv0ϵ(ω − kv0)

[(ω − kv0)2 + ϵ2]2

]

=⇒ P (v0) =
e2E2

0

2me
e2ϵt

dχ

dv0
with χ

.
=

ϵv0
(ω − kv0)2 + ϵ2

(III.8.7)

If v0 ≲ ω/k (particle lagging the wave), then dχ/dv0 > 0 and so P (v0) > 0, indicating
that energy is being transferred from the field to the electron. The wave damps. If v0 ≳
ω/k (particle leading the wave), then dχ/dv0 < 0 and so P (v0) < 0, indicating that
energy is being transferred from the electron to the field. The wave grows.

Suppose there is now a distribution of these electrons, F (v0). The total power per unit
volume going into (or out of) this distribution is

P =

∫
dvz F (vz)P (vz) =

e2E2
0

2me
e2ϵt

∫
dvz F (vz)

dχ

dvz

bp
= −e

2E2
0

2me
e2ϵt

∫
dvz F

′(vz)χ(vz).

(III.8.8)
Take ϵ→ +0 and use Plemelj’s formula,

lim
ϵ→+0

1

x− ζ ∓ iϵ
= PV

1

x− ζ
± iπδ(x− ζ),

where PV denotes the principal value and δ(x) is the Dirac delta function, to show that

χ(vz) =
ϵvz

(ω − kvz)2 + ϵ2
= − i

2

(
vz

kvz − ω − iϵ
− vz
kvz − ω + iϵ

)
→ π

ω

k2
δ(vz − ω/k).

(III.8.9)
Using this limit in (III.8.8) leads to

P = − e2E2
0

2mek2
πωF ′(ω/k) (III.8.10)

If ωF ′(ω/k) < 0 (> 0), there are more resonant particles lagging (leading) the wave than
there are leading (lagging) the wave, resulting in a net transfer of energy to the electrons
(wave). It’s left as an exercise to the reader to show that, for F ′(ω/k) < 0, this power
comes at the expense of the electric energy (i.e., damping), and that, for F (ω/k) > 0,
the energy loss from the electrons goes into growing the electric energy (i.e., instability).
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III.9. Plasma echo
While we’re on the topic of the Landau damping, here’s a fun calculation that

demonstrates that nothing is lost in Vlasov dynamics: the plasma echo. The classic
calculation of the echo is due to Gould et al. (1967) and involves all the Landavian
gymnastics in the complex plane caused by the dielectric function. . . but worse because
the echo calculation is actually a nonlinear phenomenon, so there are multiple Bromwich
contours to close. It turns out, though, that nothing of great pedagogical value is gained
by carrying around D(ω,k), and so (at first) we’ll effectively set it equal to unity by
ignoring the self-consistent collective response of the plasma. This decision means that
we can avoid an unnecessary detour through Laplace space, which is nice, but at the cost
of losing the plasma’s eigenmodes. No matter, though, because nothing qualitative about
the plasma echo depends upon the dielectric response – it’s actually just phase mixing
(and un-mixing).

The calculation goes as follows. Write fα(t,v, r) = f0α(v)+δfα(t,v, r) and assume an
electrostatic plasma with potential φ = φ(t, r). Substituting these fields into the Vlasov
equation yields (

∂

∂t
+ v ·∇

)
δfα − qα

mα
∇φ · df0α

dv
=

qα
mα

∇φ · ∂δfα
∂v

. (III.9.1)

Write δfα =
∑

k δfα,k(t,v) exp(ik · r) and φ =
∑

k φk(t) exp(ik · r) and Fourier trans-
form the above equation to find(

∂

∂t
+ ik ·v

)
δfα,k − qα

mα
φkik · df0α

dv
=

qα
mα

∑
k′

φk′ ik′ ·
∂δfα,k−k′

∂v
. (III.9.2)

Now, rather than take the potential φ to satisfy Poisson’s equation, we’ll choose φ to
represents two impulsive “hammers” – one occurring at time t1 and the other a later time
t2 > t1 – that excite sinusoidal (in space) fluctuations in the plasma that are subsequently
phase mixed by the free streaming of particles. Denoting this collection of hammers by
χ(t, r), we then have that

φ(t, r) = χ(t, r)
.
= A1δ(t− t1) cos(k1 · r) +A2δ(t− t2) cos(k2 · r); (III.9.3)

or in Fourier space,

φk(t) = χk(t)
.
=

1

2
A1δ(t− t1)(δk,k1

+ δk,−k1
) +

1

2
A2δ(t− t2)(δk,k2

+ δk,−k2
). (III.9.4)

In this case, the linear response is given by

δf
(lin)
α,k (t,v) =

���������:0

δfα,k(0,v) e
−ik·vt +

qα
mα

ik · df0α
dv

∫ t

0

dt′ e−ik ·v(t−t′)χk(t
′)

=
qα
mα

ik · df0α
dv

1

2

[
A1Θ(t− t1)(δk,k1 + δk,−k1) e

−ik ·v(t−t1)

+A2Θ(t− t2)(δk,k2
+ δk,−k2

) e−ik ·v(t−t2)
]
, (III.9.5)

where we have assumed the plasma to be unperturbed at t = 0; the Heaviside function
Θ(τ) = 1 for τ > 1 and = 0 otherwise. Physically, at times t1 and t2, particles are
instantaneously accelerated from f0α into δfα by two impulses; thereafter, each of these



40 M. W. Kunz

kinetic responses is phase mixed. Transforming (III.9.5) back into real space provides

δf (lin)α (t, r,v) = − qα
mα

k1 ·
df0α
dv

A1Θ(t− t1) sin{k1 · [r − v(t− t1)]}

− qα
mα

k2 ·
df0α
dv

A2Θ(t− t2) sin{k2 · [r − v(t− t2)]}. (III.9.6)

Let us suppose for the moment that f0α = f0α(v) is Maxwellian. In this case it is a
straightforward exercise to calculate the associated density fluctuation by integrating
(III.9.6) over velocity space:

δn
(lin)
α (t, r)

n0α
= − qα

mα
k21 A1Θ(t− t1)(t− t1) e

−[k1vth(t−t1)/2]2 cos(k1 · r)

− qα
mα

k22 A2Θ(t− t2)(t− t2) e
−[k2vth(t−t2)/2]2 cos(k2 · r). (III.9.7)

As anticipated, soon after each harmonic is excited the associated density fluctuation
grows linearly and then decays rapidly once k1vth(t − t1) ≳

√
2 (likewise for k2).

Phase mixing creates small-scale, rapidly varying structure in velocity space, which when
integrated over leads to cancellations that cause the “damping” of real-space quantities.

The goal of the echo calculation is to compute the nonlinear response (i.e., the effect
of the potential on the perturbed distribution, represented by the right-hand side of
(III.9.2)) and show that there is a time at which the small-scale structure in velocity
space caused by the linear phase mixing gets temporally removed by this nonlinear term,
leading to the recovery of real-space structure. In general, this nonlinear response cannot
be calculated analytically. But if we assume that δfα is sufficiently small, we can solve
(III.9.2) iteratively by evaluating (III.9.5) at k − k′, substituting the result into the
right-hand side of (III.9.2), and integrating forward in time:

δf
(n.l.)
α,k (t,v) =

qα
mα

∑
k′

ik′ ·
∫ t

0

dt′ e−ik ·v(t−t′)χk′(t′)
∂δf

(lin)
α,k−k′(t′,v)

∂v

= −1

4

q2α
m2
α

∑
k′

k′(k − k′)

∫ t

0

dt′ e−ik ·v(t−t′)

[
A1δ(t

′ − t1)(δk′,k1
+ δk′,−k1

) +A2δ(t
′ − t2)(δk′,k2

+ δk′,−k2
)

]
:
∂

∂v

{
df0α
dv

[
A1Θ(t′ − t1)(δk−k′,k1

+ δk−k′,−k1
) e−i(k−k′) ·v(t′−t1)

+A2Θ(t′ − t2)(δk−k′,k2
+ δk−k′,−k2

) e−i(k−k′) ·v(t′−t2)
]}
.

(III.9.8)

This integral has four main pieces. Two of them are nonlinearities associated with
hammer 1 (hammer 2) interacting with the plasma’s response to hammer 1 (hammer 2);
they can be spotted easily by matching up the A coefficients. Physically, these terms
must vanish by causality: an impulsive hammer can’t interact with something it created.
Mathematically,

∫ t
0
dt′ δ(t′−t1)Θ(t′−t1) = Θ(0) = 0. The remaining two terms in (III.9.8)

are cross terms ∝A1A2 describing the interaction between one hammer and the kinetic
response to the other hammer. One of them vanishes: because t2 > t1, the combination
δ(t′ − t1)Θ(t′ − t2) kills the integral. Physically, the first hammer cannot interact with
the perturbation generated by the second hammer (again, causality). The only nonlinear
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term of interest is therefore

δf
(echo)
α,k (t,v) = −1

4

q2α
m2
α

∑
k′

k′(k − k′)

∫ t

0

dt′A1A2δ(t
′ − t2)Θ(t′ − t1)e

−ik ·v(t−t′)

:
∂

∂v

[
df0α
dv

(δk′,k2
+ δk′,−k2

)(δk−k′,k1
+ δk−k′,−k1

) e−i(k−k′) ·v(t′−t1)
]

= −1

4

q2α
m2
α

k2k1A1A2Θ(t− t2)e
−ik ·v(t−t2)

:
∂

∂v

{
df0α
dv

[
δk,k1+k2e

−ik1 ·v(t2−t1) − δk,k2−k1e
ik1 ·v(t2−t1)

− δk,k1−k2
e−ik1 ·v(t2−t1) + δk,−k1−k2

eik1 ·v(t2−t1)
]}
. (III.9.9)

There are two types of terms here: those associated with the sum of the excited wavenum-
bers, and those associated with the difference of the excited wavenumbers. Let’s take the
former and inverse-Fourier transform them to find

−1

2

q2α
m2
α

k2k1A1A2Θ(t− t2) :

[
d2f0α
dvdv

cosψ(t) +
df0α
dv

k1(t2 − t1) sinψ(t)

]
, (III.9.10)

where ψ(t) .= (k1 + k2) · [r− v(t− t12)] and t12
.
= (k1t1 + k2t2)/(k1 + k2). Note that the

sinusoidal variation in velocity space associated with these terms vanishes at

t = t12 = t2 −
k1

k1 + k2
(t2 − t1) < t2, (III.9.11)

but because of the Heaviside function, Θ(t − t2), this will never occur. This is not the
case with the terms in (III.9.9) that feature the difference of the wavenumbers, k2 − k1;
inverse-Fourier transforming those provides

+
1

2

q2α
m2
α

k2k1A1A2Θ(t− t2) :

[
d2f0α
dvdv

cos θ(t)− df0α
dv

k1(t2 − t1) sin θ(t)

]
, (III.9.12)

where θ(t) .= (k2 − k1) · [r − v(t− techo)] and techo
.
= (k2t2 − k1t1)/(k2 − k1). Note that

the sinusoidal variation in velocity space associated with these terms vanishes at

t = techo = t2 +
k1

k2 − k1
(t2 − t1) > t2; (III.9.13)

thus, there will always be a time at which this variation vanishes. This is the echo.
Assembling (III.9.10) and (III.9.12), we have

δf (echo)α (t, r,v) =
1

2

q2α
m2
α

k2k1A1A2Θ(t− t2)

:

{
d2f0α
dvdv

[cos θ(t)− cosψ(t)]− df0α
dv

k1(t2 − t1)[sin θ(t) + sinψ(t)]

}
.

(III.9.14)

To offer something more concrete, let us suppose a Maxwellian f0α = f0α(v). In this case
it is a straightforward exercise to calculate the density fluctuation associated with the
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Figure 3. Total density perturbation from two impulsive, sinusoidal, electrostatic hammers with
dielectric D = 1, exhibiting a plasma echo at t = techo. See equations (III.9.7) and (III.9.15).

Figure 4. Echo distribution function δf (echo)(t, x, v) caused by two impulsive, sinusoidal,
electrostatic hammers with dielectric D = 1, with techo = 25. See equation (III.9.14).

echo by integrating (III.9.14) over velocity space. The result is that

δn
(echo)
α

n0α
= −1

2

q2α
m2
α

k1k2A1A2(t− t2)Θ(t− t2)

×
{
(k2 − k1)

2(t− techo) e
−[(k2−k1)vth(t−techo)/2]2 cos[(k2 − k1) · r]

− (k2 + k1)
2(t− t12) e

−[(k2+k1)vth(t−t12)/2]2 cos[(k2 + k1) · r]
}
. (III.9.15)

The first term in the curly brackets contributes the echo, while the second term is the
analog of the linear response (III.9.7) at the nonlinearly excited harmonic k1+k2. Putting
the full solution together, equations (III.9.7) and (III.9.15), and setting the parameters
(k1, k2, A1, A2, t1, t2) = (1, 2, 0.1, 0.1, 5, 15) yields the evolution shown in figures 3 and 4.
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For completeness. . . if instead we were to have done this calculation including the
self-consistent potential response, such that (III.9.3) becomes

φ(t, r) = χ(t, r) +
4π

k2

∑
α

qα

∫
dv δfα, (III.9.16)

then the calculation would necessarily venture through the Laplace space. The trans-
formed potential associated with the linear response to the hammers would be dressed
by the dielectric function (III.5.6),

φk(ω) =
χk(ω)

D(ω,k)
with χk(ω) =

1

2
A1e

iωt1(δk,k1
+ δk,−k1

) +
1

2
A2e

iωt2(δk,k2
+ δk,−k2

),

and the linear part of the perturbed distribution function would be as in §III.5:

δf
(lin)
α,k (ω,v) =

qα
mα

ik

−iω + ik ·v ·φk(ω)
df0α
dv

. (III.9.17)

Likewise, equation (III.9.8) for the nonlinear response would be

δf
(n.l.)
α,k (ω,v) =

qα
mα

∑
k′

ik′

−iω + ik ·v · ∂
∂v

∫ ∞

0

dt eiωt
∫ ∞+iσ′

−∞+iσ

dω′

2π

∫ ∞+iσ′′

−∞+iσ′′

dω′′

2π

× φk′(ω′) δf
(lin)
α,k−k′(ω

′′,v) e−i(ω′+ω′′)t

= − qα
mα

∑
k′

ik′

−iω + ik ·v · ∂
∂v

∫∫
dω′dω′′

(2π)2

φk′(ω′) δf
(lin)
α,k−k′(ω′′,v)

i(ω − ω′ − ω′′)
,

(III.9.18)

with Im(ω) > σ′ + σ′′ to ensure convergence of the Laplace transform. Substituting
(III.9.17) and φk(ω) = χk(ω)/D(ω,k) into (III.9.18), cleaning up various factors of ±i,
and rearranging ultimately leads to

δf
(n.l.)
α,k (ω,v) =

q2α
m2
α

∑
k′

ik′(k − k′)

ω − k ·v :
∂

∂v

∫∫
dω′dω′′

(2π)2
1

ω − ω′ − ω′′
1

ω′′ − (k − k′) ·v

× χk′(ω′)χk−k′(ω′′)

D(ω′,k′)D(ω′′,k − k′)

df0α
dv

, (III.9.19)

We know from the calculation with D = 1 that we’re only interested in the terms
proportional to the product of the two hammer amplitudes, A1A2. We also know that,
of those terms, there are two kinds: those associated with the sum of the excited
wavenumbers, and those associated with the difference of the excited wavenumbers. The
former are:

1

4

q2α
m2
α

∑
k′

ik′(k − k′)

ω − k ·v :
∂

∂v

∫∫
dω′dω′′

(2π)2
1

ω − ω′ − ω′′
1

ω′′ − (k − k′) ·v

× A1A2 e
i(ω′t2+ω

′′t1)

D(ω′,k′)D(ω′′,k − k′)
(δk′,k2

δk,k1+k2 + δk′,−k2
δk,−k1−k2)

df0α
dv

+ (the same but with 1 ↔ 2) . (III.9.20)

The procedure for doing the integrals is as follows (see the diagram below). First, do
the integral over ω′ by pushing the contour up to Im(ω′) → ∞ and encircling only the
pole at ω′ = ω− ω′′ (counter-clockwise, contributing a +2πi). Note that both exp(iω′t1)
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and exp(iω′t2) → 0, so that the horizontal parts of the contour vanish. The expression
in (III.9.20) becomes

i

4

q2α
m2
α

∑
k′

ik′(k − k′)

ω − k ·v :
∂

∂v

∫
dω′′

2π

1

ω′′ − (k − k′) ·v

× A1A2 e
i[ωt2−ω′′(t2−t1)]

D(ω − ω′′,k′)D(ω′′,k − k′)
(δk′,k2

δk,k1+k2
+ δk′,−k2

δk,−k1−k2
)
df0α
dv

+ (the same but with 1 ↔ 2) . (III.9.21)

Next, do the integral over ω′′. For the term displayed above that is explicitly written out,
the contour must be pushed downwards because t2 > t1, so that exp[−iω′′(t2 − t1)] → 0.
As it goes down, it encircles the kinetic pole at (k − k′) ·v (clockwise, contributing a
−2πi) as well as all the poles from the dielectric functions in the lower half-plane. For
simplicity, we ignore all the dielectric poles, which correspond to damped eigenmodes
and so will not contribute to the echo. For “(the same but with 1 ↔ 2)”, the contour
must be pushed upwards so that exp[−iω′′(t1 − t2)] → 0. But no poles are crossed, and
so this integral vanishes. This is the Laplace-space manifestation of why one of the terms
∝A1A2 in (III.9.8) vanished by causality. Evaluating the Kronecker delta functions in k′

then provides

− 1

4

q2α
m2
α

ik1k2 δk,k1+k2

ω − k ·v eiωt2 :
∂

∂v

[
A1A2 e

−ik1 ·v(t2−t1)

D(ω − k1 ·v,k2)D(k1 ·v,k1)

df0α
dv

]
− 1

4

q2α
m2
α

ik1k2 δk,−k1−k2

ω − k ·v eiωt2 :
∂

∂v

[
A1A2 e

ik1 ·v(t2−t1)

D(ω + k1 ·v,−k2)D(−k1 ·v,−k1)

df0α
dv

]
.

(III.9.22)

We now transform this expression back into the time domain by inverse-Laplace trans-
forming, while demanding that t > t2. Pushing the contour to Im(ω) → −∞ and picking
up the kinetic pole at k ·v (clockwise, contributing a −2πi) while neglecting the dielectric
poles, we finally obtain (for t > t2)

− 1

4

q2α
m2
α

k1k2 δk,k1+k2e
−ik ·v(t−t2) :

∂

∂v

[
A1A2 e

−ik1 ·v(t2−t1)

D(ω − k1 ·v,k2)D(k1 ·v,k1)

df0α
dv

]
ω=k ·v

− 1

4

q2α
m2
α

k1k2 δk,−k1−k2
e−ik ·v(t−t2) :

∂

∂v

[
A1A2 e

ik1 ·v(t2−t1)

D(ω + k1 ·v,−k2)D(−k1 ·v,−k1)

df0α
dv

]
ω=k ·v

.

(III.9.23)

Setting D = 1, distributing the ∂/∂v, and inverse-Fourier transforming nicely returns
the result in (III.9.10). Good. Now for the terms associated with k2 − k1:

1

4

q2α
m2
α

∑
k′

ik′(k − k′)

ω − k ·v :
∂

∂v

∫∫
dω′dω′′

(2π)2
1

ω − ω′ − ω′′
1

ω′′ − (k − k′) ·v

× A1A2 e
i(ω′t2+ω

′′t1)

D(ω′,k′)D(ω′′,k − k′)
(δk′,k2

δk,k2−k1
+ δk′,−k2

δk,k1−k2
)
df0α
dv

+ (the same but with 1 ↔ 2). (III.9.24)
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The calculation proceeds exactly as above, ultimately giving (for t > t2)

1

4

q2α
m2
α

k1k2 δk,k2−k1
e−ik ·v(t−t2) :

∂

∂v

[
A1A2 e

ik1 ·v(t2−t1)

D(ω + k1 ·v,k2)D(−k1 ·v,−k1)

df0α
dv

]
ω=k ·v

+
1

4

q2α
m2
α

k1k2 δk,k1−k2
e−ik ·v(t−t2) :

∂

∂v

[
A1A2 e

−ik1 ·v(t2−t1)

D(ω − k1 ·v,−k2)D(k1 ·v,k1)

df0α
dv

]
ω=k ·v
(III.9.25)

as the counterpart to (III.9.23). Again, setting D = 1, distributing the ∂/∂v, and inverse-
Fourier transforming returns the result in (III.9.12). Assembling everything, we have

δf
(echo)
k (t,v) = (III.9.23) + (III.9.25). (III.9.26)



46 M. W. Kunz

PART IV

Balescu–Lenard and Landau collision operators
The law that entropy always increases holds, I
think, the supreme position among the laws of
Nature. If someone points out to you that your
pet theory of the universe is in disagreement
with Maxwell’s equations – then so much the
worse for Maxwell’s equations. If it is found
to be contradicted by observation – well, these
experimentalists do bungle things sometimes. But
if your theory is found to be against the second
law of thermodynamics I can give you no hope;
there is nothing for it but to collapse in deepest
humiliation.

Sir Arthur Stanley Eddington
The Nature of the Physical World (1927)

IV.1. Derivation of the Balescu–Lenard collision operator: Method
With some knowledge of Vlasov physics behind us, let us return to the BBGKY

hierarchy, closed at second order in Λ−1 ≪ 1 by neglecting three-particle correlations
(hαβγ = 0). Our equations are (II.6.2) and (II.6.3), repeated here for convenience:(

∂

∂t
+ v ·∇+ a · ∂

∂v

)
fα(t,x) =

∑
β

qαqβ
mα

∫
dx′ ∂

∂r

1

|r − r′| ·
∂gαβ(t,x,x

′)

∂v
, (IV.1.1)

(
∂

∂t
+ v ·∇+ a · ∂

∂v
+ v′ ·∇′ + a′ · ∂

∂v′

)
gαβ(t,x,x

′)

−
∑
γ

qαqγ
mα

∫
dx′′ ∂

∂r

1

|r − r′′| ·
∂fα(t,x)

∂v
gβγ(t,x

′,x′′)

−
∑
γ

qβqγ
mβ

∫
dx′′ ∂

∂r′
1

|r′ − r′′| ·
∂fβ(t,x

′)

∂v′ gαγ(t,x,x
′′)

=
∂

∂r

qαqβ
|r − r′| ·

(
1

mα

∂

∂v
− 1

mβ

∂

∂v′

)[
fα(t,x)fβ(t,x

′) + gαβ(t,x,x
′)
]
. (IV.1.2)

The left-hand side of (IV.1.2) is homogeneous with respect to g; the right-hand side is
thus a source term: particle correlations are driven by Coulomb interactions. The first
part of the source term, that proportional to fαfβ , corresponds to initially uncorrelated
particles becoming correlated through Coulomb scattering. (Technically, it corresponds
to each of these uncorrelated particles becoming correlated due to interactions with each
other’s Debye clouds, but we’ll come to that soon enough.) The second part of the source
term, that proportional to gαβ , corresponds to initially correlated particles becoming
more or less correlated due to further interactions. This term is ∼Λ−1 ≪ 1 smaller than
the first term, and thus may be neglected in most cases. There are, however, certain
situations in which the gαβ contribution to the source term may not be neglected; this
will be discussed in §IV.6.

To proceed, note that the left-hand side of (IV.1.2) looks like a combination of linear
Vlasov equations for each particle in the pair, capturing the dielectric response of the
(γ) bath, with the right-hand side of the equation contribution a source term describing



Irreversible Processes in Plasmas 47

the two particles’ mutual Coulomb interaction: [(∂t + L + L′)g]αβ = Sαβ , with L given
by (III.3.2) and L′ the same but with x ↔ x′ and α ↔ β. This suggests a Green’s
function approach, with a Vlasov Green’s function for each particle used to advance the
two-particle correlation forward in time (note that L and L′ commute). But this will
only work if we drop the gαβ contribution to the source term. Physically, this brute-force
simplification means that, at any “initial” time from which we wish to integrate (IV.1.2),
no two-particle correlations exist. We argue in favor of this idea below (§IV.2), but for
now we adopt it blindly and note that this simplification allows us to write down a formal
solution to (IV.1.2) using our knowledge of the Vlasov Green’s function (cf. (III.3.4)):

gαβ(t,x,x
′) =

∑
α

∑
β

∫ t

0

dt

∫
dx

∫
dx′ Sαβ(t,x,x

′)Gαα(t− t,x;x)Gββ(t− t,x′;x′),

(IV.1.3)
where x and x′ are dummy phase-space coordinates (introduced for the integration) and
α and β are dummy species indices (introduced for the species sums); the source function

Sαβ(t,x,x
′) =

∂

∂r

qαqβ
|r − r′| ·

(
1

mα

∂

∂v
− 1

mβ

∂

∂v′

)
fα(t,x)fβ(t,x

′); (IV.1.4)

and G is the appropriate Green’s function (see (III.5.7)) with G = 0 for t < 0.
In writing (IV.1.3), we have expressed the two-particle correlation between α and β at

time t as a superposition of the correlation effects created between α and β at x and x′

at time t that propagate to x and x′ during the time interval t− t. Substituting (IV.1.3)
into (IV.1.2) and using Leibniz’s rule,

d

dt

∫ b(t)

a(t)

dx f(t, x) =

∫ b(t)

a(t)

dx
∂

∂t
f(t, x) + f(t, b(t))

db

dt
− f(t, a(t))

da

dt
,

for differentiating under the integral sign, we find that(
∂

∂t
+ v ·∇+ a · ∂

∂v

)
Gαα(t− t,x;x)

−
∑
γ

qαqγ
mα

∫
dx′ ∂

∂r

1

|r − r′| ·
∂fα
∂v

Gγα(t− t,x′;x) = δααδ(x− x)δ(t− t).

(IV.1.5)

A similar equation holds for Gββ with α→ β and α→ β in (IV.1.5).
This is (almost) exactly the problem solved in §III.5 using the Green’s function

approach. Equation (IV.1.5) gives the solution to the linearized Vlasov equation. This
means we already know Gαα and Gββ and thus how to solve the gαβ equation.

The “almost” is because fα is technically time-dependent and inhomogeneous – it’s
evolving with gαβ as a source term (see (IV.1.1)). To overcome this complication (and
to justify removing gαβ from Sαβ), we make some assumptions, which are known as. . .

IV.2. Bogoliubov’s hypothesis
At the start of these lecture notes, we discussed Bogoliubov’s timescale hierarchy (see

§I.1). It concerned the hierarchy of well-separated time- and lengthscales related to the
relaxation of an arbitrary perturbation. What this hierarchy means for our problem is
that, on the timescale over which the two-particle correlation gαβ relaxes, the one-particle
distribution function f is roughly constant. Thus, the time dependence of fα and fβ in
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the source term (IV.1.4) can be ignored: fα(t,x) → fα(x) and likewise for fβ . Equation
(IV.1.3) is then a linear equation for gαβ with a temporally constant source term. The
fast timescale over which f is fixed is denoted by a t̃ to distinguish it from the timescale t
over which f evolves due to collisions. Ultimately, we will take t̃→ ∞, which amounts to
a Markov assumption that the future is independent of the past (more on this in §VI.1).

A final assumption in the standard calculation is that the ensemble of plasma is
spatially homogeneous. This means that f(x) = f(v) and that the acceleration a(t, r) =
a(t) = 0. Thus, any ensemble-averaged function of two spatial variables (e.g., fαβ) can
only be a function of the difference of those variables: gαβ = gαβ(t̃, r − r′,v,v′).

Under these assumptions, equations (IV.1.1) and (IV.1.2) become

∂fα(t,v)

∂t
=
∑
β

qαqβ
mα

∫
dx′ ∂

∂r

1

|r − r′| ·
∂

∂v
gαβ(t, r − r′,v,v′), (IV.2.1)

(
∂

∂t̃
+ v ·∇+ v′ ·∇′

)
gαβ(t̃, r − r′,v,v′)

−
∑
γ

qαqγ
mα

∫
dx′′ ∂

∂r

1

|r − r′′| ·
∂fα
∂v

gβγ(t̃, r
′ − r′′,v′,v′′)

−
∑
γ

qβqγ
mβ

∫
dx′′ ∂

∂r′
1

|r′ − r′′| ·
∂fβ
∂v′ gαγ(t̃, r − r′′,v,v′′)

= Sαβ(r − r′,v,v′)
.
=

∂

∂r

qαqβ
|r − r′| ·

(
1

mα

∂

∂v
− 1

mβ

∂

∂v′

)
fα(v)fβ(v

′), (IV.2.2)

where t̃ is the fast timescale over which fα is temporally constant.

IV.3. Derivation of the Balescu–Lenard collision operator: Details
Following the discussion in §IV.1, equation (IV.2.2) can be solved via

gαβ(t̃, r−r′,v,v′) =
∑
α

∑
β

∫ t̃

0

dt

∫
dx

∫
dx′ Sαβ(x,x

′)Gαα(t−t,x;x)Gββ(t−t,x′;x′).

(IV.3.1)
Fourier transforming and using (III.4.6), equation (IV.2.1) becomes

∂fα
∂t

=
∑
β

qαqβ
mα

∫
dv′

∫
dr′

∂

∂r

1

|r − r′| ·
∂

∂v

∫
dk eik · (r−r′)gαβ(t,k,v,v

′)

bp
= −

∑
β

qαqβ
mα

∫
dk

∫
dv′ ik · ∂gαβ(t,k,v,v

′)

∂v

(∫
dr′

eik · (r−r′)

|r − r′|︸ ︷︷ ︸
= 4πk−2

)

= −
∑
β

qαqβ
mα

∫
dk

4πik

k2
·
∫

dv′ ∂gαβ(t,k,v,v
′)

∂v
. (IV.3.2)
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Note that, since fα is real, we need only compute the imaginary part of gαβ to close this
equation. Fourier transforming (IV.3.1) gives

gαβ(t̃,k,v,v
′) =

∑
α

∑
β

qαqβ
(2π)3

∫ t̃

0

dt

∫
dv

∫
dv′ 4πik

k2
·
(

1

mα

∂

∂v
− 1

mβ

∂

∂v′

)
fα(v)fβ(v

′)

×Gαα(t̃− t,k,v;v)Gββ(t̃− t,−k,v′;v′). (IV.3.3)

Next, Laplace transform Gαα and Gββ in time:

gαβ(t̃,k,v,v
′) =

∑
α

∑
β

qαqβ
(2π)3

∫ t̃

0

dt

∫
dv

∫
dv′ 4πik

k2
·
(

1

mα

∂

∂v
− 1

mβ

∂

∂v′

)
fα(v)fβ(v

′)

×
∫
L

dω

2π
e−iωtGαα(ω,k,v;v)

∫
L′

dω′

2π
e−iω′tGββ(ω

′,−k,v′;v′), (IV.3.4)

where L and L′ denote the appropriate Laplace contours. To ensure convergence, we
impose the constraint Im(ω + ω′) > 0. Then perform the time integration to obtain

gαβ(t̃,k,v,v
′) =

∑
α

∑
β

qαqβ
(2π)3

∫
dv

∫
dv′ 4πik

k2
·
(

1

mα

∂

∂v
− 1

mβ

∂

∂v′

)
fα(v)fβ(v

′)

×
∫
L

dω

2π

∫
L′

dω′

2π

1− e−i(ω+ω′)t̃

i(ω + ω′ + i0)
Gαα(ω,k,v;v)Gββ(ω

′,−k,v′;v′).

(IV.3.5)

Recall that “0” is meant to notate an infinitesimal displacement of the pole off of the real
axis (for causality reasons). The ω′ integration can be carried out by closing the contour
by an infinite semi-circle in the upper half-plane, since Gββ(ω

′,−k) vanishes as |ω′| → ∞.
Because Im(ω + ω′) > 0, the only contribution to the integration arises from the pole at
ω′ = −ω − i0. The “1” term vanishes because everything it multiplies is analytic in the
upper half plane, and we are left with

gαβ(k,v,v
′) =

∑
α

∑
β

qαqβ
(2π)3

∫
dv

∫
dv′ 4πik

k2
·
(

1

mα

∂

∂v
− 1

mβ

∂

∂v′

)
fα(v)fβ(v

′)

×
∫
L

dω

2π
Gαα(ω,k,v;v)Gββ(−ω,−k,v′;v′). (IV.3.6)

Now we substitute in our Green’s function (III.5.7), taking the extra precaution of noting
what functions are analytic in upper (lower) half ω-plane by appending ω with an +i0
(−i0). The result is:

gαβ(k,v,v
′) =

∑
α

∑
β

qαqβ
(2π)3

∫
dv

∫
dv′ 4πik

k2
·
(

1

mα

∂

∂v
− 1

mβ

∂

∂v′

)
fα(v)fβ(v

′)

×
∫
L

dω

2π

[
iδααδ(v − v)

ω − k ·v + i0
− qαqα

mα

4πik

k2
· ∂fα
∂v

1

ω − k ·v + i0

1

ω − k ·v + i0

1

D(ω,k)

]
×
[
−
iδββδ(v

′ − v′)

ω − k ·v′ − i0
+
qβqβ
mβ

4πik

k2
· ∂fβ
∂v′

1

ω − k ·v′ − i0

1

ω − k ·v′ − i0

1

D(−ω,−k)

]
.

(IV.3.7)
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Now, this whole thing goes into the Fourier’d version of (IV.1.1), which reads (see
(IV.3.2))

∂fα(t,v)

∂t
= −

∑
β

qαqβ
mα

∫
dk

4πik

k2
· ∂
∂v

∫
dv′ gαβ(k,v,v

′). (IV.3.8)

Note that the
∫
dv′ integration only touches the final term in brackets in (IV.3.7). Along

with the
∑
β qβ(. . . ) summation in (IV.3.8), that last term of (IV.3.7), when substituted

into (IV.3.8), contributes
−iqβ

ω − k ·v′ − i0

1

D(−ω,−k)

(recall the definition of D(ω,k) from (III.5.6)). This gives a huge simplification! Equation
(IV.3.8) becomes

∂fα(t,v)

∂t
= − qα

mα

∫
dk

4πik

k2
· ∂
∂v

×
∑
α

∑
β

qαqβ
(2π)3

∫
dv

∫
dv′ 4πik

k2
·
(

1

mα

∂

∂v
− 1

mβ

∂

∂v′

)
fα(v)fβ(v

′)

×
∫
L

dω

2π

[
δααδ(v − v)qβ

(ω − k ·v + i0)(ω − k ·v′ − i0)D(−ω,−k)︸ ︷︷ ︸
⃝1

− qαqα
mα

4πk

k2
· ∂fα
∂v

qβ
(ω − k ·v + i0)(ω − k ·v + i0)(ω − k ·v′ − i0)

1

D(ω,k)D(−ω,−k)︸ ︷︷ ︸
⃝2

]
.

(IV.3.9)

Lots of integration to do! Let’s label the terms:

∂fα(t,v)

∂t
= − qα

mα

∫
dk

4πik

k2
· ∂
∂v

[
1
α
+ 2

α
+ 1

β
+ 2

β

]
, (IV.3.10)

where the subscript α or β indicates which m−1(∂/∂v) it multiplies. To proceed, write

1
α

.
=

qα
mα

4πik

k2
· ∂fα
∂v

∑
β

q2
β

∫
dv′ fβ(v

′)

×
∫
L

dω

2π

1

(ω − k ·v + i0)(ω − k ·v′ − i0)D(−ω,−k)
× D(ω,k)

D(ω,k)
. (IV.3.11)

2
α

.
= − qα

mα

4πik

k2
· ∂fα
∂v

∑
α

q2α
mα

∫
dv

4πk

k2
· ∂fα
∂v

∑
β

q2
β

∫
dv′ fβ(v

′)

×
∫
L

dω

2π

1

ω − k ·v + i0

1

(ω − k ·v + i0)(ω − k ·v′ − i0)D(−ω,−k)D(ω,k)

= − qα
mα

4πik

k2
· ∂fα
∂v

∑
β

q2
β

∫
dv′ fβ(v

′)

×
∫
L

dω

2π

[D(ω,k)− 1]

(ω − k ·v + i0)(ω − k ·v′ − i0)D(−ω,−k)D(ω,k)
, (IV.3.12)
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using the definition of D(ω,k) (see (III.5.6)). Adding 1
α

and 2
α

together eliminates
the D(ω,k) term:

1
α
+ 2

α
=

qα
mα

4πik

k2
· ∂fα
∂v

∑
β

q2
β

∫
dv′ fβ(v

′)

×
∫
L

dω

2π

1

(ω − k ·v + i0)(ω − k ·v′ − i0)D(−ω,−k)D(ω,k)
. (IV.3.13)

Next, let’s do 2
β
:

2
β

.
=

qα
mα

4πik

k2
· ∂fα
∂v

∑
β

q2
β

mβ

∫
dv′ 4πk

k2
·
∂fβ
∂v′

∑
α

q2α

∫
dv fα(v)

×
∫
L

dω

2π

1

ω − k ·v′ − i0

1

(ω − k ·v + i0)(ω − k ·v + i0)D(−ω,−k)D(ω,k)

=
qα
mα

4πik

k2
· ∂fα
∂v

∑
α

q2α

∫
dv fα(v)

×
∫
L

dω

2π

[D(−ω,−k)− 1]

(ω − k ·v + i0)(ω − k ·v + i0)D(−ω,−k)D(ω,k)
. (IV.3.14)

Combine this with 1
α
+ 2

α
(see (IV.3.13)), noting that v′ and β are dummy variables

and can be replaced by v and α under the integral and sum:

1
α
+ 2

α
+ 2

β
=

+
qα
mα

4πik

k2
· ∂fα
∂v

∑
α

q2α

∫
dv fα(v)

∫
L

dω

2π

1

(ω − k ·v + i0)(ω − k ·v + i0)D(ω,k)

+
qα
mα

4πik

k2
· ∂fα
∂v

∑
α

q2α

∫
dv fα(v)

×
∫
L

dω

2π

1

ω − k ·v + i0

(
1

ω − k ·v − i0
− 1

ω − k ·v + i0︸ ︷︷ ︸
use Plemelj formula,

1

x∓ i0
= PV

(
1

x

)
± iπδ(x),

for both terms to get
2πiδ(ω − k ·v)

)
1

D(−ω,−k)D(ω,k)

=
qα
mα

4πik

k2
· ∂fα
∂v

∑
α

q2α

∫
dv fα(v)

∫
L

dω

2π

1

(ω − k ·v + i0)(ω − k ·v + i0)D(ω,k)

− qα
mα

4πk

k2
· ∂fα
∂v

∑
α

q2α

∫
dv fα(v)

1

(k ·v − k ·v + i0)D(−k ·v,−k)D(k ·v,k) .

(IV.3.15)

The first term here is actually equal to zero! Look at the ω integral:∫
L

dω

2π

1

(ω − k ·v + i0)(ω − k ·v + i0)D(ω,k)
.

The contour is shown below:
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We can close this contour by an infinite semi-circle in the upper half ω-plane and avoid
all the poles! Cauchy’s theorem then gives zero. Thus,

1
α
+ 2

α
+ 2

β

= − qα
mα

4πk

k2
· ∂fα
∂v

∑
α

q2α

∫
dv fα(v)

1

(k ·v − k ·v + i0)|D(k ·v,k)|2 . (IV.3.16)

Looking back at (IV.3.10), we see that the right-hand side must be real, and so the above
expression must be imaginary. By the Plemelj formula,

Im

[
1

k · (v − v) + i0

]
= −πδ(k ·v − k ·v).

Retaining only the imaginary part of (IV.3.16) then gives

Im
[

1
α
+ 2

α
+ 2

β

]
=

qα
mα

4πk

k2
· ∂fα
∂v

∑
α

q2α

∫
dv fα(v)

πδ(k ·v − k ·v)
|D(k ·v,k)|2 . (IV.3.17)

Finally, one last piece:

1
β
= −qαfα(v)

4πik

k2
·
∑
β

q2
β

mβ

∫
dv′ ∂fβ

∂v′

×
∫
L

dω

2π

1

(ω − k ·v + i0)(ω − k ·v′ − i0)D(−ω,−k)

= −iqαfα(v)

∫
L

dω

2π

[D(−ω,−k)− 1]

(ω − k ·v + i0)D(−ω,−k)

= −iqαfα(v)

∫
L

dω

2π

1

ω − k ·v + i0

[
1− 1

D(−ω,−k)

]
. (IV.3.18)

Again, we need only retain the imaginary part of this:

Im
[

1
β

]
= −qαfα(v)Re

{∫
L

dω

2π

1

ω − k ·v + i0

[
1− 1

D(−ω,−k)

]}
. (IV.3.19)
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The contour may be closed in the lower half ω-plane, since the factor in brackets only
has poles in the upper half ω-plane. Thus,

Im
[

1
β

]
= −qαfα(v)Re

{
(−i)

[
1− 1

D(−k ·v,−k)

]}
= qαfα(v) Im

1

D(−k ·v,−k)
= qαfα(v)

Im
[
D(k ·v,v)

]
|D(k ·v,k)|2

=
qαfα(v)

|D(k ·v,k)|2 Im

[∑
α

q2α
mα

4πk

k2
·
∫

dv
∂fα
∂v

δ(ω − k ·v)
ω − k ·v + i0

]
= − qαfα(v)

|D(k ·v,k)|2
[∑
α

q2α
mα

4πk

k2
·
∫

dv
∂fα
∂v

πδ(ω − k ·v)δ(ω − k ·v)
]

= − qαfα(v)

|D(k ·v,k)|2
[∑
α

q2α
mα

4πk

k2
·
∫

dv
∂fα
∂v

πδ(k ·v − k ·v)
]
, (IV.3.20)

where the penultimate step follows from Plemelj’s formula applied to (ω − k ·v + i0)−1.
Putting all of the pieces together (that is, (IV.3.17) and (IV.3.20)),

Im
[

1 + 2
]
= qα

4πk

k2
·
∑
α

q2α

∫
dv

πδ(k ·v − k ·v)
|D(k ·v,k)|2

(
1

mα

∂

∂v
− 1

mα

∂

∂v

)
fα(v)fα(v).

(IV.3.21)
Inserting (IV.3.21) all the way back into (IV.3.10), freely replacing v → v′ and α → β,
and rearranging some terms, we finally obtain

∂fα(t,v)

∂t
=
∑
β

∫
dk

(2π)3
k

mα
· ∂
∂v

×
∫

dv′
∣∣∣∣ 4πqαqβ
k2D(k ·v,k)

∣∣∣∣2πδ(k ·v − k ·v′)

(
k

mα
· ∂
∂v

− k

mβ
· ∂

∂v′

)
fα(v)fβ(v

′)

(IV.3.22)
The right-hand side of this equation is the Balescu–Lenard collision operator.

We’ll discuss the physics in this operator shortly. But first note that, if we write the
Coulomb potential in k-space as

φαβ(k)
.
=

qαqβ
2π2k2

,

then (IV.3.22) can also be written as

∂fα(t,v)

∂t
= (2π)3

∑
β

∫
dk

k

mα
· ∂
∂v

×
∫

dv′
∣∣∣∣ φαβ(k)

D(k ·v,k)

∣∣∣∣2πδ(k ·v − k ·v′)

(
k

mα
· ∂
∂v

− k

mβ
· ∂

∂v′

)
fα(v)fβ(v

′).

(IV.3.23)

What’s nice about this form is that we could have chosen a different potential (so long
as it’s weak and long-range) and everything would have gone through.

Now, this |φαβ(k)/D(k ·v,k)|2 term is very important. It represents the interaction
of one particle (together with its shielding cloud) with the potential field of another
particle (together with its shielding cloud). Because of the δ(k ·v − k ·v′), this term
handles the shielding for both particles. Thus, the Balescu–Lenard operator physically
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describes collisions between two shielded particles. As Krall & Trivelpiece (1973) put
it, “A binary collision of charged particles in a dielectric medium is different from a
collision in vacuum.” This fact is manifest quite early in the calculation, where we used
the fact that the solution is comprised of two Green’s functions. Physically, this was a
statement that, to lowest order, interacting particles move on unperturbed trajectories,
carrying their shielding clouds along with them. (This shielding cloud is in the Vlasov
response function.) Since the two-particle Green’s function factors in this way, our
solution cannot capture large-angle scatterings. This will manifest as a divergence at
small scales – something we’ll discuss in the next section. For now, some foreshadowing:
this lowest-order factorization of the two-particle response into the product of two one-
particle Green’s functions, which are coupled by the source function Sαβ describing the
Coulomb interaction, underlies Rostoker’s Test Particle Superposition Principle. We’ll
use this principle later (§V) to further understand the Balescu–Lenard collision operator
and its derivatives.

IV.4. Properties of the Balescu–Lenard collision operator
Let us catalog the properties of the Balescu–Lenard collision operator. (You’ll some-

times see it as the “BGL” operator, with “G” = Guernsey (1960).) But first, a reminder
of what went into it:

• Three-particle correlations are negligible (hαβγ = 0);

• The ensemble of plasmas is homogeneous;

• The two-particle correlation function gαβ relaxes on a timescale much shorter than
does the one-particle distribution function fα.

This makes the Balescu–Lenard operator inappropriate for situations in which there
is spatially inhomogeneous wave motion on relevant scales or for any phenomena that
involve high frequencies like ωp. Also, note that we took Bext = 0. A version of Balescu–
Lenard can be obtained when Bext ̸= 0 – see Klimontovich (1967), §15. In this case, the
particle trajectories are helical rather than straight, and the directions parallel (∥) and
perpendicular (⊥) to the magnetic-field direction b̂ext

.
= Bext/Bext are treated differently.

The Balescu–Lenard collision operator (cf. IV.3.22) becomes(
∂fα
∂t

)
c

=
∑
β

∞∑
n=−∞

∞∑
n′=−∞

∫
dk

(2π)3

(
k

mα
· ∂
∂v

)
n

∫
dv′ J2n

(
k⊥v⊥
Ωα

)
J2n′

(
k⊥v

′
⊥

Ωβ

)

×
∣∣∣∣ 4πqαqβ
k2D(k∥v∥ + nΩβ ,k)

∣∣∣∣2πδ(k∥v∥ + nΩα − k∥v
′
∥ − n′Ωα)

×
[(

k

mα
· ∂
∂v

)
n

−
(

k

mβ
· ∂

∂v′

)
n′

]
fα(v∥, v⊥, t)fβ(v

′
∥, v

′
⊥, t), (IV.4.1)

where Jn is the nth Bessel function, Ωα
.
= qαBext/mαc is the Larmor frequency of species

α, k = k∥b̂ext + k⊥, dk = 2πk⊥dk⊥dk∥, and(
k

mα
· ∂
∂v

)
n

= k∥
∂

∂v∥
+
nΩα
v⊥

∂

∂v⊥
.

If the Larmor radii of all particles ρα
.
= vth⊥α/Ωα are much greater than the Debye

length, then trajectories are approximately straight on the scales of interest, and we
recover the electrostatic Balescu–Lenard operator.
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The Balescu–Lenard collision operator (IV.3.22) has a few desirable features:

• If fα ⩾ 0 at t = 0, then fα ⩾ 0 for all t.

Proof: If fα > 0 initially but becomes < 0 later, then there must have been a time at
which its minimum value as a function of v first passed through zero. At that time and
point in phase space, we have (i) fα = 0, (ii) ∂fα/∂v = 0, (iii) ∂2fα/∂v∂v is positive-
semidefinite, and (iv) ∂fα/∂t < 0. Suppose the first three conditions hold. Then the
right-hand side of (IV.3.22) becomes∑

β

2πq2αq
2
β

mα

∫
dk

∫
dv′ kk

k4
:

[(
∂

∂v

δ(k ·v − k ·v′)

π|D(k ·v,k)|2
)(

1

mα

∂

∂v
− 1

mβ

∂

∂v′

)
fα(v)fβ(v

′)︸ ︷︷ ︸
= 0 by (i) and (ii)

+
δ(k ·v − k ·v′)

π|D(k ·v,k)|2
(

1

mα

∂2

∂v∂v
− 1

mβ

∂2

∂v∂v′︸ ︷︷ ︸
= 0 by (ii)

)
fα(v)fβ(v

′)

]

=
∑
β

2πq2αq
2
β

m2
α

∫
dk

∫
dv′ kk

k4
:

[
δ(k ·v − k ·v′)

π|D(k ·v,k)|2
∂2fα
∂v∂v

fβ(v
′)

]
> 0 by (iii),

which contradicts (iv). Q.E.D.

• The collision operator is Galilean invariant.

Proof: Let fα(v) → fα(v − u) and fβ(v′) → fβ(v
′ − u), where u is the velocity of some

frame. Then define w
.
= v−u and w′ .= v′−u; and note that dv′ = dw′, ∂/∂v = ∂/∂w,

and ∂/∂v′ = ∂/∂w′. Also, v − v′ = w − w′. Then the right-hand side of (IV.3.22)
becomes ∑

β

2πq2αq
2
β

mα

∂

∂w
·
∫

dk

∫
dw′ kk

k4
δ(k ·w − k ·w′)

π|D(k ·w + k ·u,k)|2

·
(

1

mα

∂

∂w
− 1

mβ

∂

∂w′

)
fα(w)fβ(w

′)

This is the same as the original operator, but for the argument of the dielectric function
D. But D is Galilean invariant:

D(k ·w + k ·u,k) = 1 +
∑
γ

q2γ
mγ

4πk

k2
·
∫

dv′′ ∂f0γ/∂v
′′

k ·w + k ·u− k ·v′′

= 1 +
∑
γ

q2γ
mγ

4πk

k2
·
∫

dw′′ ∂f0γ/∂w
′′

k ·w − k ·w′′

= D(k ·w,k).

Q.E.D.

• Maxwell distributions for all species with equal temperatures and mean velocities
are a time-independent solution:

feq,α =
nα

π3/2v3thα
exp

(
−|v − u|2

v2thα

)
, v2thα

.
=

2T

mα
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with the same temperature T and mean velocity u for all α. The proof follows by
direct substitution into (IV.3.22).

• As t→ ∞, any fα satisfying fα ⩾ 0 approaches a Maxwell distribution with equal
temperatures for all species.

• The Balescu–Lenard collision operator conserves particle number:∫
dv

(
∂fα
∂t

)
c

= 0 for each α.

• The Balescu–Lenard collision operator conserves total momentum:∑
α

∫
dvmαv

(
∂fα
∂t

)
c

= 0.

(NB: momentum of each individual species is not conserved. Newton would have
a problem with that.)

• The Balescu–Lenard collision operator conserves total kinetic energy:∑
α

∫
dv (1/2)mαv

2

(
∂fα
∂t

)
c

= 0.

(NB: again, this holds only for the entire plasma, not each species by itself.)

The final three properties above may be proven simultaneously as follows. First, introduce
the tensor

Qαβ(v,v
′)
.
=

∫
dk

(2π)3
kk

∣∣∣∣ 4πqαqβ
k2D(k ·v,k)

∣∣∣∣2πδ(k ·v − k ·v′). (IV.4.2)

Then, the Balescu–Lenard operator (IV.3.22) may be written as(
∂fα
∂t

)
c

=
∑
β

1

mα

∂

∂v
·
∫

dv′ Qαβ ·
(

1

mα

∂

∂v
− 1

mβ

∂

∂v′

)
fα(v)fβ(v

′). (IV.4.3)

Next, multiply (IV.4.3) by an arbitrary function of velocity, Φα(v), sum over α, and
integrate over v. The result is∑
α, β

∫
dv

Φα(v)

mα

∂

∂v
·
∫

dv′ Qαβ ·
(

1

mα

∂

∂v
− 1

mβ

∂

∂v′

)
fα(v)fβ(v

′)

bp
= −

∑
α, β

∫
dv

∫
dv′ 1

mα

dΦα

dv
·Qαβ ·

(
1

mα

∂

∂v
− 1

mβ

∂

∂v′

)
fα(v)fβ(v

′)

= −
∑
α, β

∫
dv

∫
dv′

[
1

2mα

dΦα

dv
·Qαβ ·

(
1

mα

∂

∂v
− 1

mβ

∂

∂v′

)
fα(v)fβ(v

′)

+
1

2mα

dΦα

dv
·Qαβ ·

(
1

mα

∂

∂v
− 1

mβ

∂

∂v′

)
fα(v)fβ(v

′)

]
= −

∑
α, β

∫
dv

∫
dv′ 1

2

(
1

mα

dΦα

dv
− 1

mβ

dΦβ

dv′

)
·Qαβ ·

(
1

mα

∂

∂v
− 1

mβ

∂

∂v′

)
fα(v)fβ(v

′),

where the last step follows from Qαβ(v,v
′) = Qβα(v

′,v). Finally, note that this integral
only vanishes for three functions: Φα(v) = 1, mαv, and (1/2)mαv

2. Q.E.D.
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Very soon, we will also see it advantageous to separate terms in (IV.4.3) by defining

Aα
.
=

1

mα

∑
β

(
1

mα
+

1

mβ

)∫
dk

(2π)3
kk

∣∣∣∣ 4πqαqβ
k2D(k ·v,k)

∣∣∣∣2 ∫ dv′ πδ(k ·v − k ·v′) · ∂fβ
∂v′ ,

(IV.4.4a)

Bα
.
=

1

mα

∑
β

(
1

mα
+

1

mα

)∫
dk

(2π)3
kk

∣∣∣∣ 4πqαqβ
k2D(k ·v,k)

∣∣∣∣2 ∫ dv′ πδ(k ·v − k ·v′)fβ(v
′),

(IV.4.4b)
so that (IV.4.3) may be written as

∂fα(t,v)

∂t
= − ∂

∂v
·
[
Aαfα(v)

]
+

1

2

∂

∂v

∂

∂v
:
[
Bαfα(v)

]
(IV.4.5)

This Fokker-Planck form has two pieces: the first corresponding to friction, the second
corresponding to diffusion. You’ll see why soon enough (§VI).

Finally, the Balescu–Lenard collision operator satisfies an “H theorem”; i.e., the
entropy-like functional

S(t)
.
= −

∑
α

∫
dx fα(t,x) ln fα(t,x) (IV.4.6)

can either increase or remain constant. It cannot decrease!

Proof: Take the time derivative of (IV.4.6) and use the Balescu–Lenard equation (IV.3.22) to
find

dS

dt
= −

∑
α

∫
dx

[
1 + ln fα

](∂fα
∂t

)
c

. (IV.4.7)

Since this operator conserves particle number, the first term vanishes. Thus, using (IV.4.3), we
have

dS

dt
= −

∑
α

∫
dx ln fα

(
∂fα
∂t

)
c

= −
∑
α

∑
β

∫
dx ln fα

1

mα

∂

∂v
·
∫

dv′ Qαβ ·
(

1

mα

∂

∂v
− 1

mβ

∂

∂v′

)
fα(v)fβ(v

′)

bp
=

∑
α

∑
β

∫
dx

1

mα

∂ ln fα
∂v

·
∫

dv′ Qαβ ·
(

1

mα

∂ ln fα
∂v

− 1

mβ

∂ ln fβ
∂v′

)
fα(v)fβ(v

′)

=
1

2

∑
α

∑
β

∫
dx

∫
dv′

(
1

mα

∂ ln fα
∂v

− 1

mβ

∂ ln fβ
∂v′

)
·Qαβ

·
(

1

mα

∂ ln fα
∂v

− 1

mβ

∂ ln fβ
∂v′

)
fα(v)fβ(v

′), (IV.4.8)

where in the final step the symmetries of Qαβ were exploited to introduce the extra ∂ ln fβ/∂v′

term. Defining the vector

F αβ(v,v
′)
.
=

1

mα

∂ ln fα
∂v

− 1

mβ

∂ ln fβ
∂v′ (IV.4.9)
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and inserting (IV.4.2) for Qαβ gives

dS

dt
=

∑
α

∑
β

∫
dx

∫
dv′

∫
dk

∣∣∣∣qαqβ(k ·F αβ)

k2D(k ·v,k)

∣∣∣∣2δ(k ·v − k ·v′) fα(v)fβ(v
′)

⩾ 0. (IV.4.10)

Q.E.D. (Question: given that the Balescu–Lenard operator cannot decrease entropy, where did
the arrow of time appear in its derivation?)

Note that equality in (IV.4.10) only occurs when

F αβ(v,v
′) = Aαβ(v,v

′)(v − v′) (IV.4.11)

for some scalar function Aαβ(v,v′). We now show that the only consistent solution to this
equation is for fα and fβ to be Maxwellians. First, note that Aαβ(v,v′) = Aβα(v

′,v).
Next, take the velocity-space curl of (IV.4.11) and use (IV.4.9) to find

∂

∂v
×F αβ = 0 =

∂Aαβ
∂v

× (v − v′), (IV.4.12)

which implies that Aαβ = Aαβ(|v − v′|). It follows by setting v′ = 0 and then v = 0 in
(IV.4.11) that (see §7.2 of Montgomery & Tidman 1964)

1

mα

(
∂ ln fα
∂v

)
v=0

=
1

mβ

(
∂ ln fβ
∂v′

)
v′=0

.
= a1.

Using this in

F αβ(0,v
′)+F αβ(v, 0) =

1

mα

[(
∂ ln fα
∂v

)
v=0

+
∂ ln fα
∂v

]
− 1

mβ

[(
∂ ln fβ
∂v′

)
v′=0

+
∂ ln fβ
∂v′

]
leads to the constraint

Aαβ(|v|)v −Aαβ(|v′|)v′ = F αβ(v,v
′) = Aαβ(|v − v′|) (v − v′). (IV.4.13)

The only continuous solution of (IV.4.13) is Aαβ(|v− v′|) = a2 = const. Thus, (IV.4.11)
has the solution

ln fα(v) = mα

(
1

2
a2v

2 + a1 ·v + a0

)
(IV.4.14)

with a0 = const. These constants can be determined from the definitions

nα
.
=

∫
dv fα, uα

.
=

1

nα

∫
dv vfα, Tα

.
=

1

nα

∫
dv

1

3
mα|v − uα|2fα,

in which case (IV.4.14) gives

fα(v) =
nα

π3/2v3thα
exp

(
−|v − uα|2

v2thα

)
, v2thα

.
=

2Tα
mα

, (IV.4.15)

a shifted Maxwellian. Substitution of this distribution back into the collision operator
indicates that all species must have the same bulk velocity u and temperature T .
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IV.5. Asymptotics of the Balescu–Lenard operator: The Landau
operator

A notable feature of the Balescu–Lenard collision operator is the inclusion of both
binary and collective processes. The term(

1

mα

∂

∂v
− 1

mβ

∂

∂v′

)
fα(v)fβ(v

′)

is associated with two-body interactions – indeed, this factor also arises in the Boltz-
mann collision operator (discussed further in these notes and in the homework). But
the Balescu–Lenard operator also includes the dielectric function D(ω,k), and so the
distribution functions of all species enter non-linearly; this reflects the many-particle
shielding effects of the Coulomb interaction.

An elegant consequence of this feature is that the Balescu–Lenard operator converges as
k → 0 (i.e., at large scales). Let’s see that. Write dk =

∫
dΩk

∫∞
0

dk k2. The k-dependent
part of the Balescu–Lenard operator is then∫

dΩk

∫ ∞

0

dk
kk

k2
δ(k ·v − k ·v′)

|D(k ·v,k)|2 =

∫
dΩk

∫ ∞

0

dk

k
k̂k̂

δ(k̂ ·v − k̂ ·v′)

|D(k ·v,k)|2 , (IV.5.1)

where k̂
.
= k/k. Now, D has a particular form (see (III.5.6)), so let’s examine that:

D(k ·v,k) = 1 +
∑
γ

q2γ
mγ

4πk

k2
·
∫

dv′ ∂fγ/∂v
′

k · (v − v′) + i0

= 1 +
∑
γ

4πq2γnγ

k2Tγ

∫
dv′ v

2
thγ

2nγ

k · ∂fγ/∂v′

k · (v − v′) + i0

.
= 1 +

k2D
k2

α(k ·v,v), (IV.5.2)

where

k2D
.
=

1

λ2D

.
=
∑
γ

4πq2γnγ

Tγ
. (IV.5.3)

Thus, writing

|D(k ·v,k)|2 =

[
1 +

k2D
k2

Re(α)

]2
+

[
k2D
k2

Im(α)

]2
,

equation (IV.5.1) is∫
dΩk

∫ ∞

0

dk

k

k̂k̂ δ(k̂ ·v − k̂ ·v′)[
1 +

k2D
k2

Re(α)

]2
+

[
k2D
k2

Im(α)

]2 . (IV.5.4)

For k2D/k
2 ≫ 1 (i.e., long wavelengths), this becomes∫

dΩk

∫ ∞

0

dk k3
k̂k̂ δ(k̂ ·v − k̂ ·v′)

|α(k ·v,k)|2 ,

which is nicely convergent. The physical reason is that the dielectric function works to
limit the effective range of the Coulomb interaction at large distances; the Balescu–Lenard
operator takes Debye shielding into account. What if we didn’t account for polarization?
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Set D = 1. Then we have ∫
dΩk

∫ ∞

0

dk

k
k̂k̂ δ(k̂ ·v − k̂ ·v′),

which is divergent! Physically, this is because the “bare” Coulomb force has infinite range.
More on this shortly. . .

For k2D/k
2 ≪ 1 (i.e., short wavelengths), note that we have a logarithmic divergence.

This may be traced to our original assumption about the smallness of gαβ relative to fα,
and likewise for hαβγ relative to gαβ . (Recall that gαβ was neglected relative to fαfβ in
(IV.1.2)!) At short distances, the momentum transfer between particles is large, and we
must worry about particle discreteness. For example, two electrons cannot get very close
to one another, and so fαβ → 0 as |r − r′| → 0; this implies gαβ ≈ −fαfβ , and so gαβ is
not much smaller than fα. HW03 explores this further.

In practice, since the divergence is logarithmic, it ain’t so bad. The customary thing
is to simply cut off the k integral at some large value k0:

∫∞
0

dk →
∫ k0
0

dk, and choose
an appropriate k0. Being off by a little bit in this choice doesn’t much affect the answer,
being only logarithmic. A typical choice is the Landau length k−1

0
.
= e2/T , the distance

of closest approach of thermal electrons. The potential isn’t Coulombic on this scale
anyhow, so this makes sense.

The next several pages will be devoted to understanding the physics contained within
in the Balescu–Lenard equation, but first let us return briefly to the case D = 1 – i.e.,
ignore the polarization effects involved in Debye screening. Then (IV.3.22) reads

∂fα(t,v)

∂t
=
∑
β

∫
dk

(2π)3
k

mα
· ∂
∂v

×
∫

dv′
∣∣∣∣4πqαqβk2

∣∣∣∣2πδ(k ·v − k ·v′)

(
k

mα
· ∂
∂v

− k

mβ
· ∂

∂v′

)
fα(v)fβ(v

′)

=
∑
β

2q2αq
2
β

∫
dΩk

∫ ∞

0

dk

k

k̂

mα
· ∂
∂v

×
∫

dv′ δ(k̂ ·v − k̂ ·v′)

(
k̂

mα
· ∂
∂v

− k̂

mβ
· ∂

∂v′

)
fα(v)fβ(v

′). (IV.5.5)

Clearly, we have to cut off the integral over k both at large k (as with the Balescu–Lenard
operator) and at small k (since we’ve ignored shielding and thus are allowing for long-
range influence of bare particles, stripped of their Debye clouds). I’ve already commented
on kmax. A sensible choice for kmin is kD

.
= 1/λD. Then,∫ k0

kD

dk

k
= ln

(
k0
kD

)
.
= lnλ, (IV.5.6)

the Coulomb logarithm. Then

∂fα(t,v)

∂t
=
∑
β

2q2αq
2
β lnλαβ

∫
dΩk

k̂

mα
· ∂
∂v

×
∫

dv′ δ(k̂ ·v − k̂ ·v′)

(
k̂

mα
· ∂
∂v

− k̂

mβ
· ∂

∂v′

)
fα(v)fβ(v

′). (IV.5.7)
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It is possible to simplify this expression by examining the combination
1

π

∫
dΩk k̂k̂ δ(k̂ ·v − k̂ ·v′).

Without loss of generality, orient the velocity difference u
.
= v− v′ along the z axis, and

work in spherical coordinates to write k̂ = cos θ ẑ + sin θ(cosϕ x̂+ sinϕ ŷ). Then,

1

π

∫
dΩk k̂k̂ δ(k̂ ·u) = 1

π

∫ 2π

0

dϕ

∫ +1

−1

d(cos θ) δ(u cos θ)

×
[
cos θ ẑ + sin θ(cosϕ x̂+ sinϕ ŷ)

][
cos θ ẑ + sin θ(cosϕ x̂+ sinϕ ŷ)

]
=

1

π
2π

∫ +1

−1

d(cos θ) δ(u cos θ)︸ ︷︷ ︸
= δ(cos θ)/u

[
cos2 θ ẑẑ + sin2 θ

(
x̂x̂+ ŷŷ

2

)]

=
2

u

(
x̂x̂+ ŷŷ

2

)
=
u2I − uu

u3
.
= U(u). (IV.5.8)

Then (IV.5.7) becomes

∂fα(t,v)

∂t
=
∑
β

2πq2αq
2
β lnλαβ

mα

∂

∂v
·
∫

dv′ U(v − v′) ·
(

1

mα

∂

∂v
− 1

mβ

∂

∂v′

)
fα(v)fβ(v

′)

(IV.5.9)
The right-hand side of this equation is the Landau collision operator (Landau 1937).
(Note: Landau obtained this from the Boltzmann equation after many assumptions –
keep reading. . . )

We’ll revisit the Landau operator in due course, and will take a number of useful
limits to obtain approximate operators of great use (§VIII). But, first, we really need
to understand the content of the Balescu–Lenard and Landau equations. In the next
few sections and chapters, we’ll examine the BBGKY hierarchy in a plasma in thermal
equilibrium (IV.6), thereby obtaining the spectrum of electrostatic fluctuations off of
which particles scatter. We will also derive and use something called the test-particle
superposition principle (§V), and will show how our Balescu–Lenard and Landau collision
operators are Fokker-Planck operators (§VI). All of this is buried in the preceding
material, masked by the mathematics. In what follows, this physics will be elucidated bit
by bit. First, let us consider a plasma in thermal equilibrium. . .

IV.6. Equilibrium BBGKY hierarchy
In thermal equilibrium, the probability distribution PN (Γ ) is just the familiar Gibbs

distribution from your undergraduate statistical mechanics class:

DN (Γ )
.
=

1

Z exp

[
−H(Γ )

T

]
, (IV.6.1)

where T is the (species-independent) temperature, Z .
=
∫
dΓ exp(−H/T ) is the partition

function, and the Hamiltonian

H =
∑
αi

1

2
mαV

2
αi

+
∑
αi

∑
βj ̸=αi

1

2

qαqβ
|Rαi −Rβj |

(IV.6.2)
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contains the kinetic and potential energies of the particles. (The sum
∑
αi

=
∑
α

∑Nα

i=1 is
a sum over all species and all particles of each species. The factor of 1/2 in the potential
energy accounts for double counting of particle pairs in the sums.) The Gibbs distribution
is clearly separable in the velocity:

DN =

∏
αi

exp(−mαV
2
αi
/2T )∏

α

[∫
dVα1

exp(−mαV 2
α1
/2T )

]Nα
D̂N , (IV.6.3)

where D̂N contains all of the spatial dependence of DN arising from the potential energy
in the Hamiltonian. Thus,

fα(x) = fα(v)�
��*1

f̂α(r), (IV.6.4a)

fαβ(x,x
′) = fα(v)fβ(v

′)�����: f̂αβ(r − r′)
f̂αβ(r, r

′), (IV.6.4b)

. . .

with

fα(v) =
nα

π3/2v3thα
exp

(
− v2

v2thα

)
, v2thα

.
=

2T

mα

for all species α. (NB: f̂α(r) = 1, because integrating over all Coulomb potentials gives
no net acceleration: ∂fα/∂r = 0.)

In equilibrium, the equation for the two-particle correlation (IV.2.2) becomes(
v ·∇+ v′ ·∇′)gαβ(r − r′,v,v′)

−
∑
γ

qαqγ
mα

∫
dx′′ ∂

∂r

1

|r − r′′| ·
dfα
dv

gβγ(r
′ − r′′,v′,v′′)

−
∑
γ

qβqγ
mβ

∫
dx′′ ∂

∂r′
1

|r′ − r′′| ·
dfβ
dv′ gαγ(r − r′′,v,v′′)

=
∂

∂r

qαqβ
|r − r′| ·

(
1

mα

d

dv
− 1

mβ

d

dv′

)
fα(v)fβ(v

′). (IV.6.5)

Because gαβ is translationally invariant and fα(v) is Maxwellian, one has that

v ·∇+ v′ ·∇′ = (v − v′) ·∇,(
1

mα

d

dv
− 1

mβ

d

dv′

)
fα(v)fβ(v

′) = −v − v′

T
fα(v)fβ(v

′).

Then (IV.6.5) becomes(
v − v′) ·∇gαβ(r − r′,v,v′)

+
∑
γ

qαqγ
T

∫
dx′′ ∂

∂r

1

|r − r′′| ·vfα(v) gβγ(r
′ − r′′,v′,v′′)

+
∑
γ

qβqγ
T

∫
dx′′ ∂

∂r′
1

|r′ − r′′| ·v
′fβ(v

′) gαγ(r − r′′,v,v′′)

= − ∂

∂r

qαqβ
|r − r′| ·

v − v′

T
fα(v)fβ(v

′). (IV.6.6)

Writing ĝαβ
.
= gαβ/(fα(v)fβ(v

′)) and introducing s = r− r′, the middle two (shielding)



Irreversible Processes in Plasmas 63

terms are given by∑
γ

qαqγ
T

∫
dx′′ ∂

∂s

1

|s− s′′| ·vfα(v) ĝβγ(s
′′)fβ(v

′)fγ(v
′′)

=
∑
γ

qαqγnγ
T

∫
ds′′

∂

∂s

1

|s− s′′| ·vfα(v) ĝβγ(s
′′)fβ(v

′), (IV.6.7a)

∑
γ

qβqγ
T

∫
dx′′ ∂

∂s′
1

|s′ − s′′| ·v
′fβ(v

′) ĝαγ(s
′′)fα(v)fγ(v

′′)

= −
∑
γ

qβqγnγ
T

∫
ds′′

∂

∂s

1

|s− s′′| ·v
′fβ(v

′) ĝαγ(s
′′)fα(v), (IV.6.7b)

respectively, so that their sum may be written as∑
γ

qγnγ
T

∫
ds′′

∂

∂s

1

|s− s′′| ·
(
qαvĝβγ(s

′′)− qβv
′ĝαγ(s

′′)
)
fα(v)fβ(v

′). (IV.6.8)

Equation (IV.6.6) then reads(
v − v′) ·∇(

ĝαβ(s) +
qαqβ
T

1

|s|

)
fα(v)fβ(v

′)

+
∑
γ

qγnγ
T

∫
ds′′

∂

∂s

1

|s− s′′| ·
(
qαvĝβγ(s

′′)− qβv
′ĝαγ(s

′′)
)
fα(v)fβ(v

′) = 0.

(IV.6.9)

Because this equation must be satisfied for each v and v′, we must have that∑
γ

qαqγnγ ĝβγ(s
′′) =

∑
γ

qβqγnγ ĝαγ(s
′′).

Then (IV.6.9) may be rearranged to obtain

(
v − v′) ·∇(

ĝαβ(s) +
qαqβ
T

1

|s| +
∑
γ

qαqγnγ
T

∫
ds′′

ĝβγ(s
′′)

|s− s′′|

)
fα(v)fβ(v

′) = 0.

(IV.6.10)
Fourier transforming in s and requiring that the solution be valid for arbitrary v − v′

leads to

ĝαβ(k) +
qαqβ

2π2k2T
+
∑
γ

4πqαqγnγ
k2T

ĝβγ(k) = 0. (IV.6.11)

This is our equation for the equilibrium two-particle correlation function.
To solve (IV.6.11), first multiply by qαnα and sum over α:∑

α

qαnαĝαβ(k) +
∑
α

q2αqβnα
2π2k2T

+

(∑
α

4πq2αnα
k2T

)(∑
γ

qγnγ ĝβγ(k)

)
= 0.

With α and γ being dummy summation indices, this equation may be rearranged to
obtain

∑
γ

qγnγ ĝβγ(k) =

−
∑
α

q2αqβnα
2π2k2T

1 +
∑
α

4πq2αnα
k2T

, (IV.6.12)
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which may be substituted back into (IV.6.11) to find that

ĝαβ(k)
.
=
gαβ(k,v,v

′)

fα(v)fβ(v′)
= − qαqβ

2π2T

1

k2 + k2D
(IV.6.13)

where k2D
.
=
∑
α 4πq

2
αnα/T . Noting that D(0,k) = 1+ (kD/k)

2, this expression may also
be written as

ĝαβ(k) = − qαqβ
2π2k2T

1

D(0,k)
. (IV.6.14)

Now we take the inverse Fourier transform of (IV.6.13):

ĝαβ(rrr ) = − qαqβ
2π2T

∫
dk

eik · rrr

k2 + k2D
with rrr .

= r − r′

= − qαqβ
2π2T

∫ 2π

0

dϕk

∫ +1

−1

d cos θk

∫ ∞

0

dk
eikr cos θk

1 + (kD/k)2

=
qαqβ
2π2T

2πi

r

∫ ∞

0

dk

k

eikr − e−ikr

1 + (kD/k)2

=
qαqβ
2π2T

2πi

r

∫ ∞

−∞
dk

k eikr

(k + ikD)(k − ikD)
. (IV.6.15)

This integral can be done via contour integration. There are simple poles at ±ikD; the
contour runs along the real axis from −∞ to +∞ and closes in the upper half k-plane
(since exp(ikr ) → 0 as k → i∞):

Picking up the residue from the +ikD pole, we have

ĝαβ(r ) = −qαqβ
T

e−kDr

r (IV.6.16)

Thus, the equilibrium two-particle distribution function is

fαβ(x,x
′) = fα(v)fβ(v

′)

(
1− qαqβ

T

e−kD|r−r′|

|r − r′|

)
(IV.6.17)

There are three things to note about (IV.6.17):

(1) The equilibrium two-particle correlation

ĝαβ(r ) =
qαqβ
T

e−kDr

r =
qαqβn

Tk2D

k3D
n

e−kDr

kDr
=

1

4πΛ

qαqβn∑
γ q

2
γnγ

e−kDr

kDr
∼ Λ−1 ≪ 1.

This is consistent with our expectation that gαβ ∼ O(Λ−1); i.e., that particle
correlations are weak when Λ is large.

(2) The joint probability of finding a particle of species α at phase-space location x
and a particle of species β at phase-space location x′ is modified substantially
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kDr

1± e−kDr/(8πΛkDr)
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Figure 5. Equilibrium two-particle distribution function f̂αβ for a hydrogenic plasma with
plasma parameter Λ = 104. Plus (minus) sign corresponds to unlike-(like-)signed charges. Note
that the probability goes negative for like-signed charges (red), a consequence of neglecting gαβ

in the BBGKY source term for gαβ .

at separations |r − r′| ∼ λD. This is the effect of Debye shielding. Much beyond
λD, particle β is distributed independently of particle α. This is because all other
particles are correlated with particle α, which is surrounded by a cloud of radius
∼λD with net charge Q = −qα. Oppositely signed charges are statistically more
likely to be found close to one another than like-signed charges.

(3) Figure 5 shows a plot of f̂αβ for a hydrogenic plasma,

1± 1

8πΛ

e−kDr

kDr
,

with Λ = 104. Note that the probability shown here goes negative for like-signed
charges (proton-proton or electron-electron), which is obviously not good! Where
could we have gone wrong? Remember that gαβ we threw away in the source
term because we argued it to be small relative to fαfβ? Yeah. . . can’t do that.
As fαβ → 0, gαβ → −fαfβ . One fix, in the spirit of Chapters 11.2.2 and 11.2.3
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of Krommes (2018), is to consider a Yukawa-type potential φ = (q/r ) exp(−kDr ).
This gives

ĝαβ(r ) = −1 + exp
[
−qαqβ
Tr exp(−kDr )

]
,

which safely goes to −1 as r → 0 for qαqβ > 0. The problem then is for oppositely
signed charges (qαqβ < 0) – it blows up! As Greg Hammett put it in his lecture
notes: “nothing classical can prevent electrons from collapsing onto ions with
infinite negative potential energy. Only quantum effects can prevent this collapse.”
Read the end of Krommes (2018) Chapter 11.2.3 for interesting applications. The
point here is that Λ ≫ 1 implies that the mean kinetic energy is much much
greater than the mean potential energy, and that’s just not true as r → 0. (Recall
that KE/PE ∼ Λ2/3.)

PART V

Discrete particle effects and the test-particle
superposition principle

Collision operators capture the discrete nature of the particles comprising a plasma.
Thus, to understand our collision operators, it would be prudent to investigate some
consequences of this discreteness. I’ve already touched on some of these things, but in
this part we’ll dig a little deeper. The results will ultimately allow us to unpack all the
formalism involved in calculating the Balescu–Lenard operator and understand fully its
physical contents.

V.1. Moving test charges
Let us proceed by considering the motion of a single particle – a “test particle” –

through a plasma, which is taken to be otherwise uniform and field-free. We’ve already
said much about Debye shielding, particularly in the case of a static particle surrounded
by a screening cloud. Now, we determine the properties of that cloud as the particle is
moving. Most texts at this point launch into a calculation of particle motion and Vlasov
dynamics, but, by virtue of our Green’s function solution to the Vlasov equation, we
already have everything we need. Recall (III.5.7):

Gαβ(ω,k,v;v
′) =

δαβδ(v − v′)

−iω + ik ·v

+
qαqβ
mα

4πik

k2
· ∂f0α
∂v

1

D(ω,k)

1

−iω + ik ·v′
1

−iω + ik ·v . (V.1.1)

The solution for δfα(t,k,v) that follows from applying this Green’s function is
(cf. (III.5.14))

δfα(t,k,v) =

[
δfα(t = 0,k,v)− qα

mα
ik · ∂f0α

∂v

∑
j

cj
−iωj + ik ·v

]
e−ik ·vt

+
qα
mα

ik · ∂f0α
∂v

∑
j

cje
−iωjt

−iωj + ik ·v , (V.1.2)
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where the cj are the residues of ωj determined from the solution for the potential:

φ(ω,k) =
4π

k2
1

D(ω,k)

∑
β

qβ

∫
dv′ δfβ(t = 0,k,v′)

−iω + ik ·v′

=
∑
j

cj
−i(ω − ωj)

+A(ω), (V.1.3)

where A(ω) is the analytic piece (with A(k ·v) = 0). Inverse-Laplace transforming the
latter gave (cf. (III.5.12))

φ(t,k) =
∑
j

cje
−iωjt. (V.1.4)

For our test-particle problem, δfα(t = 0,k,v) = 0; i.e., the initial plasma is in equilibrium
and is not yet disturbed. The distribution of the test particle at t = 0 is

δfT(t = 0,x) = δ(r −R0)δ(v − V0), (V.1.5)

where (R0,V0) are the initial phase-space coordinates of the test particle. (The subscript
“T” denotes “test”.) The Fourier transform of (V.1.5) is

δfT(t = 0,k,v) =
1

(2π)3
e−ik ·R0δ(v − V0); (V.1.6)

then

φ(ω,k) =
qT

2π2k2
e−ik ·R0

D(ω,k)

∫
dv′ δ(v

′ − V0)

−iω + ik ·v′

=
qT

2π2k2
e−ik ·R0

D(ω,k)

1

−i(ω − k ·V0)

=⇒ cT =
qT

2π2k2
e−ik ·R0

D(k ·V0,k)
(V.1.7)

for the kinetic pole ω = k ·V0. Other poles give damping from D(ω,k) = 0 eigenmodes,
which don’t survive for long. Thus, equation (V.1.4) becomes

φ(t,k) ≈ qT
2π2k2

e−ik ·R(t)

D(k ·V0,k)
(V.1.8)

at late times, where R(t)
.
= R0 + V0t is the (straight) test-particle trajectory. Equation

(V.1.2) for the perturbed distribution function then gives

δfα(t,k,v) ≈ e−ik ·vt
∫ t

dt′ eik ·vt′ iqαqT
2π2k2

k

mα
· ∂f0α
∂v

e−ik · (R0+V0t
′)

D(k ·V0,k)

≈ qαqT
2π2k2

k

mα
· ∂f0α
∂v

e−ik ·R(t)

[k · (v − V0)]D(k ·V0,k)
. (V.1.9)

The test particle clearly generates a response in the plasma! Physically, what’s going on
is that the sudden presence of a moving test charge in the plasma excites a spectrum
of Landau-damped plasma oscillations due to the local charge imbalance. On timescales
longer than the inverse of the Landau-damping rate, what remains is an equilibrated
Debye cloud that surrounds the test charge. Indeed, the argument of the dielectric
function is k ·V 0, which is the remaining zero-frequency mode Doppler-shifted to the
frame of the moving test charge. We’ll see that this corresponds to an equilibrated, but
spatially distorted, Debye cloud.
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Let us take some limiting cases by varying V0. For that, it’ll help to recall the definition
of D(ω,k) (cf. (III.5.6)):

D(ω,k)
.
= 1 +

∑
γ

q2γ
mγ

4πk

k2
·
∫

dv′ ∂f0γ/∂v
′

ω − k ·v′ + i0
.

Proceeding. . .

(1) Test particle in vacuum (D → 1):

φ(t,k) → qT
2π2k2

e−ik ·R(t)

=⇒ φ(t, r) =

∫ +1

−1

d(cos θk)

∫ ∞

0

dk 2πk2
qT

2π2k2
eik|r−R(t)| cos θk

=
qT
2π2

2πi

|r −R(t)|

∫ ∞

0

dk

k

(
e−ik|r−R(t)| − eik|r−R(t)|

)
=

qT
|r −R(t)|

2

π

∫ ∞

0

dk

k
sin(k|r −R(t)|)︸ ︷︷ ︸
= 1

=
qT

|r −R(t)| .

Good! The potential of a moving charge.

(2) Slowly moving test charge (V0 ≪ vthα for all α). In this case, the dielectric function

D(k ·V0,k) → 1−
∑
γ

4πq2γ
mγk2

∫
du

1

u

∂F0γ

∂u
,

where F0γ(u)
.
=
∫
dv f0γ(v)δ(u− k̂ ·v). Defining a generic Debye wavenumber via

K2
D
.
= −

∑
γ

4πq2γ
mγ

∫
du

1

u

∂F0γ

∂u
,

which equals k2D for a Maxwellian plasma, we have

φ(t,k) → qT
2π2k2

e−ik ·R(t)

1 + (KD/k)2
.

We’ve already inverse-Fourier’d such a function before (see (IV.6.16)), so we know
that

φ(t, r) ≈ qT
|r −R(t)| e

−KD|r−R(t)|, (V.1.10)

which is just a Debye-shielded moving test particle.

(3) Fast moving charge (V0 ≫ vthα for all α). In this case, D → 1, and so

φ(t, r) ≈ qT
|r −R(t)| , (V.1.11)

which is just a moving charge in vacuum (to leading order). This is because the
plasma cannot set up a Debye cloud fast enough.

What’s going on here is that the plasma is trying to shield a charge at a location from
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which it has already departed. In effect, the plasma feels a retarded potential. In HW04,
you will show that this potential causes a spatially distorted Debye cloud, and you will
compute the first-order corrections to (V.1.10) and (V.1.11) that capture this distortion.
You will also interpret the following plots of equipotential surfaces for V0/vthe = 0.1, 0.3,
1, 3, and 10, which were obtained by numerically inverse-Fourier transforming (V.1.8):
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The density response of the plasma to these potentials – so called “Cerenkov wakes” –
may be computed as follows. Note that Poisson’s equations in Fourier space is

−k2φ(t,k) = −4π
∑
α

qαδnα(t,k)−
qT
2π2

e−ik ·R(t),

where R(t) = R0 + V0t is the position of the test charge and δnα
.
=
∫
dv δfα. Using

(V.1.8), the density response may be written as∑
α

qαδnα(t,k) =
qT

(2π)3
e−ik ·R(t)

[
1

D(k ·V0,k)
− 1

]
. (V.1.12)

Inverse-Fourier transforming then provides∑
α

qαδnα(t,rrr ) =
qT

(2π)3

∫
dk exp(ik ·rrr )

[
1

D(k ·V 0,k)
− 1

]
, (V.1.13)

where rrr = r−R(t). Numerically evaluating this integral for V0/vthe = 10 shows that the
density fluctuations in the plasma form a conic structure reminiscent of a Mach cone from
a supersonic aircraft, with the density fluctuations confined inside |y/x| ≈ C/V0 ≪ 1 with
C =

√
3vthe:

Some additional references you can check out on this topic are Perkins (1965), Wang
et al. (1981), and Dewar (2010).

V.2. Electric-field fluctuations
Here we calculate the electric field generated by a moving test charge as it sweeps

through a (responsive) plasma. We have seen in the last section that a moving test
charge excites waves at ω = k ·V0 (see (V.1.8)), and that these waves are subject to
Landau damping when there is an appreciable fraction of the particles in the plasma with
velocities v satisfying k̂ · (v − V0) ≈ 0. Thus, waves are being emitted and absorbed.
A detailed balance emerges between emission and absorption, which in turn implies a
steady-state level of electric-field fluctuations. We will compute this level.

From (V.1.8), we have

E(t,k) = −ikφ(t,k) = −ik
qT

2π2k2
e−ik ·R(t)

D(k ·V0,k)
, (V.2.1)

so that

E(t, r) =

∫
dk eik · rE(t,k) = −i

qT
2π2

∫
dk

k

k2
eik · (r−R(t))

D(k ·V0,k)
. (V.2.2)

The total energy density in this field is given by

E(t, r) ·E∗(t, r)

8π
=

q2T
(2π)5

[∫
dk

k

k2
eik · (r−R(t))

D(k ·V0,k)

]
·
[∫

dk′ k′

k′2
eik

′ · (r−R(t))

D(k′ ·V0,k
′)

]∗
, (V.2.3)
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where ∗ denotes the complex conjugate. We want the average energy density in the
plasma, and for that we do something special: we consider each and every particle as a
test charge. These “test” charges are completely uncorrelated, uniformly distributed in
space, and distributed in velocity according to f0α(v). This test-particle superposition
principle (TPSP) works because the leading-order effects in the particle correlations
have already been taken into account in the construction of each shielded (“dressed”) test
particle. Ichimaru puts it this way (with his equation numbers and notation changed to
conform to mine):

In terms of the Bogoliubov hierarchy (§I.1) on the characteristic timescales, we
may describe the superposition principle in the following way. Let us again fix
on a charged particle in the plasma, which we regard as a moving test charge.
It will act to polarize the medium and so carry a screening cloud with it. This
action corresponds to that establishment of a pair correlation; the characteristic
time associated with such a process has been denoted by ∼ω−1

p . In the course of
its motion, however, the test charge collides with other field particles; its energy
and momentum change abruptly. The polarization cloud originally associated with
the test charge will no longer represent a screening cloud appropriate to the new
situation; the polarization cloud must adjust itself to these revised circumstances.
If the mean free time ∼ν−1 between such collisions is much longer than ∼ω−1

p in
such an event, the adjustment will take place quickly so that, for most of the time
between two successive short-range collisions, the test charge can be considered
as carrying a well-established cloud. It is clear that the superposition calculation
. . . amounts to assuming that each particle, not almost always, but always carries
such an equilibrated screening cloud [emphasis added]. We thus argue that the
superposition principle represents a good approximation as long as ωp ≫ ν. For
a stable plasma in weak coupling, such a condition is well satisfied.

Thus, we may compute the ensemble-averaged electric energy density by performing〈
E(t, r) ·E∗(t, r)

8π

〉
.
=
∑
α

∫
dV0

∫
dR0 f0α(R0,V0)

E(t, r) ·E∗(t, r)

8π

=
∑
α

q2α
(2π)5

∫
dV0 f0α(V0)

∫
dR0

[∫
dk

k

k2
eik · (r−R(t))

D(k ·V0,k)

]

·
[∫

dk′ k′

k′2
eik

′ · (r−R(t))

D(k′ ·V0,k
′)

]∗

=
∑
α

q2α
(2π)5

∫
dV0 f0α(V0)

∫
dk

∫
dk′ k ·k′

k2k′2

× ei(k−k′) · (r−V0t)

D(k ·V0,k)D∗(k′ ·V0,k
′)

∫
dR0 e

−i(k−k′) ·R0

︸ ︷︷ ︸
= (2π)3 δ(k − k′)

=
∑
α

q2α
(2π)2

∫
dV0 f0α(V0)

∫
dk

1

k2
1

|D(k ·V0,k)|2
. (V.2.4)

Defining, as usual, the one-dimensional distribution function F0α(u)
.
=
∫
dV0 f0α(V0)δ(u−

k̂ ·V0) and introducing ω = ku,

(V.2.4) =
∑
α

q2α
2π

∫
dω

2π

∫
dk

1

k3
F0α(ω/k)

|D(ω, k)|2
.
=

∫
dω

2π

∫
dkWω,k, (V.2.5)
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where

Wω,k
.
=
∑
α

q2α
2πk3

F0α(ω/k)

|D(ω, k)|2 (V.2.6)

is the spectral density of the field fluctuations. Thus,

W
.
=

〈
E(t, r) ·E∗(t, r)

8π

〉
=

∫
dω

2π

∫
dkWω,k (V.2.7)

is the ensemble-averaged electric energy density, derived by considering the plasma as an
ensemble of dressed test particles.

Let us evaluate (V.2.7) for a Maxwellian background, for which

F0α

(
ω

k

)
=

nα√
πvthα

exp

(
− ω2

k2v2thα

)
.

Equation (V.2.7) becomes

W =
∑
α

q2αnα
2π3/2vthα

∫
dω

2π

∫
dk

1

k3
e−(ω/kvthα)2

|D(ω, k)|2 , (V.2.8)

with

D(ω, k) = 1 +
∑
α

k2Dα
k2
[
1 + ζαZ(ζα)

]
. (V.2.9)

Here, k2Dα
.
= 4πq2αnα/T , ζα

.
= ω/|k|vthα, and

Z(ζ)
.
=

1√
π

∫ ∞

−∞
dx

e−x
2

x− ζ
(V.2.10)

is the plasma dispersion function. Equation (V.2.8) looks like a nasty integral. But there’s
a trick! Note that

Im
[
D(ω, k)

]
=
∑
α

k2Dα
k2

ζαIm
[
Z(ζα)

]
=
∑
α

k2Dα
k2

ζα
√
πe−ζ

2
α .

Then, (V.2.8) becomes

W =

∫
dω

2π

∫
dk

(2π)3
T

ω

Im
[
D(ω, k)

]
|D(ω, k)|2 = −

∫
dω

2π

∫
dk

(2π)3
T

ω
Im

[
1

D(ω, k)

]
. (V.2.11)

Believe it or not, this integral can be done. Recalling that ω is real, move it inside the
Im operator and consider the following integral:

PV

∫
dω

2π
Im

[
1

ωD(ω, k)

]
, (V.2.12)

where PV denotes the principal value. All of its poles are in the lower half ω-plane (since
the plasma is stable). So, let’s take a contour that does the following:
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Write the integral (V.2.12) as∫
C

dω

2π
Im

[
1

ωD(ω, k)

]
=

∫ −ϵ

−∞
+

∫
A

+

∫ ∞

ϵ

+

∫
B

and take ϵ → 0 and the B part of the contour to ∞. Rearranging, equation (V.2.12)
becomes

lim
ϵ→0

{(∫ −ϵ

−∞
+

∫ ∞

ϵ

)
dω

2π
Im

[
1

ωD(ω, k)

]}
=

(∫
C

−
∫
A

−
∫
B

)
dω

2π
Im

[
1

ωD(ω, k)

]
.

The C contour integration yields zero, since there are no poles enclosed. To do the A and
B contour integrals, write ω = r exp(iθ); note furthermore that the Im operator can be
taken outside of these integrals. Each of these are then:∫

A

dω

2π
Im

[
1

ωD(ω, k)

]
= Im

∫ 0

π

idθ

2π

1

D(ϵ, k)
= −1

2

1

D(0, k)
,

∫
B

dω

2π
Im

[
1

ωD(ω, k)

]
= Im

∫ π

0

idθ

2π

1

D(∞, k)
= +

1

2

1

D(∞, k)
,

and so (V.2.12) becomes∫ ∞

−∞

dω

2π
Im

[
1

ωD(ω, k)

]
=

1

2

[
1

D(0, k)
− 1

D(∞, k)

]
.

Now, D(∞, k) = 1 and D(0, k) = 1 + (kD/k)
2. So, equation (V.2.8) is equal to

W =

∫
dk

(2π)3
T

2

1

1 + (k/kD)2
(V.2.13)

The manipulations above are related to the Kramers–Kronig relations. Namely, consider a
function S(ω) that is analytic in the upper half ω plane and vanishes sufficiently rapidly at
infinity. Then by Cauchy’s residue theorem,∫ ∞

−∞
dω′ S(ω′)

ω′ − ω + iϵ
= 0, ϵ > 0.

Use Plemelj’s formula
1

ω′ − ω ± iϵ
= PV

1

ω′ − ω
∓ iπδ(ω′ − ω)

to get

iπS(ω) = PV

∫
dω′ S(ω

′)

ω′ − ω
.

Take the imaginary part of this to obtain

ReS(ω) =
1

π
PV

∫
dω′ ImS(ω′)

ω′ − ω
.

(This is one of the Kramers-Kronig relations.) In our case, we have S = 1/D−1 where D = D(ω)
is the dielectric function; note that S vanishes at infinity, since D(∞) = 1. Now set ω = 0. Then
the above expression becomes

Re

[
1

D(0)
− 1

]
=

1

π
PV

∫
dω′ 1

ω′ Im

[
1

D(ω′)

]
=

1

π
PV

∫
dω′ Im

[
1

ω′D(ω′)

]
.
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But D(0) is already real, so

1

D(0)
− 1 =

1

π
PV

∫
dω′ Im

[
1

ω′D(ω′)

]
This leads to the same result as above, namely (V.2.13).

Three important notes regarding (V.2.13):

(1) All modes with k ≪ kD are equally probable (i.e., equally excited with the same
energy – that energy is T/2, half of the thermal energy). That the energy is T/2
agrees with the equipartition theorem in statistical mechanics that each degree of
freedom acquires T/2 worth of average energy. See the figure below:

(2) This implies

Wω,k = −T
ω
Im

[
1

D(ω, k)

]
,

which is a consequence of the fluctuation-dissipation theorem. The fluctuation level
and the damping rate are related in such a way that there is T/2 of energy per
degree of freedom (a standard result from equilibrium statistical mechanics). This
is worth memorizing.

(3) Let’s try to do the k integral in (V.2.13):

W =

∫ ∞

0

dk 4πk2

(2π)3
T

2

1

1 + (k/kD)2
=⇒ W

nT
=

1

4π2Λ

∫ ∞

0

dx
x2

1 + x2
→ ∞.

Ah! It diverges! Why? To find out, write the integral as∫ ∞

0

dx
−1 + 1 + x2

1 + x2
= −

∫ ∞

0

dx
1

1 + x2
+

∫ ∞

0

dx

= − π

2︸ ︷︷ ︸
energy due to
correlations

(ask: why the
minus sign?)

+

∫ ∞

0

dx︸ ︷︷ ︸
energy due to
uncorrelated

particles (infinite
self-energy of
an unshielded

charged particle)
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So,
δW

nT

.
=
W −Wself

nT
= − 1

8πΛ
∼ O(Λ−1)

=⇒ more particles, less thermal noise, less scattering → Vlasov

V.3. Polarization drag
In the last two sections, we saw that moving (test) charges excite electric-field fluc-

tuations, which enter into a balance between generation and dissipation from Landau
damping. But from where did the power to support these waves come? Here we show
that such particles lose energy due to polarization drag. This “drag” comes from the fact
that the velocity of a particle affects its ability to acquire an effective Debye cloud. This
Debye cloud, in turn, affects the (test) particle:

Debye shielding takes ∼ω−1
p to set up. This generates Epol due to charge redistribution.

If, in that time, the test charge has moved, then the charge will be off-center to the cloud,
and the charge will see a headwind from Epol:

Thus, there will be a component of Epol directed against the test-particle’s motion. This
is called polarization drag.

The drag force is simply

F pol = qTEpol

= qT

[
total electric field generated by a moving test charge as it sweeps
through a plasma minus the electric field from the bare test charge

]
= − iq2T

2π2

∫
dk

k

k2

[
1

D(k ·V0,k)
− 1

]
, (V.3.1)

using (V.2.2). Writing the integrand as (1/2)[original + (k → −k)] gives

F pol = − iq2T
4π2

∫
dk

k

k2

[
1

D(k ·V0,k)
− 1

D∗(k ·V0,k)

]
= − iq2T

4π2

∫
dk

k

k2

[D∗ −D
|D|2

]
= − iq2T

4π2

∫
dk

k

k2

[−2i ImD
|D|2

]
=

q2T
2π2

∫
dk

k

k2
Im

[
1

D(k ·V0,k)

]
. (V.3.2)
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The particle will lose energy due to this drag force at a rate

dWT

dt
= F pol ·V0 =

q2T
2π2

∫
dk

k ·V0

k2
Im

[
1

D(k ·V0,k)

]
. (V.3.3)

Next, we adopt the TPSP introduced in the previous section and average this power over
the distribution of “test” charges:

P =

〈
dWT

dt

〉
=
∑
α

q2α
2π2

∫
dV 0 f0α(V0)

∫
dk

k ·V0

k2
Im

[
1

D(k ·V0,k)

]
. (V.3.4)

Recalling the definition F0α(u)
.
=
∫
dv f0α(v)δ(u−k̂ ·v), equation (V.3.4) becomes (with

ω = ku)

P =

〈
dWT

dt

〉
=

∫
dω

2π

∫
dkPω,k with Pω,k

.
=
∑
α

q2α
π

ω

k3
Im

[
F0α(ω/k)

D(ω,k)

]
. (V.3.5)

As in the last section, consider a Maxwellian background. We have∑
α

q2α
π

ω

k3
F0α

(
ω

k

)
=

T

4π3
Im
[
D(ω, k)

]
,

and so

P =

∫
dω

2π

∫
dk

(2π)3
2T Im

[
D(ω, k)

]
Im

[
1

D(ω, k)

]
. (V.3.6)

Comparing this with (V.2.11), we see that

Pω,k + 2ωWω,k Im
[
D(ω, k)

]
= 0 (V.3.7)

This states that the power lost by the particles due to polarization drag is gained by
the emitted (and Landau-damped) waves. This kind of balance between emission and
absorption is called Kirchoff’s law.

We can check this explicitly by recalling the discussion at the end of the Vlasov section
(§III.6): for a weakly damped, stable mode, the decay rate is (see (III.7.20))

γk = − ImD(ω,k)

∂

∂ω
ReD(ω,k)

= −

[
−
∑
α

ω2
pα

k2
π

nα
F ′
0α

(
ω

k

)]
(
− 2

ω

) .

Using this in (V.3.7) gives

Pω,k = −2ωWω,k Im
[
D(ω, k)

]
= −2ωWω,k

[
−γk

(
− 2

ω

)]
= −4γkWω,k

= −2
dWω,k

dt
= −dWω,k;wave

dt
. (V.3.8)

[The factor of 2 in the last line is there because the total wave energy ( = electrostatic
energy + mechanical energy) is divided evenly amongst the electrostatic and mechanical
energies.]
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Another way of computing the power is to calculate

W = 2(2π)4 Im

∫
dω

2π

∫
dk

|k̂ ·JT(ω,k)|2
ωD(ω,k)

,

which is the radiation emitted by a test current (i.e., the current density of the test particle)
over a time T . (This will be derived by you in HW04.) Then, with

JT(t, r) = qTV0δ(r −R0 − V0t),

we have

JT(ω,k) =

∫
dr

(2π)3

∫ ∞

−∞
dt e−ik · r+iωtJT(t, r)

=
qTV0

(2π)3

∫ ∞

−∞
dt e−ik ·R0e−i(ω−k ·V0)t

=
qTV0

(2π)2
e−ik ·R0δ(ω − k ·V0).

The rate of radiation – the power – is W/T , where T is the time (→ ∞) over which the radiation
is emitted. Then the power from a single test particle is

lim
T →∞

2

T Im

∫
dω

2π

∫
dk (k̂ ·V0)

2 q
2
T|δ(ω − k ·V0)|2

ωD(ω,k)
.

We learned how to square a delta function in §III.6 (see (III.7.15), which applies when the time
interval is T ): |δ(ω)|2 = (T /2π)δ(ω). So the power is finite:

P = Im

∫
dω

2π

∫
dk (k̂ ·V0)

2 q
2
T

π

δ(ω − k ·V0)

ωD(ω,k)

=
q2T
2π2

Im

∫
dk

k ·V0

k2
1

D(k ·V0,k)
, (V.3.9)

which is precisely what we have from (V.3.3).

Let’s explore an example application of (V.3.2): the drag on a fast test ion in a
Maxwellian plasma. Assume vthi ≪ V0 ≪ vthe for the test ion. Then D(k ·V0,k) ≈
1 + (kDe/k)

2 and

ImD(k ·V0,k) = −
∑
α

ω2
pα

k2
π

nα
F ′
0α(k̂ ·V0)

= −
∑
α

ω2
pα

k2
π

nα

nα√
πvthα

(
−2k̂ ·V0

v2thα

)
e−(k̂ ·V0/vthα)2

=
∑
α

k2Dα
k2

π

nα
k̂ ·V0FMα(k̂ ·V0)

≈
√
π
k2De
k2

k̂ ·V0

vthe
using vthi ≪ V0 ≪ vthe.

Then the acceleration of an ion (charge qi = Ze) due to polarization drag is (see (V.3.2))

apol =
F pol

mi
= − Z2e2

2π2mi

∫
dk

k

k2
√
π
k2De
k2

k̂ ·V0

vthe

(
1 +

k2De
k2

)−2

= −Z
2e2

√
πk2De

2π2mivthe

∫
dk k

k̂ ·V0

k4

(
1 +

k2De
k2

)−2

.
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Dotting this expression into V̂0
.
= V0/V0 yields

apol · V̂0 = − Z2e2
√
π

2π2mivthe

4πe2ne
Te

× 2πV0

∫ +1

−1

dµµ2

∫ ∞

0

dk k2
1

k3

(
1 +

k2De
k2

)−2

= −V0
4
√
πZ2e4ne

mivtheTe
× 2

3

∫ ∞

0

dk

k

(
1 +

k2De
k2

)−2

︸ ︷︷ ︸
= −

1

2
+

1

2
ln

(
k2De + ∞2

k2De

)
must cut off wavenumber

integration! Set ∞ → kmax,
so that this is ≃lnλie.

= −V0
8
√
πZ2e4ne lnλie
3mivtheTe

= −V0
4
√
2πm

1/2
e Z2e4ne lnλie

3miT
3/2
e

=⇒ apol = −V0

(
4
√
2πm

1/2
e Z2e4ne lnλie

3miT
3/2
e

)
(V.3.10)

Look in your NRL formulary, page 37. . . this is

apol = −νieV0 with νie
.
=
mene
mini

1

τei
, τei

.
=

3
√
meT

3/2
e

4
√
2πniZ2e4 lnλie

. (V.3.11)

This is our first glimpse of transport coefficients! Also, a strong suggestion that polariza-
tion drag is related to collisions. Stay tuned.

V.4. Summary: Recovery of Balescu–Lenard
Before proceeding, let us recapitulate the last few sections. We learned that moving

“test” charges in a plasma radiate plasma waves, and that this is because the asymmetry
of a Debye cloud around a moving charge pulls back on the charge. We learned that
these radiated waves are Landau damped by the plasma, and that a balance emerges
between emission and absorption. This provides a minimum amount of thermal “noise”
in the plasma. That this noise is precisely that which is responsible for “collisions” in
a plasma will soon be shown. We also invoked the test-particle superposition principle
(TPSP) to treat all the particles in a plasma as simultaneously being in the bath and
being test charges. This led to a picture of a plasma in which Debye clouds – rather than
Vlasov particles – are statistically independent.

I must admit that this is hard to picture. Each “test” particle serves as the nucleus of
a Debye cloud, and each particle serves as a member of another “test” particle’s Debye
cloud. This means that the “dressed” particles can (and do) overlap, even though such
clouds do not interact. This is really a statement about Λ being large, but not so large
that Vlasov is an adequate description.

From this picture, we found that each “test particle” with charge qα and velocity v
feels a velocity-dependent polarization electric field given by (see (V.3.2))

Epol(v) = − qα
2π2

∫
dk

k

k2
Im
[
D(k ·v,k)

]
|D(k ·v,k)|2 , (V.4.1)
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where

Im
[
D(k ·v,k)

]
= −

∑
β

4π2q2β
mβ

k

k2
· ∂
∂v

∫
dv′ fβ(v

′)δ(k ·v′ − k ·v). (V.4.2)

Combining (V.4.1) and (V.4.2) and exploiting the symmetries of the delta function in
the latter, we see that each particle in the plasma feels a force

qαEpol(v) =
∑
β

1

mβ

∫
dk

(2π)3
kk

∣∣∣∣ 4πqαqβ
k2D(k ·v,k)

∣∣∣∣2 ∫ dv′ πδ(k ·v − k ·v′) · ∂fβ
∂v′ . (V.4.3)

Store this in your short-term memory; you’ll need it in about 5 minutes.

We also found that each of these test particles excites a fluctuating electric field in the
responsive background plasma, which is given by (see (V.2.2))

δE(t, r) = −i
qα
2π2

∫
dk

k

k2
eik · (r−R0−vt)

D(k ·v,k)

= −i
qα
2π2

∫
dω

2π

∫
dk

k

k2
eik · (r−R0)−iωt

D(ω,k)
2πδ(ω − k ·v) (V.4.4a)

.
=

∫
dω

2π

∫
dk eik · r−iωtδE(ω,k), (V.4.4b)

where R0 is the initial position of the test charge. Each of these test particles must in
turn navigate through the resulting sea of such electric-field fluctuations, which have been
generated by all the other dressed “test particles” (whose initial positions are randomly
distributed). Now, at this point in the course, you might not understand why I’m about
to calculate what I’m about to calculate, but there is a surprise waiting for you at the
end, so hold tight. Ensemble-average δE(t, r)δE∗(0, r) over the distribution of particle
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initial positions R0 and velocities v:

〈
δE(t, r)δE∗(0, r)

〉 .
=
∑
β

∫
dv′

∫
dR0 fβ(R0,v

′) δE(t, r)δE∗(0, r)

=
∑
β

∫
dv′

∫
dR0 fβ(R0,v

′)

×
q2β

(2π2)2

∫
dk

∫
dk′ kk′

k2k′2
eik · (r−R0−v′t)

D(k ·v′,k)

e−ik′ · (r−R0)

D∗(k′ ·v′,k′)

=
∑
β

∫
dv′ fβ(v

′)
q2β

(2π2)2

∫
dk

∫
dk′ kk′

k2k′2
e−ik ·v′t

D(k ·v′,k)D∗(k′ ·v′,k′)

×
∫

dR0 e
i(k−k′) · (r−R0)

︸ ︷︷ ︸
= (2π)3δ(k − k′)

=
∑
β

∫
dv′ fβ(v

′)

∫
dk

(2π)3
kk

∣∣∣∣ 4πqβ
k2D(k ·v′,k)

∣∣∣∣2e−ik ·v′t

=

∫
dω

2π
e−iωt

∑
β

∫
dv′ fβ(v

′)

∫
dk

(2π)3
kk

∣∣∣∣ 4πqβ
k2D(ω,k)

∣∣∣∣22πδ(ω − k ·v′)

(V.4.5a)
.
=

∫
dω

2π
e−iωt

〈
δEδE∗〉

ω
, (V.4.5b)

where
〈
δEδE∗〉

ω
is the fluctuation spectrum of the fluctuating electric field. It satisfies

〈
δEδE∗〉

ω=k ·v =
∑
β

∫
dk

(2π)3
kk

∣∣∣∣ 4πqβ
k2D(k ·v,k)

∣∣∣∣2 ∫ dv′ 2πδ(k ·v − k ·v′)fβ(v
′).

(V.4.6)
You’ll soon see (§VI.3) why I calculated this particular quantity.

Now, dig (V.4.3) out of your short-term memory and consider it alongside (V.4.6).
These formulae should look eerily familiar. Go all the way back to our derivation of the
Balescu–Lenard equation. Comparing these to (IV.4.4), it becomes apparent that

Bα =

(
qα
mα

)2〈
δEδE∗〉

ω=k ·v (V.4.7)

and

Aα =
qα
mα

Epol +
1

2

∂

∂v
·Bα(v). (V.4.8)

Ah! So, we have discovered that the Balescu-Lenard operator (IV.4.5) accounts for
polarization drag, radiation of plasma waves, and the effects of particle motion on the
efficacy of Debye shielding. Now, what is the meaning of Aα and Bα? For that, we make
a foray into Fokker-Planck theory. . .
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PART VI

The Master equation and Fokker-Planck theory
Take therefore no thought for the morrow:
for the morrow shall take thought for the things of itself.

Matthew 6:34

A common thread running through all we have done thus far – dropping three-
particle correlations, obtaining the Balescu–Lenard collision operator, the test-particle
superposition principle – can be traced back to HW01 and the fact that multiple
small-angle Coulomb scatterings are more important than a single large-angle scattering
(provided Λ ≫ 1). In fact, this idea was hidden in the calculation of discrete-particle
effects; notice that the trajectory of the test charge was a straight line (a consequence
of using the Vlasov response function). Another important theme, borne out in the
calculation of Balescu–Lenard from the BBGKY hierarchy, was that the two-particle
correlation function gαβ is sourced by uncorrelated particles (recall Sαβ ∝ fαfβ) and
that, on the timescale on which gαβ relaxes, fα and fβ are assumed to be temporally
constant.

In this part, we will show that the latter theme is equivalent to the Markov assumption
and that the former theme leads to the Fokker-Planck equation. Not surprisingly, then,
we will be able to recover the Balescu–Lenard operator via such a Fokker-Planck equation
using the lessons learned in using the test-particle superposition principle.

VI.1. The Chapman–Kolmogorov equation
As a result of these scattering events, particle orbits acquire a random, or probabilistic,

nature. A given phase-space point does not have a unique mapping through time, but
rather has a probability of arriving in a certain phase-space volume at some later time.
Let us then define the transition probability density ∆tW (t + ∆t,x; t,x − ∆x) to be
the probability that a particle changes its phase-space coordinate x −∆x at time t by
an amount ∆x (not necessarily small) so that it arrives at the phase-space coordinate
x after a time interval ∆t. The distribution function at time t+∆t is then obtained by
summing up all possible origins of f(t+∆t,x), weighted by their transition probabilities;
the result is the Chapman–Kolmogorov equation

f(t+∆t,x) = ∆t

∫
d(∆x)W (t+∆t,x; t,x−∆x) f(t,x−∆x) (VI.1.1)

All particles end up somewhere, of course, and so

∆t

∫
d(∆x)W (t+∆t,x+∆x; t,x) = 1. (VI.1.2)

(Note that things are scaled such that W is a rate.)
The assumption here is that the future only depends on now, and not the past. This

is the Markov assumption. That this should hold true is not at all obvious, but can be
argued for as follows. Consider two billiard balls that somehow have become correlated in
their motion (perhaps due to a recent collision), so that their trajectories are aligned with
one another. Put a bunch of randomly distributed obstacles (say, other billiard balls) on
the pool table. Here is one possible outcome (after Krommes (2018, figure 4.2)):
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Obviously the particles are correlated on a collision timescale (not Markovian). But after
many collision times, the trajectories diverge wildly, and the situation is very nearly
Markovian. This is also a demonstration of extreme sensitivity to initial conditions, and
that even completely deterministic trajectories can wander randomly over the entire
available phase space. (A classic example of this is Brownian motion, to which we will
return shortly.) With Λ ≫ 1, it is easy to imagine a plasma being close to Markovian,
since there are so many particles affecting the two-particle correlations; things become
chaotic pretty quickly!

This is how irreversibility enters the picture. But Chapman–Kolmogorov does not
require irreversibility. Indeed, we didn’t discount some “sneaky conspiracy in the motions”
of the individual particles (Carroll 2010). Note that, if the transition probability is taken
to be a delta function along the self-consistent Vlasov characteristic x′ = x′(t,x), i.e.,

∆tW (t+∆t,x; t,x−∆x) = δ(x−∆x− x′(t; t+∆t,x)),

then
f(t+∆t,x) = f(t,x′(t; t+∆t,x)),

which is just the Vlasov equation (f = constant along characteristics). Only phase-
space coordinates along the characteristic feed into the future distribution function. The
differential form of the Vlasov equation can be obtained by taking the ∆t→ 0 limit (see
below). This is important to note, since nothing irreversible is necessarily built into the
Chapman–Kolmogorov equation. But, for smooth, non-singular transition probabilities
(i.e., no sneaky conspiracies), irreversibility is implied by (VI.1.1).

A differential version of (VI.1.1) can be obtained in the ∆t→ “0” limit as follows:9

lim
∆t→“0”

f(t+∆t,x)− f(t,x)

∆t

= lim
∆t→“0”

∫
d(∆x)

[
W (t+∆t,x; t,x−∆x)f(t,x−∆x)︸ ︷︷ ︸

“in”

−W (t+∆t,x+∆x; t,x)f(t,x)︸ ︷︷ ︸
“out”

]
, (VI.1.3)

or
∂f(t,x)

∂t
=

∫
dx
[
W (x; t,x)f(t,x)−W (x; t,x)f(t,x)

]
(VI.1.4)

This is the master equation. It describes the evolution of f(t,x) due to inward transition

9∆t→ “0” means to take t to 0, but not smaller than ω−1
p ; the process must be nearly Markovian.
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from all other occupied states x at time t into x (first term) and due to outward
transitions from x at time t into all possible states x (second term).

A bit of kinetic theory history. . . The Boltzmann equation,

Dfα
Dt

=
∑
β

∫
dv′

∫
dΩ

(
dσ

dΩ

)
|v − v′|

[
fα(t, r,w)fβ(t, r,w

′)− fα(t, r,v)fβ(t, r,v
′)
]
,

(VI.1.5)
where w and w′ are the velocities of the α and β particles after a collision and
dσ/dΩ is the differential cross section (see HW01), is an example of a master equation
(perhaps the example). The Markov assumption entered through what Boltzmann called
the Stosszahlansatz = “collision number hypothesis” or, less literal but perhaps more
descriptive, “molecular chaos hypothesis”; this is an assumption that all particles enter
into a collision uncorrelated (and so prior collisions do not affect future collisions). We
have already remarked on this in the context of Bogoliubov’s hypothesis.

VI.2. The Fokker-Planck equation
Now we leverage our knowledge about collisions in a weakly coupled Coulombic plasma

– that they are predominantly small-angle collisions. While not particularly necessary,
we also follow the assumption, used in the derivation of the Balescu–Lenard equation,
of a homogeneous plasma. Then (VI.1.4) can be Taylor expanded about v in small ∆v
using

W (t+∆t,v; t,v −∆v) =W (t+∆t,v +∆v −∆v; t,v −∆v)

≈W −∆v · ∂W
∂v

+
1

2
∆v∆v :

∂2W

∂v∂v

and

f(t,v −∆v) ≈ f −∆v · ∂f
∂v

+
1

2
∆v∆v :

∂2f

∂v∂v

to find

∂f

∂t
≈
∫

d(∆v)

[
−∆v · ∂

∂v

(
Wf

)
+

1

2
∆v∆v :

∂

∂v

∂

∂v

(
Wf

)]
, (VI.2.1)

where f = f(t,v) and W =W (t+∆t,v+∆v; t,v).10 Adopting the shorthand notation

A
.
=

∫
d(∆v)∆vW, (VI.2.2a)

B .
=

∫
d(∆v)∆v∆vW, (VI.2.2b)

equation (VI.2.1) may be written as

∂f

∂t
≈ − ∂

∂v
·
(
Af
)
+

1

2

∂

∂v

∂

∂v
:
(
Bf
)

(VI.2.3)

This should look familiar! (Recall (IV.4.5).) This is the Fokker-Planck equation.

10AB :CD =
∑

ij AiBjCiDj .
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Sometimes the Fokker-Planck coefficients (VI.2.2) are written as

A = lim
∆t→“0”

⟨∆v⟩
∆t

, (VI.2.4a)

B = lim
∆t→“0”

⟨∆v∆v⟩
∆t

, (VI.2.4b)

where

⟨∆v⟩ = ∆t

∫
d(∆v)∆vW, (VI.2.5a)

⟨∆v∆v⟩ = ∆t

∫
d(∆v)∆v∆vW (VI.2.5b)

are the jump moments. We need to calculate them.

VI.3. Calculating the jump moments
Start by writing the equations of motion for a particle:

dr

dt
= v(t), (VI.3.1a)

dv

dt
=

1

m
F (t,x(t))

.
=

q

m
Epol(v(t))︸ ︷︷ ︸

force on charge due
to polarization drag

+ a(t,x(t))︸ ︷︷ ︸
force on charge due to inter-

actions with all other particles
(plus external fields, if present;
in HW05, you’ll include Bext)

. (VI.3.1b)

Integrating (VI.3.1b), we find

v(t) = v(0) +
1

m

∫ t

0

dt′ F (t′,x(t′)). (VI.3.2)

This may be substituted for the right-hand side of (VI.3.1a) and the result integrated
from t′ = 0 to t to obtain

r(t) = r(0) + v(0)t+
1

m

∫ t

0

dt′
∫ t′

0

dt′′ F (t′′,x(t′′)), (VI.3.3a)

= r(0) + v(0)t+
1

m

∫ t

0

dt′′ (t− t′′)F (t′′,x(t′′)). (VI.3.3b)

To obtain the second equality above, consider the following diagram:11

11Alternatively, write
∫ t

0
dt′

∫ t

0
dt′′H(t′ − t′′)F (t′′,x(t′′)) and use

∫ t

0
dt′H(t′ − t′′) = t − t′′ for

t′′ < t.
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Using (VI.3.2) and (VI.3.3b), the increments ∆r(∆t) and ∆v(∆t) are then

∆r(∆t)
.
= r(∆t)− r(0) = v(0)∆t+

1

m

∫ ∆t

0

ds sF (∆t− s,x(∆t− s)), (VI.3.4a)

∆v(∆t)
.
= v(∆t)− v(0) =

1

m

∫ ∆t

0

dsF (s,x(s)). (VI.3.4b)

These can solved perturbatively in small ∆t:

∆r(∆t) = v0∆t+
1

m

∫ ∆t

0

ds sF (∆t− s,x0(∆t− s))

+
1

m

∫ ∆t

0

ds s
[
x(∆t− s)− x0(∆t− s)

]
· ∂

∂x0
F (∆t− s,x0(∆t− s)) + . . .

(VI.3.5a)

∆v(∆t) =
1

m

∫ ∆t

0

dsF (s,x0(s)) +
1

m

∫ ∆t

0

ds
[
x(s)− x0(s)

]
· ∂

∂x0
F (s,x0(s)) + . . . ,

(VI.3.5b)

where x0(t)
.
= [r(0) + v(0)t,v(0)] is the unperturbed phase-space trajectory. (Fore-

shadowing: these are Lagrangian increments, measured with the moving particle, rather
than Eulerian increments, measured at a fixed position.) Henceforth, F = qEpol(v(t))+
ma(t, r(t)) with ⟨a⟩ = 0; i.e., no magnetic field and a homogeneous background. With

r(∆t− s)− r0(∆t− s) ≃ 1

m

∫ ∆t−s

0

ds′ s′F (∆t− s− s′,x0(∆t− s− s′)), (VI.3.6a)

v(∆t− s)− v0(∆t− s) ≃ 1

m

∫ ∆t−s

0

ds′F (s′,x0(s
′)), (VI.3.6b)

r(s)− r0(s) ≃
1

m

∫ s

0

ds′ s′F (s− s′,x0(s− s′)), (VI.3.6c)

v(s)− v0(s) ≃
1

m

∫ s

0

ds′ F (s′,x0(s
′)) (VI.3.6d)

inserted for the bracketed terms in (VI.3.5), we can proceed.
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It turns out that it’s easiest to compute B first (see (VI.2.4b)), so let’s do that:

B .
= lim
∆t→“0”

⟨∆v∆v⟩
∆t

= lim
∆t→“0”

{
1

∆t

〈
1

m2

∫ ∆t

0

dsF (s,x0(s))

∫ ∆t

0

ds′ F (s′,x0(s
′))

〉
+ . . .

}

≃ lim
∆t→“0”

{
1

∆t

1

m2

∫ ∆t

0

ds

∫ ∆t

0

ds′
〈[
qEpol(v0) +ma(s, r0(s))

]
×
[
qEpol(v0) +ma(s′, r0(s

′))
]〉}

= lim
∆t→“0”

{
∆t

(
q

m

)2

Epol(v0)Epol(v0)

+
1

∆t

∫ ∆t

0

ds

∫ ∆t

0

ds′
〈
a(s, r0(s))a(s

′, r0(s
′))
〉}
. (VI.3.7)

Recall that we’ve assumed translational invariance so that ⟨a(t, r0(t))⟩ = 0 along the
unperturbed orbit of the particle.

Before proceeding any further, note that the first term in this equation is smaller
than the second by a factor of ν∆t ≪ 1 if the latter is associated with the (Markovian)
relaxation time ν−1, e.g., if a = (q/m)δE, with δE being the fluctuating electric field
generated by the thermal bath of charged particles. (Physically, drag and diffusion are
of the same order, and so (drag)2 ≪ diffusion.) Thus, we may drop the sub-dominant
EpolEpol term in (VI.3.7), a simplification that is verified a posteriori at the end of this
section. With a = (q/m)δE, equation (VI.3.7) then becomes

B ≃ lim
∆t→“0”

1

∆t

(
q

m

)2 ∫ ∆t

0

ds

∫ ∆t

0

ds′
〈
δE(s, r0(s)) δE(s′, r0(s

′))
〉

= lim
∆t→“0”

1

∆t

(
q

m

)2 ∫ ∆t

0

ds

∫ s

s−∆t
dt
〈
δE(s, r0(s)) δE(s− t, r0(s− t))

〉
, (VI.3.8)

where one of the integration variables has been changed to t using t = s− s′. To perform
the integrals in (VI.3.8), examine the domain of integration (the region):

The correlation ⟨δE(s, r0(s)) δE(s−t, r0(s−t)⟩ is only important when ωpt ∼ 1, which is
denoted by the region. Outside of there, contributions to the integral are ∼(ωp∆t)

−1 ≪
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1. Thus we may freely extend the limits on the t integration in (VI.3.8) to ±∞:

B ≃ lim
∆t→“0”

1

∆t

(
q

m

)2 ∫ ∆t

0

ds

∫ ∞

−∞
dt
〈
δE(s, r0(s)) δE(s− t, r0(s− t))

〉
. (VI.3.9)

Now, write

δE(s, r0(s)) =

∫
dω

2π

∫
dk e−iωs+ik · r0(s) δEω,k,

δE(s− t, r0(s− t)) =

∫
dω′

2π

∫
dk′ e−iω′(s−t)+ik′ · r0(s−t) δEω′,k′ ,

with r0(s) = r(0) + v0s and r0(s − t) = r(0) + v0(s − t) = r0(s) − v0t. Then (VI.3.9)
becomes12

B = lim
∆t→“0”

1

∆t

(
q

m

)2 ∫ ∆t

0

ds

∫ ∞

−∞
dt

∫
dω

2π

∫
dω′

2π

∫
dk

∫
dk′

×
〈
e−i(ω+ω′)sei(k+k′) · r0(s)ei(ω

′−k′ ·v0)t δEω,kδEω′,k′

〉
= lim
∆t→“0”

1

∆t

(
q

m

)2 ∫ ∆t

0

ds

∫ ∞

−∞
dt

∫
dω

2π

∫
dω′

2π

∫
dk

∫
dk′

× e−i(ω+ω′)s(2π)3δ(k + k′)
〈
ei(ω

′−k′ ·v0)t δEω,kδEω′,k′

〉
= lim
∆t→“0”

1

∆t

(
q

m

)2 ∫ ∆t

0

ds

∫ ∞

−∞
dt

∫
dω

2π

∫
dω′

2π

∫
dk

× e−i(ω+ω′)s(2π)3
〈
ei(ω

′+k ·v0)t δEω,kδEω′,−k

〉
= lim
∆t→“0”

1

∆t

(
q

m

)2 ∫ ∆t

0

ds

∫
dω

2π

∫
dω′

2π

∫
dk

× e−i(ω+ω′)s(2π)3
〈
2πδ(ω′ + k ·v0) δEω,kδEω′,−k

〉
= lim
∆t→“0”

1

∆t

(
q

m

)2 ∫ ∆t

0

ds

∫
dω

2π

∫
dk (2π)3

〈
e−i(ω−k ·v0)s δEω,kδE−k ·v0,−k

〉
= lim
∆t→“0”

1

∆t

(
q

m

)2 ∫
dω

2π

∫
dk (2π)3

〈
e−i(ω−k ·v0)∆t − 1

−i(ω − k ·v0)
δEω,kδE−k ·v0,−k

〉
=

(
q

m

)2 ∫
dω

2π

∫
dk (2π)3

〈
δEω,kδE−k ·v0,−k

〉
=

(
q

m

)2 ∫
dk
〈
δEδE

〉
ω=k ·v0,k

, (VI.3.10)

which is precisely (V.4.7)!13 Therefore, the Fokker–Planck coefficient Bα in the Balescu–
Lenard collision operator corresponds to diffusion in velocity space due to many small-
angle scatterings of particles off of correlated electric-field fluctuations. Because ω =
k ·v0, equation (VI.3.10) says that diffusion is a resonant phenomena; the only compo-

12The following steps are related to the relationship between Lagrangian and Eulerian
correlations – that is, those measured in the frame of the particle versus those measured at
a fixed position in the lab frame. See §5.3 of Krommes (2018), as well as later in these notes,
for more.
13To obtain the final equality in (VI.3.10), we have used (2π)2⟨δEωδEω′⟩ = ⟨δEδE⟩ω δ(ω+ω′).
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nent of δEω,k that matters is the one with ω = 0 in the frame of the particle. This makes
sense – the other frequency components just wiggle the particle back and forth, and that
oscillation averages out in the long-time limit. (This is related to quasi-linear diffusion.)

Now let’s compute A (see (VI.2.4a)):

A
.
= lim
∆t→“0”

⟨∆v⟩
∆t

= lim
∆t→“0”

{
1

∆t

〈
1

m

∫ ∆t

0

dsF (s,x0(s))

+
1

m

∫ ∆t

0

ds
[
x(s)− x0(s)

]
· ∂

∂x0
F (s,x0(s)) + . . .

〉}

= lim
∆t→“0”

{
1

∆t

q

m

∫ ∆t

0

dsEpol(v0) +
1

∆t

∫ ∆t

0

ds
〈
a(s, r0(s))︸ ︷︷ ︸

= 0

〉

+
1

∆t

q

m

∫ ∆t

0

ds
〈
v(s)− v0(s)︸ ︷︷ ︸
use (VI.3.6d)

〉
· ∂

∂v0
Epol(v0)

+
1

∆t

∫ ∆t

0

ds

〈[
r(s)− r0(s)︸ ︷︷ ︸
use (VI.3.6c)

]
· ∂

∂r0
a(s, r0(s))

〉
+ . . .

}

= lim
∆t→“0”

{
1

∆t

q

m

∫ ∆t

0

dsEpol(v0)

+
1

∆t

(
q

m

)2 ∫ ∆t

0

ds

∫ s

0

ds′ Epol(v0) ·
∂

∂v0
Epol(v0)

+
1

∆t

∫ ∆t

0

ds

∫ s

0

ds′ s′

〈
a(s− s′, r0(s− s′)) · ∂

∂r0
a(s, r0(s))

〉
+ . . .

}
. (VI.3.11)

Again, with a = (q/m)δE, the second term is small compared to the last term by a
factor ν∆t≪ 1; equation (VI.3.11) then becomes

A = lim
∆t→“0”

{
q

m
Epol(v0)

+

〈
1

∆t

(
q

m

)2 ∫ ∆t

0

ds

∫ s

0

ds′ s′ δE(s− s′, r0(s− s′)) · ∂

∂r0
δE(s, r0(s))

〉
+ . . .

}
.

(VI.3.12)

Because ∆t, while small, is nevertheless ≫ω−1
p (remember the Markov assumption?), the



Irreversible Processes in Plasmas 89

integration limit on s′ in (VI.3.12) can be extended to +∞:

A ≃ q

m
Epol(v0)

+ lim
∆t→“0”

1

∆t

(
q

m

)2 ∫ ∆t

0

ds

∫ ∞

0

ds′ s′
〈
δE(s− s′, r0(s− s′)) · ∂

∂r0
δE(s, r0(s))

〉
.

(VI.3.13)

As before, write

δE(s, r0(s)) =

∫
dω

2π

∫
dk eik · r0(s)−iωs δEω,k,

δE(s− s′, r0(s− s′)) =

∫
dω′

2π

∫
dk′ eik

′ · r0(s)−iω′s+i(ω′−k′ ·v0)s
′
δEω′,k′ .

Then (VI.3.13) becomes

A ≃ q

m
Epol(v0) + lim

∆t→“0”

1

∆t

(
q

m

)2 ∫ ∆t

0

ds

∫ ∞

0

ds′ s′
∫

dω

2π

∫
dω′

2π

∫
dk

∫
dk′

×
〈
e−i(ω+ω′)sei(k+k′) · r0(s)ei(ω

′−k′ ·v0)s
′
ik · δEω′,k′δEω,k

〉
=

q

m
Epol(v0) + lim

∆t→“0”

1

∆t

(
q

m

)2 ∫ ∆t

0

ds

∫ ∞

0

ds′ s′
∫

dω

2π

∫
dω′

2π

∫
dk

∫
dk′

× e−i(ω+ω′)s(2π)3δ(k + k′)
〈
ei(ω

′−k′ ·v0)s
′
ik · δEω′,k′δEω,k

〉
=

q

m
Epol(v0) + lim

∆t→“0”

1

∆t

(
q

m

)2
∂

∂v0
·
∫ ∆t

0

ds

∫ ∞

0

ds′
∫

dω

2π

∫
dω′

2π

∫
dk

× e−i(ω+ω′)s(2π)3
〈
ei(ω

′+k ·v0)s
′
δEω′,−kδEω,k

〉
=

q

m
Epol(v0) + lim

∆t→“0”

1

∆t

(
q

m

)2
∂

∂v0
·
∫ ∆t

0

ds

∫
dω

2π

∫
dω′

2π

∫
dk

× e−i(ω+ω′)s(2π)3
〈
πδ(ω′ + k ·v0) δEω,kδEω′,−k

〉
=

q

m
Epol(v0) + lim

∆t→“0”

1

∆t

1

2

(
q

m

)2
∂

∂v0
·
∫ ∆t

0

ds

∫
dω

2π

∫
dk

× (2π)3
〈
e−i(ω−k ·v0)s δEω,kδE−k ·v0,−k

〉
=

q

m
Epol(v0) + lim

∆t→“0”

1

∆t

1

2

(
q

m

)2
∂

∂v0
·
∫

dω

2π

∫
dk

× (2π)3
〈
e−i(ω−k ·v0)∆t − 1

−i(ω − k ·v0)
δEω,kδE−k ·v0,−k

〉
=

q

m
Epol(v0) +

1

2

(
q

m

)2
∂

∂v0
·
∫

dω

2π

∫
dk (2π)3

〈
δEω,kδE−k ·v0,−k

〉
=

q

m
Epol(v0) +

1

2

(
q

m

)2
∂

∂v0
·
∫

dk
〈
δEkδE−k

〉
ω=k ·v0

=
q

m
Epol(v0) +

1

2

∂

∂v0
·B(v0), (VI.3.14)

which is precisely (V.4.8)! So, we have learnt that A in the Balescu–Lenard operator
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corresponds to a particle, on the average, changing its velocity – this is a drag term. In
the case of Epol, it’s just polarization drag. For the B piece, it’s dynamical friction (i.e.,
trying to wade through a bunch of waves).

Sometimes, instead of

− ∂

∂v
·
(
Af

)
+

1

2

∂

∂v

∂

∂v
:
(
Bf

)
for the Fokker-Planck collision operator, you’ll see

− ∂

∂v
·
(
A′f

)
+

1

2

∂

∂v
·
(

B · ∂f
∂v

)
,

with A′ = (q/m)Epol(v) representing only the polarization drag. No physical difference, just
notation.

Thus, we have drag (A) and diffusion (B). Pictorially, the relaxation to equilibrium might
look like this:

A Maxwellian distribution is thus a balance between drag, which slows down particles,
and diffusion, which broadens the distribution.

Had we retained the first term in (VI.3.7) proportional to Epol(v0)Epol(v0), we would have
obtained a correction to Bα given by

lim
∆t→“0”

∆t

(
qα
mα

)2

Epol(v0)Epol(v0).
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With Epol(v0) given by (V.4.3), we may estimate the size of this neglected term to be

∼ ∆t

(
q2αq

2
β

mαmβ

nβv0
v3thβ

lnλαβ

)2

Let us compare this to its competing term, (qα/mα)
2
∫
dk ⟨δEkE−k⟩ω=k ·v0 , which we retained.

Using (V.4.6), its size is

∼ q2αq
2
β

m2
α

nβ

vthβ
lnλαβ .

With v0 ∼ vthα, the ratio of these two terms is

∼ ∆t
q2αq

2
βnβ lnλαβ

m2
αv

3
thβ

mαTα

mβTβ
∼ ∆t ναβmαTα

mβTβ
≪ 1,

where the collision frequency ναβ is given later in these notes by (VIII.6.28). Thus, (drag)2 is
indeed ≪ diffusion, and we rightly dropped the EpolEpol term when calculating A and B.

VI.4. Summary
A summary is in order, before we proceed any further.
We began by obtaining the Balescu–Lenard (and then Landau) collision operator from

Klimontovich and the BBGKY hierarchy. This came from a direct solution of the BBGKY
hierarchy for the two-particle correlation function, which was possible only after using
Bogoliubov’s hypothesis: fα is roughly constant over the timescale on which gαβ relaxes,
which we now see is equivalent to the Markov assumption (that is, the time axis is coarse-
grained in units of ∆t larger than ω−1

p , which measures the interaction of one particle
with the Debye cloud of another). The B-L operator captures polarization drag, radiation
of plasma waves and the dynamical friction and diffusion that result from many small-
angle scatterings off of these fluctuations, and the effects of particle motion on the efficacy
of Debye shielding. These effects are neatly categorized into Fokker-Planck coefficients,
Aα and Bα, which represent drag and diffusion, respectively. That these coefficients can
likewise be obtained using the test-particle superposition principle indicates that we can
rigorously view the plasma as being comprised of statistically independent Debye clouds
(at least to the order of Λ in which we are working). This is related to the fact that we
could split the solution for gαβ into the product of two one-particle response functions,
which are coupled at the next order by a source term describing the Coulomb interaction.
Also note that Aα and Bα were evaluated along unperturbed orbits (see (VI.3.9) and
(VI.3.13))!

As part of this summary, below I’ve matched up the assumptions made and procedures
taken when going from BBGKY to the Balescu–Lenard operator and from Fokker-Planck
to the Balescu–Lenard operator, color-coded:

(1) Assume that the two-particle correlation gαβ relaxes on a timescale ∼ω−1
p much

less than the timescale on which fα evolves.

(1) Calculate the plasma response δfα and the electrostatic response φ due to a test
charge in the long-time limit ∆t≫ ω−1

p .

(2) Neglect three-particle correlations hαβγ .

(2) Focus on a single test charge and its dressing.

(3) Take fα to be homogeneous on ∼λD scales.
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(3) Consider jump moments only in velocity space and not in configuration space.

(4) Drop gαβ from the source term Sαβ , so that particles enter into correlations being
initially uncorrelated.

(4) Assume small-angle scatterings and adopt the Markov assumption.

(5) Solve the reduced BBGKY hierarchy using the Vlasov’s Green function, which
assumes straight-line trajectories.

(5) Solve dv/dt = (q/m)E and dr/dt = v for a single dressed particle in the short-
time limit, compute the jump moments ⟨∆v⟩ and ⟨∆v∆v⟩, and substitute these
into the Fokker-Planck operator assuming the test-particle superposition principle.

Both of these approaches ultimately lead to the same Balescu–Lenard operator. Make
sure you understand why.

PART VII

The Langevin approach
How dare we speak of the laws of chance? Is not
chance the antithesis of all law?

Joseph Bertrand
Calcul des probabilités (1889)

Looking back at a lot of what we’ve done – obtaining the Balescu–Lenard operator,
discussing free-energy conservation, deriving the Fokker–Planck equation and its coeffi-
cients – there was always a coarse-graining of the time axis. We were concerned with
times longer than ω−1

p , the auto-correlation time on which Debye shielding is set up (and
on which reversible physics lives). For example, in the Fokker–Planck approach of the
last chapter, we computed the jump moments ⟨∆v⟩ and ⟨∆v∆v⟩ by expanding in small
∆t, “small” meaning ∆t → 0 while having ωp∆t ≫ 1. These moments were then fed
into the Fokker–Planck equation to obtain the long-time physics. They were intrinsically
probabilistic, being moments of the transition probability rate W (t+∆t,x; t,x−∆x).

There is an alternative approach, due to Langevin, which computes the moments for all
times conditioned on initial conditions. It’s easy to imagine that this is much harder than
obtaining the Fokker–Planck coefficients, but one can nevertheless do it for some simple
problems. And the Langevin approach has use in statistical descriptions of turbulence
and a rich history in the context of Brownian motion. For these reasons, and for providing
a solid foundation for Fokker–Planck theory, Langevin’s method is worth discussing.

We’ll start simple.

VII.1. The Langevin equation
Consider a single particle of unit mass with phase-space coordinates (z, v) at time t,

subject to an external force a(t) and to a drag force with a rate γ. The equations of
motion are

dz

dt
= v, (VII.1.1a)

dv

dt
= −γv + a(t). (VII.1.1b)
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Let a(t) be a non-random oscillatory force, a(t) = a0 exp(−iω0t). Assuming z(0) = z0
and v(0) = v0, the solution can be obtained by direct inspection, Laplace transforms, or
a Green’s function approach.

The Laplace way: ∫ ∞

0

dt eiωt

[
dv

dt
+ γv = a(t)

]
=⇒ −iωv(ω)− v0 + γv(ω) = a0

∫ ∞

0

dt ei(ω−ω0)t =
ia0

ω − ω0

=⇒ v(ω) =
iv0

ω + iγ
− a0

(ω − ω0)(ω + iγ)
.

=⇒ v(t) =

∫
dω

2π
e−iωt

[
iv0

ω + iγ
− a0

(ω − ω0)(ω + iγ)

]
= −2πi

2π

(
iv0e

−γt − a0
ω0 + iγ

e−iω0t +
a0

ω0 + iγ
e−γt

)
= v0e

−γt +
ia0

ω0 + iγ

(
e−iω0t − e−γt

)
,

where the following contour was used to perform the inverse-Laplace transform:

The Green’s function way:

v(t) = v0G(t) +

∫ t

0

dt′ a(t′)G(t− t′) with G(s) = e−γs

= v0e
−γt +

∫ t

0

dt′ a0e
−iω0t

′
e−γ(t−t′)

= v0e
−γt +

ia0
ω0 + iγ

(
e−iω0t − e−γt

)
.

Either way, taking the real part of the solution gives

v(t) =

(
v0 −

a0γ

ω2
0 + γ2

)
e−γt +

a0
ω2
0 + γ2

(
ω0 sinω0t+ γ cosω0t

)
. (VII.1.2)

Note that, as t→ ∞, the particle eventually oscillates at the driving frequency.
Now, let us suppose that the external force a(t) is random and independent of v. Then,

while dv/dt = −γv+a(t) may look like a simple differential equation, it is not. Rather, it
is a stochastic differential equation. It’s different, because we don’t actually know what
a(t) is – we just know that it’s random.

There are two ways to think about how a solution might be obtained. Suppose that you
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did know a(t) experienced by some particle. In principle, then you could go ahead and
solve (VII.1.1). But the next particle under consideration would experience a different
a(t). (Remember “deterministic within any particular realization, stochastic between
different realizations”?) So you’d have to solve that one. Now draw yet another force
a(t) from the random-force generator and solve (VII.1.1) for that realization. Do this a
bunch of times, and this will quickly get exhausting. It’s probably best then to speak of
some typical solution; i.e., we consider the ensemble average. For example, the ensemble-
average value of all these randomly generated, but individually deterministic, forces might
be zero, i.e., ⟨a(t)⟩ = 0. The standard deviation, probably not. You could use the statistics
of the forces to say something about the statistics of the particles’ motion.

The other way is to simply admit that it’s unrealistic to actually know a(t) in any
specific case. Instead, we only know certain gross features of it, e.g., its average value, or
perhaps its standard deviation. (For Gaussian statistics, that’s all you need.) Then we
could use this crude information to say something about, e.g., the average value of v or
maybe of v2. We adorn these gross features of a(t) with brackets ⟨ . . . ⟩.

This is the goal of solving the Langevin equation, which is simply (VII.1.1b) with a
random a(t). Clearly, some statistics of a(t) must be provided. Let’s see this in action.

Solving (VII.1.1b) with a random a(t), we have

v(t) = v0e
−γt + e−γt

∫ t

0

dt′ a(t′)eγt
′
. (VII.1.3)

At this point, we can’t go any further. But, let us assume that, on the average, the force
vanishes at any given time: ⟨a(t)⟩ = 0. Then, taking the average of (VII.1.3), we have

⟨v(t)⟩ = v0e
−γt, (VII.1.4)

and so
⟨z(t)⟩ = z0 +

v0
γ

(
1− e−γt

)
. (VII.1.5)

This is not surprising, but there is an interpretive subtlety. These equations are not saying
that the velocity and position have been determined, but rather that the ensemble average
(or expectation value) is known. (Individual particles in a many-particle system might
do different things, but their average behavior is known.)

We can obtain more information by computing some quadratic quantities, such as the
variance in position ⟨z2(t)⟩ − ⟨z(t)⟩2 or in velocity ⟨v2(t)⟩ − ⟨v(t)⟩2, or perhaps the two-
time correlations ⟨z(t1)z(t2)⟩ and ⟨v(t1)v(t2)⟩. The latter tell us information about the
correlation between the position and velocity of the particle at time t2 and at time t1,
given that we know where it was at t = 0. For example,

⟨v(t1)v(t2)⟩ =
〈
v20e

−γ(t1+t2) + v0e
−γ(t1+t2)

[∫ t2

0

dt′2 a(t
′
2)e

γt′2 +

∫ t1

0

dt′1a(t
′
1)e

γt′1

]
+ e−γ(t1+t2)

∫ t1

0

dt′1

∫ t2

dt′2 a(t
′
1)a(t

′
2)e

γ(t′1+t
′
2)

〉
= v20e

−γ(t1+t2) + e−γ(t1+t2)
∫ t1

dt′1

∫ t2

0

dt′2 ⟨a(t′1)a(t′2)⟩eγ(t
′
1+t

′
2)

= ⟨v(t1)⟩⟨v(t2)⟩+
∫ t1

0

dt′1

∫ t2

0

dt′2 ⟨a(t′1)a(t′2)⟩eγ(t
′
1+t

′
2−t1−t2). (VII.1.6)

Given the two-time correlation for the forcing, we can determine the two-time correlation
for the velocity.

In many cases of interest (e.g., Brownian motion), the kicks imparted by the force are
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both fast and uncorrelated. To get a feeling for what this means, imagine the force is
due to collisions between our particle and some other particles. If each collision takes a
time tcoll, then it’s obvious that, on timescales less than tcoll, there will be a correlation
between the forces imparted on our particle because these forces are due to the same
collisional process that is taking place. But if we consider times t ≫ tcoll, the force will
be due to a different collision with a different particle. The statement that the force
is uncorrelated means that the force imparted by later collisions knows nothing about
earlier collisions. Mathematically, this means

⟨a(t1)a(t2)⟩ = 0 when |t1 − t2| ≫ tcoll. (VII.1.7)

“Fast” means that the timescales of interest all satisfy |t1 − t2| ≫ tcoll, and so we can
effectively take tcoll → 0. That doesn’t mean that the correlations vanish; rather,

⟨a(t1)a(t2)⟩ = ε δ(t2 − t1) (VII.1.8)

where ε governs the strength of the correlations. Equation (VII.1.8) is called white noise.
As written by David Tong in his excellent lecture notes on kinetic theory,14

It is valid whenever the environment relaxes back down to equilibrium much
faster than does the system of interest. This guarantees that, although the system
is still reeling from the previous kick, the environment remembers nothing of what
went before and kicks again, as fresh and random as the first time.

Let’s see where this leads.
Using (VII.1.8) in (VII.1.6) and assuming t2 ⩾ t1 > 0, we have

⟨v(t1)v(t2)⟩ = ⟨v(t1)⟩⟨v(t2)⟩+
∫ t1

0

dt′1

∫ t2

0

dt′2 ε δ(t
′
2 − t′1) e

γ(t′1+t
′
2−t1−t2)

= ⟨v(t1)⟩⟨v(t2)⟩+ ε

∫ t1

0

dt′1 e
γ(2t′1−t1−t2)

= ⟨v(t1)⟩⟨v(t2)⟩+
ε

2γ

[
e−γ(t2−t1) − e−γ(t2+t1)

]
. (VII.1.9)

At late times (t1, t2 → ∞),

⟨v(t1)v(t2)⟩ →
ε

2γ
e−γ(t2−t1); (VII.1.10)

i.e., the correlation between velocities decays. So, if you know v(t1), then v(t2) will be
similar if t2 < t1 + 1/γ; but if you wait any longer, all bets are off on the velocity at t2
based on v(t1). (This is called an Ornstein–Uhlenbeck process; this process converges to
the same PDF for any initial condition. Every Markovian, stationary, Gaussian process
in an Ornstein–Uhlenbeck process.)

Note further that
⟨v2(t)⟩ → ε

2γ
as t→ ∞. (VII.1.11)

In this long-time limit, one would expect energy equipartition between the test particle
and the noise bath:

⟨v2(t)⟩ = v2th
2

=⇒ ε = γv2th, (VII.1.12)

which is a fluctuation-dissipation theorem (Einstein 1905, 1956). This is remarkable –

14www.damtp.cam.ac.uk/user/tong/kinetic.html

www.damtp.cam.ac.uk/user/tong/kinetic.html
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there is a relationship between the diffusion of the particle in velocity space (statistically)
and the slowing-down of the particle due to drag (statistically).

Before further discussion, let us finish calculating the linear and quadratic expectation
values for our 1D-1V problem. We already have

⟨v(t)⟩ = v0e
−γt, ⟨z(t)⟩ = z0 +

v0
γ

(
1− e−γt

)
,

⟨v2(t)⟩ − ⟨v(t)⟩2 .
= ⟨δv2(t)⟩ = ε

2γ

(
1− e−2γt

)
;

now compute

⟨z(t)v(t)⟩ =
〈[
z0 +

∫ t

0

dt′ v(t′)

]
v(t)

〉
= z0⟨v(t)⟩+

∫ t

0

dt′ ⟨v(t)v(t′)⟩

= z0⟨v(t)⟩+
∫ t

0

dt′ ⟨v(t)⟩⟨v(t′)⟩+ ε

2γ

∫ t

0

dt′
[
e−γ(t−t

′) − e−γ(t+t
′)
]

= ⟨v(t)⟩
[
z0 +

∫ t

0

dt′ v0e
−γt′

]
+

ε

2γ

∫ t

0

dt′
[
e−γ(t−t

′) − e−γ(t+t
′)
]

= ⟨v(t)⟩⟨z(t)⟩+ ε

2γ

[
1

γ

(
1− e−γt

)
+

1

γ

(
e−2γt − e−γt

)]
=⇒ ⟨δz(t)δv(t)⟩ .= ⟨z(t)v(t)⟩ − ⟨z(t)⟩⟨v(t)⟩ = ε

2γ2
(
1− e−γt

)2 (VII.1.13)

and

⟨z2(t)⟩ =
〈[
z0 +

∫ t

0

dt′ v(t′)

][
z0 +

∫ t

0

dt′′ v(t′′)

]〉
= z20 + 2z0

∫ t

0

dt′ ⟨v(t′)⟩+
∫ t

0

dt′
∫ t

0

dt′′ ⟨v(t′)v(t′′)⟩

= ⟨z(t)⟩2 −�������v20
γ2
(
1− e−γt

)2
+
��������[∫ t

0

dt′ ⟨v(t′)⟩
]2

+
ε

2γ

∫ t

0

dt′
∫ t

0

dt′′
[
e−γ(t

′−t′′) − e−γ(t
′+t′′)

]
= ⟨z(t)⟩2 + ε

2γ

∫ t

0

dt′
∫ t

0

dt′′ 2H(t′ − t′′)︸ ︷︷ ︸
gives needed
time ordering
(see figure)

[
e−γ(t

′−t′′) − e−γ(t
′+t′′)

]

= ⟨z(t)⟩2 + ε

γ

∫ t

0

dt′
∫ t′

0

dt′′
[
e−γ(t

′−t′′) − e−γ(t
′+t′′)

]
= ⟨z(t)⟩2 + ε

γ

∫ t

0

dt′
[
1

γ

(
1− e−γt

′
)
+

1

γ

(
e−2γt′ − e−γt

′
)]

= ⟨z(t)⟩2 + ε

γ2

[
t+

2

γ

(
e−γt − 1

)
+

1

2γ

(
1− e−2γt

)]
=⇒ ⟨δz2(t)⟩ .= ⟨z2(t)⟩ − ⟨z(t)⟩2 =

ε

2γ3
(
2γt− 3 + 4e−γt − e−2γt

)
. (VII.1.14)
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These results are summarized in the table below (which follows Table 6.1 of Krommes
(2018)):15

γt≪ 1
(short times)

γt≫ 1
(long times)

⟨v⟩ v0(1− γt)
(collisional slowing down)

0
(randomization of particle velocity)

⟨z⟩ z0 + v0t
(free streaming)

z0 + v0/γ
.
= z0 + λmfp

(randomized in a mean free path)

⟨δv2⟩ εt
(velocity-space diffusion)

ε/2γ
.
= T

(thermalization)

⟨δzδv⟩ εt2/2 ε/2γ2

⟨δz2⟩ εt3/3
εt/γ2

(real-space diffusion)

The result ⟨δz2⟩ ≃ εt3/3 for γt ≪ 1 is particularly important; it implies that there is
rapidly increasing uncertainty in the particle position at short times. Sometimes this is
referred to as “orbit diffusion” or “resonance broadening” (Dupree 1966).

The next thing to do is to connect this exercise, devoid of plasma physics, to everything
we’ve done up until now. Before doing so, a few things are worth noting:

(1) The Einstein relation ε = γv2th gives an excellent way to determine Boltzmann’s
constant experimentally. We found ⟨δz2(t)⟩ = εt/γ2 = v2tht/γ, and so, if we
know temperature and the drag rate, we can measure ⟨δz2⟩ versus time and
determine Boltzmann’s constant. For example, with γ = 6πηa/m (Stokes’
law, where η is dynamic viscosity and a is the radius of the particle), we
have kBoltz = ⟨δz2(t)⟩(3πηa/T t). In 3D, ⟨|δr(t)|2⟩ = 3εt/γ2, in which case
kBoltz = ⟨|δr(t)|2⟩(πηa/T t). This formula was used by Jean Baptiste Perrin
in 1909 to measure kBoltz (published in 1912); the value was consistent with
other values previously determined from tests of the ideal gas law and from
measuring blackbody radiation. This experiment constituted the first experimental

15γ = 0, or the short-time limit shown in the table, corresponds to a “Wiener process”:
dv/dt = a(t) for ⟨a(t)a(t′)⟩ = ε δ(t− t′). This gives Brownian motion.
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demonstration of the physical reality of atoms and molecules, and it earned him
the Nobel Prize in 1926. (Wikipedia has a very nice page on Brownian motion;
the history of the discovery and theoretical development is quite interesting.)

(2) Because ∆t ≫ tcoll and the kicks are statistically independent, a(t) is the sum
of many independent random variables. By the central limit theorem, a(∆t) is
essentially Gaussian – “Gaussian white noise”. Moreover, since the sum of two
jointly Gaussian variables is also a Gaussian, then z and v are Gaussian. This
means that the probability distribution functions of z and v are completely
specified by the first and second cumulants ⟨z(t)⟩, ⟨v(t)⟩, ⟨z(t)v(t′)⟩, ⟨v(t)v(t′)⟩,
and ⟨z(t)z(t′)⟩.

(3) Note that ⟨v⟩ = 0 for γt → ∞ but that ⟨δz⟩ = v0/γ
.
= λmfp. In other words,

the velocity is completely randomized by the kicks, but the particle position has
advanced by a mean free path. Thus, spatial diffusion! (Mathematically, ⟨δz⟩ ̸=
⟨δv⟩t as γt→ ∞.)

(4) Equation (VII.1.8) can be inverted:∫ ∞

t

dt′
[
⟨a(t)a(t′)⟩ = ε δ(t′ − t)

]
.

Writing t′ = t+ τ , we have∫ ∞

0

dτ
[
⟨a(t)a(t+ τ)⟩ = ε δ(τ)

]
.

This should hold for any time:

=⇒
∫ ∞

0

dτ ⟨a(0)a(τ)⟩ = ε

2
(VII.1.15)

(The factor of 1/2 comes from integrating half of a δ-function.) This is Taylor’s
formula for diffusion. Correlation functions are intimately related to transport
coefficients.

(5) What if a(t) had a finite correlation time? Recall

⟨δv2(t)⟩ =
∫ t

0

dt′
∫ t

0

dt′′ ⟨a(t′)a(t′′)⟩ eγ(t′+t′′−2t). (VII.1.16)

Set γ = 0, since it will only affect the long-time limit when the precise value of
tcoll shouldn’t matter anyhow. Furthermore, let us assume a(t) to be stationary,
i.e.,

⟨a(t′)a(t′′)⟩ = ⟨a(t′ − t′)a(t′′ − t′)⟩ = ⟨a(0)a(τ)⟩.
Then (VII.1.16) becomes

⟨δv2(t)⟩ =
∫ t

0

dt′
∫ t

0

dt′′ ⟨a(t′)a(t′′)⟩

=

∫ 0

−t
dτ ⟨a(0)a(τ)⟩

∫ t+τ/2

−τ/2
dT +

∫ t

0

dτ ⟨a(0)a(τ)⟩
∫ t−τ/2

τ/2

dT,

where τ .
= t′ − t′′ and T .

= (1/2)(t′ + t′′). This change of variables looks like this:
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where the hatched regions denote the region where substantial auto-correlations
in a(t) occur (i.e., |τ | < tcoll). Then,

⟨δv2(t)⟩ =
∫ 0

−t
dτ ⟨a(0)a(τ)⟩

(
t+

τ

2
+
τ

2

)
+

∫ t

0

dτ ⟨a(0)a(τ)⟩
(
t− τ

2
− τ

2

)
= −

∫ 0

t

dτ ⟨a(0)a(−τ)⟩(t− τ) +

∫ t

0

dτ ⟨a(0)a(τ)⟩(t− τ)

=

∫ t

0

dτ (t− τ)⟨a(0)a(−τ) + a(0)a(τ)⟩.

But ⟨a(0)a(τ)⟩ = ⟨a(−τ)a(0)⟩ = ⟨a(0)a(−τ)⟩, so

⟨δv2(t)⟩ = 2t

∫ t

0

dτ (1− τ/t)⟨a(0)a(τ)⟩. (VII.1.17)

Note that, if ⟨a(0)a(τ)⟩ = ε δ(τ), then ⟨δv2(t)⟩ = εt, as needed. In general,
⟨a(0)a(τ)⟩ has some finite area defined by

tcoll
.
=

1

⟨a(0)a(0)⟩

∫ ∞

0

dτ ⟨a(0)a(τ)⟩, (VII.1.18)

where (to remind you) tcoll is the time a collision takes (equivalently, the “auto-
correlation time” of the forcing). Then the correction term in (VII.1.17) (i.e.,
−τ/t) is of order ∼(tcoll/t). When tcoll ≪ t, this term is negligible and we recover
⟨δv2(t)⟩ = 2t

∫ t
0
dτ ⟨a(0)a(τ)⟩, which is Taylor’s formula with ε

.
= ⟨δv2(t)⟩/t as

t → ∞. Then, ε/2 = ⟨a2(0)⟩tcoll. (Almost anything looks like a delta function
from far enough away!)

(6) We’ve done all this for scalar fields, but things easily generalize to vectors: the
standard Langevin problem can be written as

dr

dt
= v and

dv

dt
= −γv + a(t),

with

⟨a(t)a(t′)⟩ = ε δ(t− t′)I .

Of course, one could imagine variations to this. . . maybe the drag force is more
general, say, A(v). Maybe the correlation tensor εI is more general, say, B(v).
(These names are highly suggestive, aren’t they?) Perhaps ai(t) has a correlation
with aj(t

′) (e.g., if there is a magnetic field), or perhaps only one component is
being forced. One useful forcing scheme in kinematic dynamo theory is due to
Kazantsev (1968) (and independently introduced in the context of passive scalar
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advection by Kraichnan (1968)):

⟨vi(t, r)vj(t′, r′)⟩ = δ(t− t′)κij(r − r′)

with

κij(y) = κ0δij −
1

2
κ2

(
y2δij −

1

2
yiyj

)
+ . . .

being a Taylor expansion of the velocity correlation tensor. This drives magnetic-
field growth in a way whose statistics are exactly solvable.

(7) Because we’ve taken a(t) to be independent of velocity and position, things have
been nice and simple. We had a linear Langevin equation. More generally, a(t) will
depend on position and/or velocity: a = a(t, x(t)), where x = (z, v) denotes the
full phase-space coordinate. If so, then the Langevin equation becomes non-linear.
We must solve

dz

dt
= v and

dv

dt
= −γv + a(t, x(t)).

The random forcing must be computed along the phase-space trajectory of the
particle (cf. (VII.1.16)):

⟨δv2(t)⟩ =
∫ t

0

dt′
∫ t

0

dt′′ ⟨a(t′, x(t′))a(t′′, x(t′′))⟩eγ(t′+t′′−2t).

This is a Lagrangian correlation. If a(t) is stationary, then (setting γ = 0 for
simplicity) we have

⟨δv2(t)⟩ = 2t

∫ t

0

dτ ⟨a(τ, x(τ))a(0, x(0))⟩,

in which case

ε = 2

∫ ∞

0

dτ ⟨a(τ, x(τ))a(0, x(0))⟩ (VII.1.19)

is the diffusion coefficient. The Lagrangian correlation is the important one, since
it takes into consideration the phase-space history of the particle as it moves in a
phase-space-dependent environment. Of course, experimentally, Eulerian correla-
tions are measured, i.e., correlations at a fixed location. One must then translate
between the two, which is often difficult (if not impossible). But, did you notice
that we’ve already done such a calculation? Remember when we were computing
the jump moments to obtain the Fokker–Planck coefficients? We had (cf. (VI.3.7))

⟨δv(t)δv(t)⟩ =
∫ t

0

ds

∫ t

0

ds′ ⟨F (s,x(s))F (s′,x(s′))⟩,

and we solved perturbatively in small times ω−1
p ≪ t ≪ ν−1 so that x(s) ≃

x0+(dx/ds)|x=x0
s+. . . . The manifestation of this Lagrangian focus was the δ(ω−

k ·v) factor in (VI.3.10) and (VI.3.14), which is related to quasi-linear diffusion
(see §5.3.3 of Krommes (2018)).

(8) There is a subtlety when the random force depends upon the phase-space coor-
dinate of the particle. If the force depends on x(t), but the system is getting a
delta-function impulse at time t, then x(t) is not well defined during the kick.
There are two interpretations that work around this:
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• Ito: The forcing is dependent upon the position just before the kick occurs
(i.e., forward Euler method)

• Stratonovich: The kick is really not a δ-function at all, but rather a process
the occurs over a small period of time. Then, the forcing should be deter-
mined by the average of the position x(t) over this small (but finite) time
interval (i.e., Crank-Nicholson method)

One would hope, of course, that the two give no macroscopic difference, but, alas,
that isn’t true. For us, what we’ve done is to consider a forcing with a small but
finite auto-correlation time, and then we took tcoll → 0. This gave things like∫∞
0

dx δ(x) = 1/2. This is in line with the Stratonovich interpretation. (Ito would
have

∫∞
0

dx δ(x) = 1.) If there is ever any confusion, it’s best to work with an a(t)
that has a finite auto-correlation time, and then take that time to zero at the end
of the calculation. (In a numerical simulation, the algorithm would determine the
interpretation, so be careful.)

VII.2. Relationship between Langevin and Fokker–Planck
There is a close relationship between the Langevin equation and the Fokker–Planck

equation. To see this, imagine a particle at some velocity at time t0, say, v0. If the
subsequent evolution is noisy because of some stochastic forcing, then the Langevin
equation can be used. But we will have no idea exactly where that particle will be in
velocity space. The best we can do is speak of probabilities: P (t, v; t0, v0) is the probability
that the particle has velocity v at time t, given that it had velocity v0 at time t0. The
Langevin approach is to express this uncertainty in terms of correlation functions. Here
we ask: what P (t, v; t0, v0) would lead to the same correlation functions that arose from
the Langevin equation?

Denote the solution to the Langevin equation for a given noise function f(t) as vf (t). If
we knew what this noise is, then there is no uncertainty in P (t, v); it is simply δ(v−vf (t)).
Averaging over all possible noise, however, gives

P (t, v) = ⟨δ(v − vf (t))⟩. (VII.2.1)

(This should look very familiar from the beginning of the course and the discussion of
Liouville-averaging the Klimontovich distribution. Not a coincidence!)

Using this definition, we ask: What is the probability P (t +∆t, v; t, v −∆v) that the
particle has velocity v at time t+∆t given that it had velocity v−∆v a moment earlier
at time t? This is just

P (t+∆t, v; t, v −∆v) = ⟨δ(∆v − ∆̃v)⟩, (VII.2.2)

where ∆̃v is a random variable denoting the change in velocity in a time ∆t. Next, we
Taylor expand the delta function:

P (t+∆t, v; t, v −∆v) =

(
1 + ⟨∆̃v⟩ ∂

∂v
+

1

2
⟨∆̃v2⟩ ∂

2

∂v2
+ . . .

)
δ(∆v). (VII.2.3)

(If that made you queasy, just know that all this will be inside an integral. If that doesn’t
quell your stomach, then write the delta function as your favorite distribution that reduces
to δ(x) in the limit ϵ→ 0.) This goes into the Chapman–Kolmogorov equation (VI.1.1),

P (t+∆t, v; t0, v0) =

∫
d(∆v)P (t+∆t, v; t, v −∆v)P (t, v −∆v; t0, v0).



102 M. W. Kunz

Remember: this states that, given some initial arbitrary velocity v0 at t0, the particle
must be somewhere in velocity space between then and t+∆t. Making the substitution,
we obtain

P (t+∆t, v; t0, v0)

=

∫
d(∆v)

[(
1 + ⟨∆̃v⟩ ∂

∂v
+

1

2
⟨∆̃v2⟩ ∂

2

∂v2
+ . . .

)
δ(∆v)

]
P (t, v −∆v; t0, v0)

bp
= P (t, v; t0, v0)−

∂

∂v

[
⟨∆̃v⟩P (t, v; t0, v0)

]
+

1

2

∂2

∂v2

[
⟨∆̃v2⟩P (t, v; t0, v0)

]
+ . . .

(VII.2.4)

For the Langevin problem, ⟨∆̃v⟩ = −γv∆t and (remember?) ⟨∆̃v2⟩ = ε∆t for small ∆t
(i.e., γ∆t≪ 1 but ∆t≫ tcoll). Expanding (VII.2.4) in small ∆t then leads to

P (t, v; t0, v0) +∆t
∂P (t, v; t0, v0)

∂t
= P (t, v; t0, v0)−

∂

∂v

[
−γv∆tP (t, v; t0, v0)

]
+

1

2

∂2

∂v2
[
ε∆P (t, v; t0, v0)

]
+O(∆t2)

=⇒ ∂P

∂t
= γ

∂

∂v

(
vP
)
+
ε

2

∂2P

∂v2
(VII.2.5)

which is just the Fokker–Planck equation (VI.2.3) with drag and diffusion!
The equilibrium ∂P/∂t = 0 is

∂

∂v

(
γvP +

ε

2

∂P

∂v

)
= 0

=⇒ P =
( γ
πε

)1/2
exp

(
−γv

2

ε

)
=

1√
πvth

exp

(
− v2

v2th

)
, (VII.2.6)

where, in the final equality, I have used the fluctuation-dissipation relation ε = γv2th. A
Maxwellian, as expected.

For γ = const and ε = const, the Fokker–Planck equation can, in fact, be solved
exactly. I will use a Green’s function approach:

P (t, v) =

∫
dv0G(t, v; 0, v0)P (0, v0), (VII.2.7a)

with

G(0, v; 0, v0) = δ(v − v0),

∂G

∂t
= γ

∂

∂v

(
vG
)
+
ε

2

∂2F

∂v2
. (VII.2.7b)

Start by writing

G(t, v; 0, v0) =

∫
dk

2π
eikvGk(t).

Then, away from v = v0,

dGk
dt

+ γk
∂Gk
∂k

+
εk2

2
Gk = 0. (VII.2.8)

Ansatz:

lnGk = −ikv0α(t)−
εk2

2
β(t).
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(It must be Gaussian!) Differentiating in time and wavenumber gives

d lnGk
dt

= −ikv0
dα

dt
− εk2

2

dβ

dt
and γk

∂ lnGk
∂k

= −ikv0γα− γεk2β.

Plugging these expressions back into (VII.2.8) puts the following constraints on α and β:

dα

dt
+ γα = 0 and

dβ

dt
+ 2γβ − 1 = 0

=⇒ α = α0e
−γt and β =

1

2γ

(
1− e−2γt

)
,

and so

lnGk = −ikv0α0e
−γt − εk2

4γ

(
1− e−2γt

)
.

The initial condition Gk(0) = exp(−ikv0) implies α0 = 1, so that

Gk(t) = exp

[
−ikv0e

−γt − εk2

4γ

(
1− e−2γt

)]
. (VII.2.9)

Completing the square and defining σ2 .
= (ε/2γ)(1− e−2γt), equation (VII.2.9) becomes

Gk(t) = exp

[
−σ

2

2

(
k +

iv0e
−γt

σ2

)2

− v20e
−2γt

2σ2

]
.

This form is useful, since the Fourier transform of a Gaussian is a Gaussian:∫
dk

2π
eikve−k

2σ2/2 =
1√
2πσ2

e−v
2/2σ2

.

Defining K .
= k + iv0e

−γt/σ2 and proceeding with the inverse Fourier transform. . .

G(t, v) =

∫
dk

2π
eikvGk(t)

=

∫
dk

2π
eikve−K

2σ2/2e−v
2
0e

−2γt/2σ2

= e−(v−v0e−γt)2/2σ2

ev
2/2σ2

(∫
dK

2π
e−K

2σ2/2eiKv
)

︸ ︷︷ ︸
=

1
√
2πσ2

exp
(−v2

2σ2

)

=
1√
2πσ2

e−(v−v0e−γt)2/2σ2

.

Simple! With 2σ2 = (ε/γ)(1− e−2γt) = v2th(1− e−2γt),

G(t, v; 0, v0) =
1√
πvth

e−(v−v0e−γt)2/v2th(1−e−2γt)√
1− e−2γt

(VII.2.10)

Note that, for γt→ ∞, this becomes e−v
2/v2th/

√
πvth! This relaxes any P (0, v0) towards

a Maxwellian, by broadening the standard deviation and pushing the mean towards 0.
The lesson here is that the Fokker–Planck and Langevin approaches are in many ways

the same. Both involve a coarse-graining of the time axis over the auto-correlation time
of the forcing; both reveal a relaxation towards a Maxwellian equilibrium; and both,
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accordingly, describe the effects of drag and diffusion. Where they differ is that, in the
Fokker–Planck approach, we only required the short-time jump moments. Once those are
obtained, they can be fed into the Fokker–Planck equation, and the PDF can be evolved.
By contrast, the Langevin approach describes the statistics captured by the PDF in the
form of correlations (“cumulants”), which are explicitly calculated for all time depending
upon the initial conditions. From this, it is clear that the Fokker–Planck approach is
logistically superior, since short-time physics is easier to calculate than all-time physics.
In fact, there are problems where one cannot explicitly solve the Langevin equation but
can at least formulate the equivalent Fokker–Planck equation. See §§7.2,7.3 of Krommes
(2018) for more.

PART VIII

Simplified collision operators
The transport will flow along the party line.

Alex Schekochihin, on the “KGB” operator

In practice, the Landau collision operator (IV.5.9) is rarely used, let along the Balescu–
Lenard operator (IV.3.22). Simplifications to the Landau operator are instead employed,
some more rigorously obtained than others. In this part, we investigate several of these
approximate collision operators.

VIII.1. Krook (or BGK) operators
One of the crudest collision operators is the Krook (or BGK) operator:

C[fα] = −ν (fα − fM,α), where fM,α =
1

π3/2v3thα
e−v

2/v2thα

∫
dv fα. (VIII.1.1)

This operator simply pushes fα towards a Maxwellian with a specified temperature Tα =
(1/2)mαv

2
thα while conserving particle number at some specified rate ν. (The papers are

Bhatnagar et al. 1954 and Gross & Krook 1956.) The assumption here is that there are
no sharp discontinuities in fα and so it stays close to Maxwellian. This operator does not
conserve momentum or energy. One could repair this flaw by constructing an operator
that pushes fα towards a Maxwellian in the correct frame:

C[fα] = −ν (fα − fM,α), where fM,α =
1

π3/2v3thα
e−|v−u|2/v2thα

∫
dv fα (VIII.1.2)

and u = (
∫
dv vfα)/(

∫
dv fα). A similar fix would patch up the temperature for energy

conservation, using (
∫
dvmαv

2fα)/(
∫
dv fα) to determine the thermal speed to be used

in fM,α. Other versions have been constructed for electron-ion collisions (Greene 1973)
and for including trapped-particle effects (e.g. Kadomtsev & Pogutse 1970; Tang et al.
1976; Tang 1978).
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VIII.2. Lenard–Bernstein operator
We have already encountered another approximate collision operator that annihilates

a Maxwellian in HW02: the Lenard–Bernstein operator

C[fα] = ν
∂

∂v
·
(
vfα +

v2thα
2

∂fα
∂v

)
, (VIII.2.1)

which is described in Lenard & Bernstein (1958) and Dougherty (1964) (see Francisquez
et al. 2022 for a recent update and additional references). This should also look familiar
from our discussion of the Langevin equation (cf. (VII.2.5)), and thus it includes both
drag and diffusion and pushes fα towards a stationary Maxwellian. This operator con-
serves the number density of particles and represents some diffusion in velocity space,
but uses the same collision frequency for both drag and diffusion. Thus, there is no
distinction between pitch-angle scattering and energy diffusion. Momentum conservation
may be gained by modifying (VIII.2.1) to push fα towards a moving Maxwellian as
follows (Kirkwood 1946):

C[fα] = ν
∂

∂v
·
[
(v − u)fα +

v2thα
2

∂fα
∂v

]
, u ≡

(∫
dv vfα

)/(∫
dv fα

)
. (VIII.2.2)

If you recall HW02, the Lenard–Bernstein collision operator takes on a particularly
elegant form in Hermite space, −mν, where m is the Hermite number (the velocity-
space analogue of the Fourier wavenumber k in real space). One can conserve momentum
and energy by demanding that m start at m = 3. Nice.

VIII.3. Rosenbluth potentials
Now let us return to the Landau collision operator (IV.5.9),

∂fα(t,v)

∂t
=
∑
β

2πq2αq
2
β lnλαβ

mα

∂

∂v
·
∫

dv′ U(v − v′) ·
(

1

mα

∂

∂v
− 1

mβ

∂

∂v′

)
fα(v)fβ(v

′),

where U(u)
.
= (u2I − uu)/u3. A natural expansion parameter here is the mass ratio

mα/mβ . For example, with α = e and β = i, mα/mβ ≃ 1/1836 for a hydrogenic plasma,
and so it’s clear that the (m−1

α ∂/∂v −m−1
β ∂/∂v′) part of the Landau operator can be

simplified. The easiest way to achieve this is actually not with the Landau form given
above, but rather using something called the Fokker–Planck–Rosenbluth form.

The Rosenbluth form (for short) constitutes a different way of interpreting the Fokker–
Planck coefficients Aα and Bα, one which is particularly convenient for numerical work.
Recall from (IV.4.4) that

Aα
.
=

1

mα

∑
β

(
1

mα
+

1

mβ

)∫
dk

(2π)3
kk

∣∣∣∣ 4πqαqβ
k2D(k ·v,k)

∣∣∣∣2 ∫ dv′ πδ(k ·v − k ·v′) · ∂fβ
∂v′ ,

Bα
.
=

1

mα

∑
β

(
1

mα
+

1

mα

)∫
dk

(2π)3
kk

∣∣∣∣ 4πqαqβ
k2D(k ·v,k)

∣∣∣∣2 ∫ dv′ πδ(k ·v − k ·v′)fβ(v
′).

As in §IV.5 (see (IV.5.2)), write

|D(k ·v,k)|2 =

[
1 +

k2D
k2

Re(α)

]2
+

[
k2D
k2

Im(α)

]2
,

where α = α(k̂ ·v) is only a function of the angle between k and v and not of k itself.
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Then,

Bα =
∑
β

4q2αq
2
β

m2
α

∫
dv′ fβ(v

′)

∫
dΩk k̂k̂ δ(k̂ ·v − k̂ ·v′)

∫ ∞

0

dk

k

1

|1 + (kD/k)2α(k̂ ·v)|2
.

(VIII.3.1)
The final integral in (VIII.3.1) – the one over k – may be simplified as follows:∫ ∞

0

dk

k

1

|1 + (kD/k)2α(k̂ ·v)|2
=

∫ ∞

0

dk2

2

k2[
k2 + k2D Re(α)

]2
+
[
k2D Im(α)

]2
=

∫ ymax

ymin︸ ︷︷ ︸
Replace ∞ by
ymax = k2max

+ k2D Re(α) so
that integral
converges

dy

2

y − k2D Re(α)

y2 +
[
k2D Im(α)

]2 (set y = k2 + k2D Re(α))

=
1

4
ln
{
y2 +

[
k2DIm(α)

]}∣∣∣∣ymax

ymin

− Re(α)

2|Im(α)| tan
−1

[
y

k2D|Im(α)|

]∣∣∣∣ymax

ymin

= ln

(
kmax

kD

)
+

1

4
ln

{
[1 + (k2D/k

2
max)Re(α)]

2 + [(k2D/k
2
max)Im(α)]2

[Re(α)]2 + [Im(α)]2

}
− Re(α)

2|Im(α)|

{
π

2
− tan−1

[
Re(α)

|Im(α)|

]}
= ln

(
kmax

kD

)
+O(1) terms.

Chandrasekhar (1943) calls the first term here the “dominant” term, since it diverges
logarithmically as kmax → ∞ while the other terms are finite. Thus, with ln(kmax/kD) →
lnλαβ (i.e., the Coulomb logarithm), equation (VIII.3.1) becomes

Bα =
∑
β

4q2αq
2
β lnλαβ

m2
α

∫
dv′ fβ(v

′)

∫
dΩk k̂k̂ δ(k̂ ·v − k̂ ·v′). (VIII.3.2)

The integral overΩk is just what we found in the Landau operator, and so we’re effectively
capturing Debye shielding via the kmin cutoff. Recall from §IV.5 that

1

π

∫
dΩk k̂k̂ δ(k̂ ·v − k̂ ·v′) =

u2I − uu

u3
.
= U(u) =

∂2u

∂v∂v
,

where u
.
= v − v′. Then (VIII.3.2) may be written as

Bα =
∑
β

4πq2αq
2
β lnλαβ

m2
α

∫
dv′ fβ(v

′)
∂2u

∂v∂v

=
∑
β

4πq2αq
2
β lnλαβ

m2
α

∂2

∂v∂v

∫
dv′ fβ(v

′)u︸ ︷︷ ︸
.
= ψβ(v)

.
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Likewise,

Aα =
∑
β

2q2αq
2
β lnλαβ

mα

(
1

mα
+

1

mβ

)∫
dv′ ∂fβ

∂v′ ·
∫

dΩk k̂k̂ δ(k̂ ·v − k̂ ·v′)

=
∑
β

2πq2αq
2
β lnλαβ

mα

(
1

mα
+

1

mβ

) ∫
dv′ ∂fβ

∂v′ ·
∂2u

∂v∂v︸ ︷︷ ︸
bp
= −

∫
dv′ fβ(v

′)
∂

∂v′ ·
∂2u

∂v∂v

=

∫
dv′ fβ(v

′)
∂

∂v
·
∂2u

∂v∂v

=

∫
dv′ fβ(v

′)
∂

∂v

(
∇2

vu
)

=

∫
dv′ fβ(v

′)
∂

∂v

(
2

u

)
=

∂

∂v

∫
dv′ fβ(v

′)
2

u

=
∑
β

4πq2αq
2
β lnλαβ

mα

(
1

mα
+

1

mβ

)
∂

∂v

∫
dv′ fβ(v

′)
1

u︸ ︷︷ ︸
.
= φβ(v)

.

Thus,

Aα =
∑
β

4πq2αq
2
β lnλαβ

mα

(
1

mα
+

1

mβ

)
∂φβ
∂v

(VIII.3.3)

Bα =
∑
β

4πq2αq
2
β lnλαβ

m2
α

∂2ψβ
∂v∂v

(VIII.3.4)

with

φβ(v)
.
=

∫
dv′ fβ(v

′)
1

|v − v′| (VIII.3.5)

ψβ(v)
.
=

∫
dv′ fβ(v

′)|v − v′| (VIII.3.6)

The functions φβ and ψβ are called Rosenbluth potentials, originally introduced by
Rosenbluth et al. (1957). What’s interesting (and why they are called “potentials”) is
that they satisfy the following Poisson-like equations:16

∇2
vφβ = −4πfβ (VIII.3.7)

∇2
vψβ = 2φβ (VIII.3.8)

This indicates that there is a close relationship between drag and diffusion, which is not
particularly surprising given all the ways we’ve obtained Aα and Bα. Note the (arbitrary)
choice of gauge: we can send φ→ φ+ a and ψ → ψ+ b+ c ·v with a, b, and c constants
and leave both Aα and Bα unchanged.

There are a few insights gained by writing Aα and Bα is this form. As Hinton (1983)
writes (with his notation changed to conform to mine):

16Note: φβ is usually written as hβ and ψβ as gβ , but I’m using g and h for other things.
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φβ is analogous to the potential in real space due to a charge density fβ , ψβ is the
potential which results from considering −φβ/2π as the charge density. It follows
from this analogy that if fβ is spherically symmetric then ψβ and φβ are also, and
that φβ(v) and ψβ(v) are affected only by fβ(v

′) with v′ ⩽ v. Thus, the dynamical
friction vector Aα(v) and the velocity diffusion tensor Bα(v) acting on a particle
with a given speed v, are determined only by interactions with slower particles. . . It
also follows that the dynamical friction force on a fast electron decreases as v−2, by
analogy with the electric field outside a spherically symmetric charge distribution.

One can also borrow all the knowledge we have about solving Poisson equations, such
as expanding in spherical harmonics and/or using numerical recipes like relaxation or
multi-grid methods. Given fβ , you solve for φβ using (VIII.3.7); using φβ , you solve
for ψβ using (VIII.3.8). Then you get Aα and Bα and, thus, the collision operator. Or,
perhaps ψβ is easiest to obtain by computing

∫
dv′ fβ(v

′)u. If so, then φβ is obtained
using (VIII.3.8). Either way, the Fokker–Planck collision operator(
∂fα
∂t

)
c

= − ∂

∂v
·
[
Aαfα(v)

]
+

1

2

∂

∂v

∂

∂v
:
[
Bαfα(v)

]
=
∑
β

4πq2αq
2
β lnλαβ

m2
α

{
− ∂

∂v
·
[(

1 +
mα

mβ

)
∂φβ
∂v

fα(v)

]
+

1

2

∂

∂v

∂

∂v
:

[
∂2ψβ
∂v∂v

fα(v)

]}

=
∑
β

4πq2αq
2
β lnλαβ

m2
α

∂

∂v
·
[
−
(
�1 +

mα

mβ

)
∂φβ
∂v

fα(v) +
���������1

2

(
∂

∂v
∇2
vψβ

)
fα(v)

+
1

2

∂2ψβ
∂v∂v

· ∂fα
∂v

]
, (VIII.3.9)

where (VIII.3.8) has been used to cancel the two slashed terms. Thus,(
∂fα
∂t

)
c

=
∑
β

4πq2αq
2
β lnλαβ

m2
α

∂

∂v
·
[
−mα

mβ

∂φβ
∂v

fα(v) +
1

2

∂2ψβ
∂v∂v

· ∂fα
∂v

]
(VIII.3.10)

This is the Rosenbluth form of the Landau collision operator. This form will be used in the
next three sections (§§VIII.4–VIII.6) to investigate electron–ion collisions, ion–electron
collisions, and collisions with a Maxwellian background.

VIII.4. Electron–ion and ion–impurity collisions
First, consider α = e and β = i. The first term in (VIII.3.10) is then ∼O(me/mi) and

can be dropped. As for the second term, proportional to ∂2ψi/∂v∂v, we can treat the
ion distribution function fi(v) as if it were a delta function:

fi(v) ≃ niδ(v − ui),

where ni is the number density and ui is the mean “fluid” velocity of the ions. This is
because, for Ti ∼ Te, the thermal speeds of the two species are widely different:

vthi =

√
2Ti
mi

=

(
Ti
Te

)1/2(
me

mi

)1/2

vthe ≪ vthe.

In other words, from the standpoint of a thermal electron, the ion distribution is
extremely narrow. Thus,

ψi(v)
.
=

∫
dv′ fi(v

′)|v − v′| ≃ ni|v − ui| (VIII.4.1)



Irreversible Processes in Plasmas 109

and (VIII.3.10) becomes(
∂fe
∂t

)
c,i

≃ 2πZ2e4ni lnλei
m2
e

∂

∂v
·
(
∂2|v − ui|
∂v∂v

· ∂fe
∂v

)
. (VIII.4.2)

This operator will drive the electrons towards an isotropic distribution in the frame of
the ions, so that fe → fe(|v − ui|). Let us show this.

With ui/vthe ∼ vthi/vthe ∼ O(
√
me/mi), note that

ψi(v) ≃ niv

(
1− v ·ui

v2

)
+O

(
me

mi

)
.

We then expand fe(v) = f
(0)
e (v)+f

(1)
e (v)+ . . . in the small parameter

√
me/mi, so that

f
(0)
e ∼ O(1), f (1)e ∼ O(

√
me/mi), and so on. Equation (VIII.4.2) becomes(

∂fe
∂t

)
c,i

=
2πZ2e4ni lnλei

m2
e

∂

∂v
·
[
∂2v

∂v∂v
· ∂f

(0)
e

∂v
+

∂2v

∂v∂v
· ∂f

(1)
e

∂v

− ∂2

∂v∂v

(v ·ui
v

)
· ∂f

(0)
e

∂v

]
+O

(
me

mi

)
. (VIII.4.3)

Recall ∂2v/∂v∂v = (v2I − vv)/v3, which is orthogonal to v. If f (0)e is isotropic, then
∂f

(0)
e /∂v ∝ v and so the first term in (VIII.4.3) vanishes. (This is why we’re keeping

terms of O(
√
me/mi)!) If f (0)e is not isotropic, then that first term is

∂

∂v
·
(

∂2v

∂v∂v
· ∂f

(0)
e

∂v

)
=

∂

∂v
·
[
1

v

∂f
(0)
e

∂v
− v

v3

(
v · ∂f

(0)
e

∂v

)]
.

Adopting spherical coordinates in velocity space, (v, θ, ϕ), with the z axis oriented along
ui, this expression becomes

1

v3

[
1

sin θ

∂

∂θ

(
sin θ

∂f
(0)
e

∂θ

)
+

1

sin2 θ

∂2f
(0)
e

∂ϕ2

]
.

No v derivatives! Physically, this is because electron–ion collisions do not change the
magnitude of the electron velocity but rather only its direction (at least to the order in
mass ratio at which we’re working). The kinetic energy of an ion barely changes during
an encounter with an electron and so, because energy should be conserved in such an
interaction, the kinetic energy of the electron barely changes as well; only angular changes
in the electron distribution occur, as the electrons are deflected in pitch angle. This is so
important that it has its own symbol:

L[f ] .= 1

2

[
1

sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

sin2 θ

∂2f

∂ϕ2

]
(VIII.4.4)

Thus, the first term in brackets on the right-hand side of (VIII.4.3) is

4πZ2e4ni lnλei
m2
e

1

v3
L
[
f (0)e

]
=

3
√
π

4

(
4
√
2πZ2e4ni lnλei

3
√
meT

3/2
e

)
︸ ︷︷ ︸
.
= τ−1

ei (recall (V.3.11))

(vthe
v

)3
L
[
f (0)e

]
. (VIII.4.5)

This is the Lorentz or pitch-angle-scattering operator. The reason for the latter name is
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that, defining the pitch angle as ξ .
= cos θ ∈ [−1, 1],

L =
1

2

[
∂

∂ξ

(
1− ξ2

) ∂
∂ξ

+
1

1− ξ2
∂2

∂ϕ2

]
; (VIII.4.6)

thus, this part of the electron–ion collision operator tries to make the electron distribution
isotropic via diffusion in pitch angle. Returning to equation (VIII.4.3), the electron–ion
collision operator may then be written as(

∂fe
∂t

)
c,i

≃ 3
√
π

4τei

(vthe
v

)3
L[f (0)e ]

+
2πZ2e4ni lnλei

m2
e

∂

∂v
·
[
∂2v

∂v∂v
· ∂f

(1)
e

∂v
− ∂2

∂v∂v

(v ·ui
v

)
· ∂f

(0)
e

∂v

]
, (VIII.4.7)

dropping O(me/mi) terms.
Next, the O(

√
me/mi) terms (i.e., the second line of (VIII.4.7)). The first term there,

proportional to ∂f
(1)
e /∂v, is simple – this is, again, the Lorentz operator. The second

term can be simplified considerably if we anticipate f (0)e being isotropic, as would result
from the Lorentz operator. In this case,

− ∂

∂v
·
[

∂2

∂v∂v

(v ·ui
v

)
· ∂f

(0)
e

∂v

]
= − ∂

∂v
·
[

∂2

∂v∂v

(v ·ui
v

)
· v
v

∂f
(0)
e

∂v

]

= − ∂

∂v
·
[

∂3v

∂v∂v∂v
:ui

v

v

∂f
(0)
e

∂v

] (
since

∂

∂v

vk
v

=
∂2v

∂v∂vk

)

= − ∂

∂v
·
[
v · ∂

∂v

(
∂2v

∂v∂v

)
· ui
v

∂f
(0)
e

∂v

] (
since

∂2v

∂vj∂vk
=

∂2v

∂vk∂vj

)

= − ∂

∂v
·
(
− ∂2v

∂v∂v
· ui
v

∂f
(0)
e

∂v

)
, (VIII.4.8)

since

vk
∂

∂vk

(
∂2v

∂vℓ∂vm

)
= vk

∂

∂vk

(
v2δℓm − vℓvm

v3

)
= −δℓm

vk
v2

∂v

∂vk
− vk
v3
(
δkℓvm + δkmvℓ

)
+

3vkvℓvm
v4

∂v

∂vk

= −δℓm
1

v
+
vℓvm
v3

= − ∂2v

∂vℓ∂vm
.

Picking the calculation back up. . .

(VIII.4.8) =
∂

∂v
·
(

∂2v

∂v∂v
· ui
v

∂f
(0)
e

∂v

)

=
∂

∂v
·
[
∂2v

∂v∂v
· ∂
∂v

(
v

v

∂f
(0)
e

∂v

)
·ui

]
, (VIII.4.9)
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since

uk

(
∂2v

∂vℓ∂vm

)
∂

∂vm

(
vk
v

∂f

∂v

)
= uk

(
∂2v

∂vℓ∂vm

)[
vk

∂

∂vm

(
1

v

∂f

∂v

)
+ δkm

1

v

∂f

∂v

]
= ukvk

(
∂2v

∂vℓ∂vm

)
vm
v

∂

∂v

(
1

v

∂f

∂v

)
+ uk

(
∂2v

∂vℓ∂vk

)
1

v

∂f

∂v

= (u ·v) (v ·U)︸ ︷︷ ︸
= 0
since
v ⊥ U

1

v

∂

∂v

(
1

v

∂f

∂v

)
+

∂2v

∂v∂v
· u
v

∂f

∂v
,

and so

(VIII.4.9) =
∂

∂v
·
[
∂2v

∂v∂v
· ∂
∂v

(
v ·ui
v

∂f
(0)
e

∂v

)]
=

2

v3
L
[
v ·ui
v

∂f
(0)
e

∂v

]
. (VIII.4.10)

All together, then, the electron–ion collision operator is

(
∂fe
∂t

)
c,i

≃ 3
√
π

4τei

(vthe
v

)3
L
[
f (0)e + f (1)e +

v ·ui
v

∂f
(0)
e

∂v

]
(VIII.4.11)

This operator pushes

f (1)e → −v ·ui
v

∂f
(0)
e

∂v
+ g(1)e (v),

where g
(1)
e (v) is some O(

√
me/mi) isotropic distribution. Thus, under the action of

(VIII.4.11), the total distribution tends towards

fe(v) = f (0)e (v) + f (1)e = f (0)e (v) + g(1)e (v)− v ·ui
v

∂f
(0)
e

∂v

= f (0)e (v)− v ·ui
v

∂f
(0)
e

∂v
(just renaming f (0)e )

= f (0)e (|v − ui|) +O
(
me

mi

)
. (VIII.4.12)

So, indeed, the electron–ion collision operator pushes fe(v) towards an isotropic distri-
bution in the frame of the ions.

Note that the electron–ion collision operator (VIII.4.11) depends in no way on the ion
mass (only the ion charge). Thus, we can just sum over all ion species and declare some
Zeff . The only assumption here was me/mi ≪ 1, and so we could just as well apply this
operator to ion–impurity collisions if mZ ≫ mi, where mZ is the mass of the impurity.

While we have the electron–ion collision operator fresh in our minds, let’s (i) make
sure it conserves energy and (ii) calculate the friction force between electrons and ion
and compare it with the polarization drag we calculated in (V.3.11). First, the collisional
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energy gained or lost by the electrons is

∫
dv

1

2
mev

2

(
∂fe
∂t

)
c,i

=
3
√
π

8τei
Te

∫
dv

vthe
v

[
∂

∂ξ

(
1− ξ2

) ∂
∂ξ

+
1

1− ξ2
∂2

∂ϕ2

](
fe +

v ·ui
v

∂f
(0)
e

∂v

)
bp
= 0. (VIII.4.13)

Good. Energy is conserved.17 Next, the friction force is

Rei =

∫
dvmev

(
∂fe
∂t

)
c,i

=
3
√
π

4τei

∫
dvmev

(vthe
v

)3
L
[
fe︸︷︷︸
⃝1

+
v ·ui
v

∂f
(0)
e

∂v︸ ︷︷ ︸
⃝2

]
(VIII.4.14)

Let’s handle each term separately:

2 =
3
√
π

4τei
me

∫ 2π

0

dϕ

∫ +1

−1

d(cos θ)

∫ ∞

0

dv v2
[
v cos θẑ + v sin θ(cosϕx̂+ sinϕŷ)

]
×
(vthe
v

)3
L
[
v ·ui
v

∂f
(0)
e

∂v

]

=
3
√
π

4τei
me × 2πv3theẑ

∫ +1

−1

d(cos θ)

∫ ∞

0

dv cos θL
[
v ·ui
v

∂f
(0)
e

∂v

]
(since neither L, nor f (0)e , nor v ·ui depend upon ϕ)

=
3π3/2

4τei
mev

3
theuiẑ

∫ +1

−1

dξ ξ
∂

∂ξ

(
1− ξ2

) ∂
∂ξ

ξ︸ ︷︷ ︸
= −4/3

∫ ∞

0

dv
∂f

(0)
e

∂v︸ ︷︷ ︸
= −f(0)

e (0)

=
π3/2mev

3
the

τei
uif

(0)
e (0). (VIII.4.15)

So that’s one piece. Apparently, only v = 0 electrons are important here, which makes
sense: slow electrons are more likely to have strong interactions with ions. The other

17Energy transfer between the electrons and ions is best calculated using the ion–electron
collision operator. Again, it’s not that there is zero energy exchange; it’s just that it occurs
at higher order in the mass-ratio expansion. See §VIII.5.
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piece is

1 =
3
√
π

8τei
me

∫
dv v

(vthe
v

)3[ ∂
∂ξ

(
1− ξ2

) ∂
∂ξ

+
1

1− ξ2
∂2

∂ϕ2

]
f (1)e

bp
= −3

√
π

8τei
me

∫
dv
(vthe
v

)3[∂v
∂ξ

(
1− ξ2

) ∂
∂ξ

+
1

1− ξ2
∂v

∂ϕ

∂

∂ϕ

]
f (1)e

bp
=

3
√
π

8τei
me

∫
dv
(vthe
v

)3{ ∂

∂ξ

[
∂v

∂ξ

(
1− ξ2

)]
+

1

1− ξ2
∂2v

∂ϕ2

}
f (1)e

=
3
√
π

8τei
me

∫
dv
(vthe
v

)3(
−2v +

v⊥

1− ξ2
− v⊥

1− ξ2

)
f (1)e

= −3
√
π

4τei
mev

3
the

∫
dv

v

v3
f (1)e . (VIII.4.16)

Again, the slowest electrons suffer the most friction. Inserting (VIII.4.15) and (VIII.4.16)
back into (VIII.4.14) leads to

Rei =
meπ

3/2v3the
τei

[
uif

(0)
e (0)− 3

4π

∫
dv

v

v3
f (1)e

]
(VIII.4.17)

If we assume that fe(v) is a Maxwellian with mean velocity ue, so that f
(1)
e =

(2v ·ue/v2the)fMe(v), then the second term in (VIII.4.17) becomes (after some
straightforward algebra and integration) −neue/π3/2v3the. With f (0)Me(0) = ne/π

3/2v3the,

Rei (Maxwellian electrons) =
mene
τei

(ui − ue) (VIII.4.18)

That makes sense.

VIII.5. Ion–electron collisions
As was stated in the previous section, electron–ion collision operator conserves energy

because the ion barely moves when an electron “hits” it. To calculate the energy transfer, it
is better to use the ion–electron collision operator, which describes the effect of collisions
with electrons on the ion distribution function. The situation is similar to Brownian
motion, since each ion is subjected to a bombardment of light, fast particles.

Again, we employ a mass-ratio expansion, this time on(
∂fi
∂t

)
c,e

=
4πZ2e4 lnλie

m2
i

∂

∂v
·
[
−mi

me

∂φe
∂v

fi(v) +
1

2

∂2ψe
∂v∂v

· ∂fi
∂v

]
=
mene
mini

1

τei

∂

∂v
·
[
−∂φe
∂v

fi(v) +
me

2mi

∂2ψe
∂v∂v

· ∂fi
∂v

]
× 3

4π

π3/2v3the
ne

(VIII.5.1)

Following the method employed in the previous section, we expand fe(v
′) = f

(0)
e (v′) +

f
(1)
e (v′) + . . . in powers of

√
me/mi, and calculate the Rosenbluth potentials φe and ψe

to leading order. First,

φe(v) =

∫
dv′ fe(v

′)
1

|v − v′| . (VIII.5.2)

We could proceed as before by expanding |v − v′| in powers of
√
me/mi, with v ∼ vthi

and v′ ∼ vthe, but then we would miss contributions to the potential near v′ = 0 (since
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0 is smaller than an infinitesimal number). We must tread carefully. Instead, start by
expanding |v − v′|−1 in Legendre polynomials, so that equation (VIII.5.2) becomes

φe(v) =

∫
v′<v

dv′ fe(v
′)
1

v

∞∑
ℓ=0

(
v′

v

)ℓ
Pℓ(ξ

′) +

∫
v<v′

dv′ fe(v
′)
1

v′

∞∑
ℓ=0

( v
v′

)ℓ
Pℓ(ξ

′),

(VIII.5.3)
where Pℓ are the Legendre polynomials and their argument ξ .

= v ·v′/vv′. The first
integral in (VIII.5.3) captures contributions from those (few) electrons that are slower
than an ion having speed v ∼ vthi. Because the electron distribution is much broader
than the ion distribution – a consequence of the mass-ratio expansion – the electron
distribution in this integral may be approximated accurately by its value at v′ = 0.
Because there aren’t many electrons that satisfy v′ < v, it is enough to retain only the
leading-order contribution to the electron distribution, f (0)e (0). Then∫
v′<v

dv′ fe(v
′)
1

v

∞∑
ℓ=0

(
v′

v

)ℓ
Pℓ(ξ

′) ≃ 4π

∫ v

0

dv′ v′2f (0)e (0)
1

v
=

4π

3
v2f (0)e (0). (VIII.5.4)

The second integral in (VIII.5.3) is slightly more complicated, because it contains
contributions both from thermal elections that are statistically much faster than an
ion with speed v, and from sub-thermal electrons whose speeds are comparable to, but
slightly larger than, an ion with speed v ∼ vthi. These two contributions may be separated
after expanding fe(v′) in mass ratio:∫

v<v′

dv′
[
f (0)e (v′) + f (1)e (v′) + . . .

] 1
v′

∞∑
ℓ=0

( v
v′

)ℓ
Pℓ(ξ

′)

≃ 4π

∫ vthi

v

dv′ v′2f (0)e (0)
1

v′
+

∫
v<v′

dv′ f (1)e (v′)
v

v′2
P1(ξ

′) + . . .

= −2π(v2 − v2thi)f
(0)
e (0) +

∫
v<v′

dv′ f (1)e (v′)
v ·v′

v′3
+ . . . (VIII.5.5)

Combining (VIII.5.4)–(VIII.5.5) and taking the required velocity-space gradient yields

∂φ
(1)
e

∂v
≃ −4π

3
vf (0)e (0) +

∫
dv′ f (1)e (v′)

v′

v′3
. (VIII.5.6)

Then, using (VIII.4.17) to eliminate the above velocity-space integral of f (1)e (v′) in favor
of the electron–ion friction force Rei, equation (VIII.5.6) may be recast as

∂φ
(1)
e

∂v
≃ −4π

3
vf (0)e (0)− 4π

3

[
τeiRei

meπ3/2v3the
− uif

(0)
e (0)

]
. (VIII.5.7)

This will go into (VIII.5.1). Next we calculate ψe, which may be obtained from (VIII.3.6):

ψe(v) =

∫
dv′ fe(v

′)|v − v′| ≃
∫

dv′ f (0)e (v′)|v − v′|. (VIII.5.8)

Here we need only retain the leading-order contribution from fe, because the competing
term in (VIII.5.1) is multiplied by mi/me ≫ 1. Taking two velocity-space gradients of
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(VIII.5.8) and using (IV.5.8),

∂2ψ
(0)
e

∂v∂v
≃ I

8π

3

∫
dv′ v′f (0)e (v′). (VIII.5.9)

Finally, inserting (VIII.5.7) and (VIII.5.9) back into (VIII.5.1) and rearranging terms
gives the ion–electron collision operator,

(
∂fi
∂t

)
c,e

=
Rei

mini
· ∂fi
∂v

+
mene
mini

1

τei

∂

∂v
·
[
(v − ui)fi(v)

f
(0)
e (0)π3/2v3the

ne

+
me

mi

∂fi
∂v

∫ ∞

0

dv′ v′
f
(0)
e (v′)π3/2v3the

ne

]
(VIII.5.10)

As usual, let’s evaluate (VIII.5.10) for Maxwellian electrons:(
∂fi
∂t

)
c,e

(Maxwellian electrons) =
Rei

mini
· ∂fi
∂v

+
mene
mini

1

τei

∂

∂v
·
[
(v − ui)fi(v) +

Te
mi

∂fi
∂v

]
(VIII.5.11)

with Rei given by (VIII.4.18). (Does the second line in (VIII.5.11) look familiar? If not,
re-read §VIII.2.) For a Maxwellian plasma, equation (VIII.5.11) becomes(

∂fi
∂t

)
c,e

(Maxwellian plasma) = − Rei

niTi
· (v − ui)fMi

− 2mene
mini

1

τei

(
1− Te

Ti

)( |v − ui|2
v2thi

− 3

2

)
fMi.

(VIII.5.12)

From this form of the ion–electron collision operator, it is clear that it acts to equilibrate
the ion and electron temperatures – see (VIII.5.16) below for more.

Next, we compute the ion–electron friction force and energy exchange. For general
f̂
(0)
e (v)

.
= f

(0)
e (v)π3/2v3the/ne, the former is

Rie =

∫
dvmiv

(
∂fi
∂t

)
c,e

=
Rei

mini
·
∫

dvmiv
∂fi
∂v︸ ︷︷ ︸

bp
= −miniI

+
mene
mini

f̂
(0)
e (0)

τei

∫
dvmiv

∂

∂v
·
[
(v − ui)fi(v)

]
︸ ︷︷ ︸

= 0 by parts and def’n of ui

+
m2
ene

m2
ini

1

τei

∫
dvmiv∇2

vfi︸ ︷︷ ︸
bp
= 0

∫ ∞

0

dv′ v′f̂ (0)e (v′)

= −Rei. (VIII.5.13)
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Good! Newton would be proud. Now energy conservation (for general f̂ (0)e ):

Qie =

∫
dv

1

2
miv

2

(
∂fi
∂t

)
c,e

=
Rei

mini
·
∫

dv
1

2
miv

2 ∂fi
∂v︸ ︷︷ ︸

bp
= −

∫
dvmivfi

= −miniui (def’n)

+
mene
mini

f̂
(0)
e (0)

τei

∫
dv

1

2
miv

2 ∂

∂v
·
[
(v − ui)fi(v)

]
︸ ︷︷ ︸

bp
= −

∫
dvmiv · (v − ui)fi(v)

= −
∫

dvmi|v − ui|2fi(v)

+
m2
ene

m2
ini

1

τei

∫
dv

1

2
miv

2∇2
vfi︸ ︷︷ ︸

bp
= 3mi

∫
dv fi

= 3mini (def’n)

∫ ∞

0

dv′ v′f̂ (0)e (v′)

= −ui ·Rei −
mene
moni

f̂
(0)
e (0)

τei

∫
dvmi|v − ui|2fi(v) +

3m2
ene

miτei

∫ ∞

0

dv′ v′f̂ (0)e (v′).

(VIII.5.14)

The first term here is clearly the work done by the friction force. What of the other two
terms? Let’s again take f (0)e Maxwellian:

Qie (Maxwellian electrons) = −ui ·Rei −
mene
mini

∫
dvmi|v − ui|2fi(v) +

3meneTe
miτei

.

(VIII.5.15)
The final term here looks like the energy exchange related to temperature equilibration.
Now take fi(v − ui) to be Maxwellian; then

Qie (Maxwellian plasma) = −ui ·Rei −
3mene
miτei

(Ti − Te). (VIII.5.16)

Temperature equilibration, indeed. But it occurs on a long timescale, ∼(mi/me)τei, which
means that ions and electrons can have many collisions and their distribution functions
can become Maxwellian long before their temperatures become equal. Finally, because
of energy conservation,

Qei = −Qie = ui ·Rei −
3mene
miτei

(Te − Ti)

= ue ·Rei︸ ︷︷ ︸
work done
by friction

+ (ui − ue) ·Rei︸ ︷︷ ︸
Joule heating

(current disruption
by collisions

gives heating)

− 3mene
miτei

(Te − Ti)︸ ︷︷ ︸
temperature
equilibration

. (VIII.5.17)

VIII.6. Collisions with a Maxwellian background
We next consider collisions between an arbitrary species α and a Maxwellian species

β, which we take to be at rest:

fβ(v) = fβ(v) =
nβ

π3/2v3thβ
exp

(
− v2

v2thβ

)
. (VIII.6.1)
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We must compute the Rosenbluth potentials for a Maxwellian species.
Let’s start with φβ . In spherical velocity-space coordinates, equation (VIII.3.7) is

∇2
vφβ =

1

v2
d

dv

(
v2

dφβ
dv

)
= −4πfβ = −4nβ√

π

e−v
2/v2thβ

v3thβ
. (VIII.6.2)

Integrating (VIII.6.2) once over velocity gives

v2
dφβ
dv

= −4nβ√
π

∫ v/vthβ

0

dxx2e−x
2

. (VIII.6.3)

The integral on the right-hand side of this equation is special. Let’s chew on it:∫ a

0

dxx2e−x
2 bp
= −1

2
xe−x

2

∣∣∣∣a
0

+
1

2

∫ a

0

dx e−x
2

= −a
2
e−a

2

+

√
π

4
Φ(a),

=

√
π

4

[
Φ(a)− aΦ′(a)

]
, (VIII.6.4)

where

Φ(a)
.
=

2√
π

∫ a

0

dx e−x
2

(VIII.6.5)

is the error function (see figure 6). Using (VIII.6.4) in (VIII.6.3) and integrating once
more over velocity, we find

φβ =
nβ
vthβ

∫ ∞

v/vthβ

dx
1

x2
[
Φ(x)− xΦ′(x)

]
= − nβ

vthβ

∫ ∞

v/vthβ

dx
d

dx

[
1

x
Φ(x)

]

=⇒ φβ(v) =
nβ
v
Φ

(
v

vthβ

)
. (VIII.6.6)

Next up, ψβ . We must solve (see (VIII.3.8))

1

v2
d

dv

(
v2

dψβ
dv

)
= 2φβ =

2nβ
v
Φ

(
v

vthβ

)
. (VIII.6.7)

Integrating this equation once over velocity,

v2
dψβ
dv

= 2nβv
2
thβ

∫ v/vthβ

0

dxxΦ(x) (VIII.6.8)

The integral on the right-hand side of this equation is∫ a

0

dxxΦ(x)
bp
= x

[
xΦ(x) +

1

2
Φ′(x)

]∣∣∣∣a
0

−
∫ a

0

dx

[
xΦ(x) +

1

2
Φ′(x)

]
(
since

∫
dxΦ(x) = xΦ(x) +

1

2
Φ′(x)

)

=⇒
∫ a

0

dxxΦ(x) =
1

2

[
a2Φ(a) +

a

2
Φ′(a)

]
− 1

4
Φ(a). (VIII.6.9)
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Figure 6. Error function Φ(x), Chandrasekhar function G(x) (see (VIII.6.11)), and some
important combinations.

Using (VIII.6.9) in (VIII.6.8) and integrating once more over velocity, we find

ψβ =
nβvthβ

2

∫ v/vthβ

0

dx
1

x2
[(
2x2 − 1

)
Φ(x) + xΦ′(x)

]
=
nβvthβ

2

∫ v/vthβ

0

dx
d

dx

[
Φ′(x) +

(
1 + 2x2

)Φ(x)
x

] (
since Φ′′(x) = −2xΦ′(x)

)

=⇒ ψβ(v) =
nβvthβ

2

[
Φ′
(

v

vthβ

)
+

(
1 +

2v2

v2thβ

)
vthβ
v
Φ

(
v

vthβ

)]
+ const. (VIII.6.10)

Now, there is a particular combination of the error function and its derivative that occurs
frequently, so much so that it deserves a name:

G(x)
.
=
Φ(x)− xΦ′(x)

2x2
, (VIII.6.11)

the Chandrasekhar function (see Chandrasekhar 1943); its form is shown in figure 6.
Written in terms of G(x), the first Fokker–Planck coefficient (see (VIII.3.3)) is
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Aα(v) =
∑
β

4πq2αq
2
β lnλαβ

m2
α

(
1 +

mα

mβ

)
∂φβ(v)

∂v

= −v

v

∑
β

4πq2αq
2
βnβ lnλαβ

mαTβ

(
1 +

mβ

mα

)
G

(
v

vthβ

) (VIII.6.12)

Note that (i) the drag force is greatest when v ∼ vthβ , and (ii) Aα decreases at large v
and so the drag force gets smaller and smaller as v → ∞. (Why, physically?) In order to
write the second Fokker–Planck coefficient in terms of Φ and G, note that

dψβ
dv

= nβ

[
Φ

(
v

vthβ

)
−G

(
v

vthβ

)]
,

Φ′(x)−G′(x) =
2

x
G(x),

and

∂2

∂v∂v
=

(
I − vv

v2

)
1

v

∂

∂v
+

vv

v2
∂2

∂v2
(when operating on an isotropic function).

Then, after some straightforward manipulation, the second Fokker–Planck coefficient (see
(VIII.3.4)) becomes

Bα(v) =
∑
β

4πq2αq
2
β lnλαβ

m2
α

∂2ψβ(v)

∂v∂v

=

(
I − vv

v2

)∑
β

4πq2αq
2
βnβ lnλαβ

m2
αv

[
Φ

(
v

vthβ

)
−G

(
v

vthβ

)]

+
vv

v2

∑
β

8πq2αq
2
βnβ lnλαβ

m2
αv

G

(
v

vthβ

)
(VIII.6.13)

Note that both parallel and perpendicular diffusion decrease with velocity.
These coefficients, (VIII.6.12) and (VIII.6.13), go into the Fokker–Planck collision

operator,(
∂fα
∂t

)
c

= − ∂

∂v
·
[
Aα(v)fα(v)

]
+

1

2

∂

∂v

∂

∂v
:
[
Bα(v)fα(v)

]
. (VIII.6.14)

Recall that Aα and Bα originally come from the jump moments,

Aα
.
=

⟨∆v⟩
∆t

and Bα
.
=

⟨∆v∆v⟩
∆t

,

with ∆t → “0” (see §VI.2). Since Aα is parallel to v (see (VIII.6.12)), let us define a
collision frequency associated with this drag force:

ναβs (v)
.
= −⟨∆v∥/v⟩αβ

∆t
, (VIII.6.15)

where “s” stands for slowing down. Writing ∂φβ(v)/∂v = (v/v)(dφβ/dv) and using
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(VIII.6.12), we have

ναβs (v) = −
4πq2αq

2
β lnλαβ

m2
α

(
1 +

mα

mβ

)
1

v

dφβ
dv

=
4πq2αq

2
βnβ lnλαβ

mαTβ

(
1 +

mβ

mα

)
1

v
G

(
v

vthβ

) (VIII.6.16)

This describes the rate at which a particle of species α is decelerated by collisions with
particles of species β. Likewise, recall that Bα has two pieces, parallel and perpendicular
to v (see (VIII.6.13)). Define

ναβ∥ (v)
.
=

⟨(∆v∥/v)2⟩αβ
∆t

(VIII.6.17)

as the parallel diffusion frequency. Using (VIII.6.13) and

∂2ψβ
∂v∂v

=
∂2v

∂v∂v

dψβ
dv

+
vv

v2
d2ψβ
dv2

=

(
I − vv

v2

)
1

v

dψβ
dv

+
vv

v2
d2ψβ
dv2

,

we have

ναβ∥ (v) =
4πq2αq

2
β lnλαβ

m2
α

1

v2
d2ψβ
dv2

=
8πq2αq

2
βnβ lnλαβ

m2
α

1

v3
G

(
v

vthβ

) (VIII.6.18)

This represents the rate at which a particle of species α diffuses in v∥ by collisions with
particles of species β. Finally, define

ναβ⊥ (v)
.
=

⟨(∆v⊥/v)2⟩αβ
∆t

(VIII.6.19)

as the perpendicular diffusion frequency. Using (VIII.6.13) and(
∂2ψβ
∂v∂v

)
⊥
=

(
I − vv

v2

)
1

v

dψβ
dv

,

we have

ναβ⊥ (v) =
8πq2αq

2
β lnλαβ

m2
α

1

v3
dψβ
dv

=
8πq2αq

2
βnβ lnλαβ

m2
α

1

v3

[
Φ

(
v

vthβ

)
−G

(
v

vthβ

)] (VIII.6.20)

This is the rate at which a particles of species α is diffusing in v⊥ by collisions with
particles of species β.

In a frame oriented with v along the z axis,

Aα =
1

∆t

 0
0

⟨∆v∥⟩

 = −v

 0
0∑
β ν

αβ
s

 , (VIII.6.21)
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Bα =
1

∆t

⟨∆v2⊥⟩/2 0 0
0 ⟨∆v2⊥⟩/2 0
0 0 ⟨∆v2∥⟩

 = v2


∑
β ν

αβ
⊥ /2 0 0

0
∑
β ν

αβ
⊥ /2 0

0 0
∑
β ν

αβ
∥

 ,
(VIII.6.22)

or, in vector notation,

Aα = −v
∑
β

ναβs , (VIII.6.23)

Bα = vv
∑
β

ναβ∥ +
1

2

(
v2I − vv

)∑
β

ναβ⊥ . (VIII.6.24)

Plugging these into (VIII.6.14) gives(
∂fα
∂t

)
c

=
∂

∂v
·
[
v
∑
β

ναβs fα(v)

]

+
1

2

∂

∂v

∂

∂v
:

[
vv
∑
β

ναβ∥ fα(v) +
1

2

(
v2I − vv

)∑
β

ναβ⊥ fα(v)

]
. (VIII.6.25)

Let’s simplify each of the colored terms in (VIII.6.25):

red =
∑
β

ναβs v · ∂fα
∂v

+ fα(v)
∂

∂v
·
(
v
∑
β

ναβs

)

=
∑
β

ναβs v
∂fα(v)

∂v
+ fα(v)

1

v2
d

dv

(
v3
∑
β

ναβs

)

=
1

v2
∂

∂v

[
v3
∑
β

ναβs fα(v)

]
;

blue =
1

4
∇2
v

[
v2
∑
β

ναβ⊥ fα(v)

]

=
1

4v2
∂

∂v

[
v2

∂

∂v
v2
∑
β

ναβ⊥ fα(v)

]
+
∑
β

ναβ⊥
1

2
L[fα].

The remaining terms in (VIII.6.25) are equal to

1

2

∂

∂v

∂

∂v
:

[
vv
∑
β

(
ναβ∥ − 1

2
ναβ⊥

)
fα(v)

]

=
1

2v2
∂

∂v

{
v2

∂

∂v

[
v2
∑
β

(
ναβ∥ − 1

2
ναβ⊥

)
fα(v)

]
+ 2v3

∑
β

(
ναβ∥ − 1

2
ναβ⊥

)
fα(v)

}

=
1

2v2
∂

∂v

[∑
β

(
ναβ∥ − 1

2
ναβ⊥

)(
4v3 + v4

∂

∂v

)
fα(v) + v4fα(v)

d

dv

∑
β

(
ναβ∥ − 1

2
ναβ⊥

)]
.
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To further simplify this expression, note that

dναβ∥

dv
= −2

v

(
1 +

mα

mβ

)−1

ναβs − 4

v
ναβ∥ +

1

v
ναβ⊥ ,

dναβ⊥
dv

=
2

v
ναβ∥ − 3

v
ναβ⊥ .

All together then, equation (VIII.6.25) simplifies to(
∂fα
∂t

)
c

=
1

2

∑
β

{
ναβ⊥ L[fα] +

1

v2
∂

∂v

[
v3

2mα

mα +mβ
ναβs fα(v) + v4ναβ∥

∂fα(v)

∂v

]}
(VIII.6.26)

Each of the three terms in (VIII.6.26) has a clean physical interpretation. The first
corresponds to perpendicular diffusion at fixed energy, i.e., pitch-angle scattering. Often,
ναβD

.
= ναβ⊥ /2 is defined as the deflection frequency. The second term corresponds to

slowing down, i.e., drag. The third and final term corresponds to parallel diffusion
(i.e., energy diffusion). Noting that ν∥ and νs are closely related (cf. (VIII.6.15) and
(VIII.6.18)), an alternative way to write (VIII.6.26) is(

∂fα
∂t

)
c

=
∑
β

{
ναβD L[fα] +

1

v2
∂

∂v

[
v2 ναβs

mα

mα +mβ

(
vfα(v) +

Tβ
mα

∂fα(v)

∂v

)]}
.

(VIII.6.27)
Physically, collisions with species β are trying to make species α relax to a Maxwellian
at the same temperature as species β.

The operator (VIII.6.26) is good for collisions of a tenuous (nα ≪ nβ) group of test
particles whose presence doesn’t change the background (Maxwellian) distribution very
much. It is not useful for self-collisions within a single species, our next target (§VIII.7).
But, first, two things:

(1) A summary of collision frequencies. Denoting the generic pre-factor

ναβ0
.
=

4πq2αq
2
βnβ lnλαβ

m2
αv

3
thβ

, (VIII.6.28)

we found the following:

ναβs = −ναβ0

v3thβ
nβ

(
1 +

mα

mβ

)
1

v

dφβ
dv

= 2ναβ0

(
1 +

mα

mβ

)
vthβ
v

G

(
v

vthβ

)
ναβ∥ = ναβ0

v3thβ
nβ

1

v2
d2ψβ
dv2

= 2ναβ0

v3thβ
v3

G

(
v

vthβ

)
ναβ⊥ = 2ναβD = ναβ0

v3thβ
nβ

2

v3
dψβ
dv

= 2ναβ0

v3thβ
v3

[
Φ

(
v

vthβ

)
−G

(
v

vthβ

)]

(VIII.6.29)
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where

Φ(x)
.
=

2√
π

∫ x

0

dv e−v
2

and G(x)
.
=
Φ(x)− xΦ′(x)

2x2
.

One can further define an energy-loss rate:

ναβε
.
= −⟨(∆v/v)2⟩αβ

∆t

= 2ναβs − ναβ⊥ − ναβ∥

= 2ναβ0

[
2

(
1 +

mα

mβ

)
vthβ
v

G

(
v

vthβ

)
−
v3thβ
v3

Φ

(
v

vthβ

)]
.

Pictorially,

(2) It’s useful to know further that

G(x) ≈


2x

3
√
π
, x→ 0

1

2x2
, x→ ∞

and Φ(x) ≈


2x√
π
, x→ 0

1, x→ ∞

We can use these in (VIII.6.29) to obtain the following table:

v/vthβ ≪ 1 v/vthβ ≫ 1

ναβs

ναβ0

(
1 +

mα

mβ

)−1
4

3
√
π

(
v

vthβ

)−3

ναβ∥

ναβ0

4

3
√
π

(
v

vthβ

)−2 (
v

vthβ

)−5

ναβ⊥

ναβ0

8

3
√
π

(
v

vthβ

)−2

2

(
v

vthβ

)−3
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(3) Runaway electrons. The fact that G(x) decreases for large x is important. The
average friction force on a particle is

mα⟨∆v∥⟩αβ
∆t

= −mαv∥ν
αβ
s ∝ G

(
v

vthβ

)
,

which decreases for v ≳ vthβ . It actually vanishes as v/vthβ → ∞ (although
relativistic effects intervene as v → c). The reason is that the momentum ex-
changed in a collision decreases with the incident particle’s speed if the impact
parameter is held constant, and the number of particles with which the test particle
is interacting does not increase as v/vthβ → ∞ (recall that the drag and diffusion
are determined only by interactions with slower particles – a feature made clear
by working with Rosenbluth potentials and from the fact that the integral in the
error function goes from 0 to a finite value, its argument) since fβ → 0 as v → ∞.
The implication is that, if some persistent force is applied to the particle (e.g.,
a constant electric field), this force will always be larger than the frictional drag
force for sufficiently fast particles. Some electrons in the tail of the distribution can
thus be accelerated to arbitrarily high energy and form a population of runaway
electrons. If the applied force is strong enough, even ordinary thermal electrons
can run away. This occurs when the electric field being applied outstrips the drag
force; roughly, when

E > ED
.
=

4πnee
3 lnλ

Te
(VIII.6.30)

ED is known as the Dreicer field (Dreicer 1959). (Note that ED ∼ e/λ2D.) This
has practical importance: if a tokamak disrupts, significant numbers of runaways
can be produced that can damage the device. Disruptions are thus a significant
problem for large machines like ITER. See §24.6 of Krommes (2018) for more.

VIII.7. Ion–ion and electron–electron collisions
Up to now, we have either exploited the possibility of mα/mβ being a small number

or just assumed that one of the species is (and stays) Maxwellian. These are obviously
not good assumptions for like-particle collisions. Both the ion–ion and electron–electron
collision operators are very difficult to approximate, as v and v′ are comparable and the
distribution function itself is unknown. But, if we assume that fα is near Maxwellian,
then some progress can be made. This is because the Landau operator is bi-linear in its
arguments. Ignoring perturbations to the Coulomb logarithm, we have

C[fα, fβ ] + C[gα, fβ ] = C[fα + gα, fβ ],

C[fα, fβ ] + C[fα, gβ ] = C[fα, fβ + gβ ],

C[aαfα, bβfβ ] = aαbβC[fα, fβ ]

for any distribution functions fα, fβ , gα, gβ and constants aα and bβ . This means that
the collision operator for self-collisions, C[fα, fα], is nonlinear:

C[2fα, 2fα] = 4C[fα, fα].
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But, if fα is close to Maxwellian, fα = fMα + δfα with δfα ≪ fMα, then

C[fα, fα] =������:0
C[fMα, fMα] + C[fMα, δfα] + C[δfα, fMα] + C[δfα, δfα]

≃ C[fMα, δfα] + C[δfα, fMα]
.
= Cℓ[fα], (VIII.7.1)

where the superscript ℓ denotes “linearized”. Physically, this states that a collision between
a test α particle and the other particles in fα can be treated as a sum of:

(1) a collision between a Maxwellian test particle and a Maxwellian background;

(2) a collision between a Maxwellian test particle and the perturbed distribution;

(3) a collision between a perturbed test particle and a Maxwellian background;

(4) a nonlinear term that can be neglected if δfα is small.

We have already computed the third term in §VIII.6. The first term vanishes by the
H theorem. The last term is dropped as being small. The second term is the new one,
as it involves the Rosenbluth potentials of the non-Maxwellian distribution δfα. While
complicated, this term is required for momentum conservation. Let’s examine it.

From (VIII.3.10) and (VIII.6.28), we have

C[fMα, δfα] = ναα0

v3thα
nα

∂

∂v
·
[
−∂δφα

∂v
fMα(v) +

1

2

∂2δψα
∂v∂v

· ∂fMα
∂v

]
. (VIII.7.2)

Using ∂fMα/∂v = −(2v/v2thα)fMα along with

∇2
vδψα = 2δφα and ∇2

vδφα = −4πδfα

(see (VIII.3.8) and (VIII.3.7)), equation (VIII.7.2) becomes

C[fMα, δfα] = ναα0

v3thαfMα
nα

(
4πδfα − 2

v2thα
δφα +

2v2

v4thα

∂2δψα
∂v2

)
. (VIII.7.3)

Recall from §VIII.6 that

C[δfα, fMα] = ναα0

v3thα
nα

[
1

v3
dψα
dv

L[δfα] +
1

v2
∂

∂v

(
v2

2

d2ψα
dv2

∂δfα
∂v

− v2
dφα
dv

δfα

)]
,

(VIII.7.4)
with the background potentials satisfying

dψα
dv

= nα

[
Φ

(
v

vthα

)
−G

(
v

vthα

)]
,

d2ψα
dv2

=
2nα
v

G

(
v

vthα

)
,

dφα
dv

= − 2nα
v2thα

G

(
v

vthα

)
.

Provided we can obtain δφα and d2δψα/dv
2 from δfα, we can write down Cℓ[fα].

Now, if this doesn’t seem to you like much progress, I can’t completely fault you. We
still have an integro-differential equation to solve. But there is something useful here:
the linearized collision operator forms the basis of a formal expansion of δfα in terms
of spherical harmonics Yℓm(θ, ϕ) – or, if δfα is gyrotropic in some direction, Legendre
polynomials. This is because the Yℓm’s are the angular eigenfunctions of the Laplace
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operator

∇2
v =

1

v2
∂

∂v
v2

∂

∂v
+ 2L,

so that, if δfα can be written as

δfα(v) =
∑
ℓ,m

Fα(v)Yℓm(θ, ϕ),

then the perturbed Rosenbluth potentials have the same angular structure, and thus so
does the full linearized collision operators.

The linearized collision operator Cℓ[fα] has another important property – it is self-
adjoint, i.e., ∫

dv
1

fMα
δgαC

ℓ[fα] =

∫
dv

1

fMα
δfαC

ℓ[gα] (VIII.7.5)

where fα and gα are reasonably well behaved and do not diverge at ∞. The proof mainly
consists of several integrations by parts. First,∫

dv
1

fMα
δgαC[fMα, δfα] =

∫
dv δgα ν

αα
0

v3thα
nα

(
4πδfα − 2

vthα2

δφα +
2v2

v4thα

∂2δψα
∂v2

)
.

Defining δΦα and δΨα via ∇2
vδΦα = −4πδgα and ∇2

vδΨα = 2δΦα, the above expression

= ναα0

v3thα
nα

∫
dv

[
4πδgαδfα − 2

v2thα

(
−∇2

vδΦα
4π

)
δφα︸ ︷︷ ︸

integrate by parts

+ δgα
2v2

v4thα

∂2δψα
∂v2

]
︸ ︷︷ ︸

use def’n of δψα

= ναα0

v3thα
nα

∫
dv 4πδgαδfα +

4πq4α lnλαα
m2
α

∫
dv

2

v2thα
δΦα

(∇2
vδφα
4π

)
︸ ︷︷ ︸

= −δfα

+ ναα0

v3thα
nα

∫
dv

∫
dv′ δgα(v)

2v2

v4thα

∂2

∂v2
[
δfα(v

′)|v − v′|
]

︸ ︷︷ ︸
use symmetries

= ναα0

v3thα
nα

∫
dv 4πδgαδfα − 4πq4α lnλαα

m2
α

∫
dv

2

v2thα
δΦαδfα

+ ναα0

v3thα
nα

∫
dv

∫
dv′ δfα(v

′)
2v′2

v4thα

∂2

∂v′2
[
δgα(v)|v − v′|

]
︸ ︷︷ ︸

switch dummy integration variables, v ↔ v′

= ναα0

v3thα
nα

∫
dv δfα

(
4πδgα − 2

v2thα
δΦα

)
+ ναα0

v3thα
nα

∫
dv δfα(v)

2v2

v4thα

∂2

∂v2

∫
dv′ δgα(v

′)|v − v′|︸ ︷︷ ︸
= δΨα(v)

=

∫
dv

1

fMα
δfαC[fMα, δgα].
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Second,∫
dv

1

fMα
δgαC[δfα, fMα]

=

∫
dv

1

fMα
δgα ν

αα
0

v3thα
nα

[
1

v3
dψα
dv

L[δfα]︸ ︷︷ ︸
int. by parts
to move L
onto δgα

+
1

v2
∂

∂v

(
v2

2

d2ψα
dv2

∂δfα
∂v

− v2
dφα
dv

δfα

)]

= ναα0

v3thα
nα

∫
dv

1

fMα
L[δgα]

1

v3
dψα
dv

δfα

+ ναα0

v3thα
nα

∫
dΩv

∫ ∞

0

dv
1

fMα
δgα

∂

∂v

(
v2

2

d2ψα
dv2

∂δfα
∂v

− v2
dφα
dv

δfα

)
︸ ︷︷ ︸

int. by parts to move ∂/∂v onto δgα/fMα

=

∫
dv

1

fMα
δfαν

αα
0

v3thα
nα

1

v3
dψα
dv

L[δgα]

− ναα0

v3thα
nα

∫
dΩv

∫ ∞

0

dv
∂

∂v

(
δgα
fMα

)(
v2

2

d2ψα
dv2

∂δfα
∂v

− v2
dφα
dv

δfα

)
︸ ︷︷ ︸

do lots of int. by parts and algebra on scrap paper

=

∫
dv

1

fMα
δfαν

αα
0

v3thα
nα

[
1

v3
dψα
dv

L[δgα] +
1

v2
∂

∂v

(
v2

2

d2ψα
dv2

∂δgα
∂v

− v2
dφα
dv

δgα

)]
=

∫
dv

1

fMα
δfαC[δgα, fMα].

Thus,∫
dv

1

fMα
δgα

(
C[fMα, δfα]+C[δfα, fMα]

)
=

∫
dv

1

fMα
δfα

(
C[fMα, δgα]+C[δgα, fMα]

)
.

Q.E.D.
Self-adjointness implies positive entropy production (see Problem 3.3 in Helander &

Sigmar (2005)), and also allows for an easy proof of conservation laws. For example, with
δgα = fMα, equation (VIII.7.5) implies∫

dv
(
C[fMα, δfα] + C[δfα, fMα]

)
=

∫
dv

1

fMα
δfα

(
C[fMα, fMα] + C[fMα, fMα]

)
= 0.

Voila, number conservation. Likewise for momentum (use δgα = vfMα) and energy (use
δgα = v2fMα). Simple.

For completeness, here is the linearized operator for collision between arbitrary species:

Cℓ[fα] = C[fMα, δfβ ] + C[δfα, fMβ ]

=
∑
β

ναβ0

v3thβfMα

nβ

[
4π
mα

mβ
δfβ − 2v

v2thα

(
1− mα

mβ

)
∂δφβ
∂v

− 2

v2thα
δφβ +

2v2

v4thα

∂2δψα
∂v2

]

+ ναβ0

v3thβ
nβ

[
1

v3
dψβ
dv

L[δfα] +
1

v2
∂

∂v

(
v2

2

d2ψβ
dv2

∂δfα
∂v

− v2
mα

mβ

dφβ
dv

δfα

)]
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where

ναβ0
.
=

4πq2αq
2
βnβ lnλαβ

m2
αv

3
thβ

.

Equation (VIII.7.6) conserves number, total momentum, and total energy. It’s also
possible to show that it is self-adjoint, and that it obeys an H theorem: entropy stays
constant only for

δfα(v) = fMα(v)

[
δnα
nα

+
mαδu · (v − u)

T
+
δT

T

(
mα|v − u|2

2T
− 3

2

)]
,

δfβ(v) = fMβ(v)

[
δnβ
nβ

+
mβδu · (v − u)

T
+
δT

T

(
mβ |v − u|2

2T
− 3

2

)]
,

which are just perturbations to two full Maxwellians with equal temperatures and mean
velocities. Otherwise, entropy increases.

In summary, one can identify four collision frequencies:

νee ∼ m−1/2
e equilibration of electrons with each other

νei ∼ m−1/2
e equilibration of electrons,

momentum transfer between electrons and ions

νii ∼ m
−1/2
i equilibration of ions with each other

νie ∼ me

mi
νei momentum and enegy transfer between ions and electrons

Thus,

νee, νei : νii : νie = 1 :

(
me

mi

)1/2

:

(
me

mi

)
(VIII.7.6)

VIII.8. Fokker–Planck operator in curvilinear coordinates
Now that we’ve gone through several simplified collision operators, it pays to return to

the Fokker–Planck operator and generalize it for a non-Cartesian coordinate system. For
that, it is useful to follow Rosenbluth et al. (1957) in writing the operator in covariant
form:

CFP[f ] = −(Aµf);µ +
1

2
(Bµνf);µν

= − 1√
g

∂

∂qµ
(
√
gAµf) +

1

2
√
g

∂2

∂qµ∂qν
(
√
gBµνf) +

1

2
√
g

∂

∂qν
(
√
gΓ νλµB

µλf),

(VIII.8.1)

where qµ are the generalized coordinates, the semi-colon denotes the covariant derivative
with respect to q, g .

= det(gµν) is the determinant of the metric tensor gµν , and

Γ νλµ =
gνσ

2

(
∂gσλ
∂qµ

+
∂gσµ
∂qλ

− ∂gλµ
∂qσ

)
(VIII.8.2)

are the associated Christoffel symbols. For example, this form is useful for expressing
the Fokker–Planck operator in spherical polar coordinates (v, ξ, ϕ) with ξ

.
= cos θ. The
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metric for spherical polar coordinates satisfies

ds2
.
= gµνdq

µdqν = dv2 +
v2

1− ξ2
dξ2 + v2(1− ξ2)dϕ2, (VIII.8.3)

so that g = v4. With the metric being diagonal, the calculation simplifies considerably.
After some judicious rearrangement, equation (VIII.8.1) becomes

C
(sph)
FP [f ] =

1

v2
∂

∂v

(
−v2Avf +

1

2

∂

∂v
v2Bvvf

)
+

∂

∂ξ

(
−Aξf +

1

2

∂

∂ξ
Bξξf

)
+

∂

∂ϕ

(
−Aϕf +

1

2

∂

∂ϕ
Bϕϕf

)
+

1

2v2

(
ξ
∂

∂ξ
− v

∂

∂v

)[
v2

1− ξ2
Bξξf + v2(1− ξ2)Bϕϕf

]
+

1

v3
∂

∂v

[
v3
(
∂

∂ξ
Bvξf +

∂

∂ϕ
Bvϕf

)]
+

∂

∂ϕ

(
∂

∂ξ
Bξϕf − ξ

1− ξ2
Bξϕf

)
, (VIII.8.4)

where the Fokker–Planck coefficients are given by

Av
.
= lim
∆t→“0”

⟨∆v⟩
∆t

, Aξ
.
= lim
∆t→“0”

⟨∆ξ⟩
∆t

, Aϕ
.
= lim
∆t→“0”

⟨∆ϕ⟩
∆t

,

Bvv
.
= lim
∆t→“0”

⟨(∆v)2⟩
∆t

, Bξξ
.
= lim
∆t→“0”

⟨(∆ξ)2⟩
∆t

, Bϕϕ
.
= lim
∆t→“0”

⟨(∆ϕ)2⟩
∆t

,

Bvξ
.
= lim
∆t→“0”

⟨∆v∆ξ⟩
∆t

, Bvϕ
.
= lim
∆t→“0”

⟨∆v∆ϕ⟩
∆t

, Bξϕ
.
= lim
∆t→“0”

⟨∆ξ∆ϕ⟩
∆t

.

It is often the case that the distribution function is gyrotropic (i.e., symmetric about
the polar axis), especially if a strong magnetic field is aligned with the z-axis. In this
case, all ϕ-derivatives and all jump moments involving ∆ϕ vanish. The resulting operator
can be simplified further if it is demanded to annihilate a particular form of distribution
function. For example, if CFP[f ] = 0 for an isotropic Maxwellian having temperature
T = (1/2)mv2th and bulk velocity u aligned with the polar axis, then (VIII.8.4) becomes

CFP[f ] =
1

v2
∂

∂v

v2

v2th
Bvv

[
(v − uξ)f +

v2th
2

∂f

∂v

]
+

1

2

∂

∂ξ
Bξξ

(
∂f

∂ξ
+ u

∂f

∂v

)
. (VIII.8.5)

If we take Bξξ to have the form ν(v, ξ)(1− ξ2), then (VIII.8.5) may be written as

CFP[f ] =
1

v2
∂

∂v

v2

v2th
Bvv

[
(v−uξ)f+ v2th

2

∂f

∂v

]
+
∂

∂ξ

[
1− ξ2

2
ν(v)

(
∂f

∂ξ
+u

∂f

∂v

)]
. (VIII.8.6)

Each term is readily interpreted. The first term, proportional to (v−uξ), corresponds to
drag in the frame of the bulk flow. The second term, proportional to ∂f/∂v, corresponds
to energy diffusion. The combination of these two terms forces the distribution function
towards a Maxwellian with thermal speed vth and bulk flow u at a rate given by Bvv/v2th.
The third and final term is the familiar Lorentz operator, which isotropizes f at a rate
ν(v, ξ) in the frame given by the bulk flow.
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PART IX

Classical transport
We now embark on the final part of the this course, that which corresponds to the final
entries in Bogoliubov’s hierarchy of timescales (see §I.1):

(3) Macroscopic force balance emerges on a crossing time ∼L/vth = ν−1(L/λmfp) ≫
ν−1. (Recall that this timescale was not included in Bogoliubov’s original hier-
archy, but it appears in the Chapman–Enskog–Braginskii expansion and is thus
important in this course.)

(4) Hydrodynamic diffusion occurs on macroscopic spatial and temporal scales, and
attempts to relax the system to a global, space- and time-independent Maxwellian.
(Boundary conditions that enforce density or temperature gradients prevent this
from occurring.) This occurs on a diffusive timescale ∼L2/D; e.g., ∼ν−1(L/λmfp)

2

in an unmagnetized plasma, or ∼ν−1(L/ρ)2 across the magnetic field in a magne-
tized plasma.

This part is what ties all that we’ve done up to this point with the more familiar
topics of collisional hydrodynamics and magnetohydrodynamics and the more tangible
phenomenon of spatial irreversibility. The focus is on transport processes that are
spatially local, that is, the fluxes of particles, momentum, and energy are due to forces at
approximately the same location. This requires the plasma to be dominated by collisions,
with collisional mean free paths much smaller than the gradient lengthscales (in the
direction of the magnetic field if the system is magnetized; in this case, either the mean
free path of the mean gyroradius must be much shorter than the gradient lengthscales in
the directions perpendicular to the magnetic field). Then, the particles comprising the
plasma are affected only by forces within a mean free path (or a gyroradius).

The connection to the prior topics of this course is captured well by this excerpt from
the review article by Hinton (1983):

When the transport processes are local, the plasma may be considered to be
made up of many approximately closed subsystems, with slightly different densities,
mean velocities and temperatures. Charged-particle collisions tend to force each
subsystem to local thermodynamic equilibrium, with the subsystem entropies being
maximized, subject to the constraints imposed by particle, momentum and energy
conservation. Because of the small differences between subsystems, the velocity
distributions for these subsystems depart slightly from Maxwellians. For example,
the distribution of the velocity component in the direction of the temperature gra-
dient is skewed somewhat in the direction of motion of those particles coming from
the hotter region. As a result, there are small fluxes of particles, momentum and
energy between subsystems, which are approximately linear in the thermodynamic
forces (e.g. the density and temperature gradients). The resulting entropy fluxes
between subsystems then make the plasma as a whole tend towards a state of
global thermal equilibrium. Because of the boundary conditions and other external
constraints, such as applied electromotive forces, the plasma generally is not able
to reach this equilibrium state but remains in a nonequilibrium steady state. The
charged particles and energy are lost from the plasma at the same rate that they
are produced in the plasma in this steady state. It is the goal of transport theory
to calculate these loss rates, assuming they are due to Coulomb collisions.

With this viewpoint borne in mind, we focus on three calculations:
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(1) The Spitzer–Härm problem (§IX.1): how collisional conductivity is established in
a plasma subject to a macroscopic electric field

(2) The Chapman–Enskog expansion (§IX.2): how Navier–Stokes emerges from the
kinetic equation for a collisional plasma

(3) The Braginskii-MHD equations (§IX.3): how transport in a collisional, magnetized
plasma is constrained by the magnetic field

IX.1. The Spitzer–Härm problem
For our first example of transport theory, consider the conductivity of a fully ionized,

collisional plasma. The problem can be stated and solved with varying degrees of
complexity and difficulty. Let’s start simple.

A constant electric field is applied to an infinite, homogeneous plasma. We seek a
relationship between the steady-state current that results and the applied field:

j = σE. (IX.1.1)

Here, σ is called the electrical conductivity. As a first pass at calculating σ, let us recall
(VIII.4.17):

Rei =
mene
τei

(ui − ue),

which is the frictional force on electrons due to collisions with ions if (if !) the electrons
are Maxwellian and the collision operator is approximated by the Lorentz operator (see
(VIII.4.11)):

C[fe] =
3
√
π

4τei

(vthe
v

)3
L
[
fe + 2v ·ui

∂fe
∂v2

]
.

In steady state, force balance on the electrons is then

0 = −eneE +Rei

= −eneE +
mene
τei

(ui − ue)

= −eneE +
mene
τei

j

ene

=⇒ j =
e2neτei
me

E
.
= σE (IX.1.2)

Now, what we have done here is treated the small distortion of the electron distribution
generated by the electric field as an induced flow, with no distortion in the thermal part
of the distribution. Not really kinetics, but we do have an answer! The disappointing, yet
somewhat reassuring, thing is that doing a proper kinetic treatment only affords a more
accurate numerical prefactor. A lot of work for an O(1) detail, but it’s an important
detail, and finding such details is good for one’s training and character.

So how do we do better? We really ought to be solving

− e

me
E · ∂fe

∂v
= C[fe], (IX.1.3)

but the full collision operator is complicated. For our a first pass at this, ignore self-



132 M. W. Kunz

collisions and adopt the Lorentz collision operator for electron-ion collisions:

C =
3
√
π

4τei

(vthe
v

)3
L.

We’ll also neglect any ion motion, and assume that E < ED (see (VIII.6.30)) so that
the distortion in fe will be small and there will be few runaways. Then (IX.1.3) can be
solved perturbatively by introducing the small parameter

ϵ
.
=

E

ED
∼ J

enevthe
∼ ue
vthe

≪ 1 (IX.1.4)

and by expanding the electron distribution function in powers of ϵ:

fe = fe0 + ϵfe1 + ϵ2fe2 + . . . . (IX.1.5)

Equation (IX.1.3) becomes

− e

me
E · ∂

∂v

(
fe0 + ϵfe1 + ϵ2fe2 + . . .

)
= C

[
fe0
]
+ C

[
fe1
]
+ C

[
fe2
]
+ . . . (IX.1.6)

Now examine (IX.1.6) order by order in ϵ. At zeroth order, we have

0 = C
[
fe0
]
=

3
√
π

4τei

(vthe
v

)3
L
[
fe0
]

=⇒ fe0 = fe0(v); (IX.1.7)

i.e., the zeroth-order electron distribution function is independent of the (cosine of the)
pitch angle ξ .

= v∥/v, where ∥ denotes the direction parallel to the applied electric field.
While not enforced by this collision operator, let us assume that

fe0(v) = fM,e(v)
.
=

ne
π3/2v3the

exp

(
− v2

v2the

)
.

(This would be enforced by a more realistic collision operator.) Proceeding to first order
in ϵ, we then have

− e

me
E · ∂fe0

∂v
=

e

Te
E ·vfM,e =

3
√
π

4τei

(vthe
v

)3
L
[
fe1
]
,

or, substituting in (VIII.4.6) for L,

eEv

Te
ξfM,e(v) =

3
√
π

8τei

(vthe
v

)3 ∂
∂ξ

(
1− ξ2

) ∂
∂ξ
fe1. (IX.1.8)

Equation (IX.1.8) can be solved by recognizing that ξ = P1(ξ) and exploiting the
orthogonality of the Legendre polynomials or, simply, by direct integration:

eEv

Te

ξ2

2
fM,e(v) =

3
√
π

8τei

(vthe
v

)3(
1− ξ2

)∂fe1
∂ξ

+ const. (IX.1.9)

To keep ∂fe1/∂ξ finite at ξ = ±1, the constant of integration must be (eEv/2Te)fM,e(v).
Then (IX.1.9) becomes

eEv

Te

ξ2 − 1

2
fM,e(v) =

3
√
π

8τei

(vthe
v

)3(
1− ξ2

)∂fe1
∂ξ

.

Integrating once more over ξ, with fe1(ξ = 0) = 0, and solving for fe1 gives

fe1 = −eEv
Te

ξ
4τei
3
√
π

( v

vthe

)3
fM,e (IX.1.10)
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Note that this distortion is not just a drifting Maxwellian, for which fe1 would be
(mevueξ/Te)fM,e. The greater distortion at higher speeds in this Lorentz model occurs
because the friction force is proportional to v−2, so that the electric field causes a
greater distortion at higher speeds. (A complete collision operator with electron–electron
collisions would reduce the magnitude of this distortion for v ≫ vthe.) Now we can
compute the current that is flowing (recall that we’ve assumed stationary ions):

j = −e
∫

dv vfe1 =
e2E

Te

4τei
3
√
π

∫
dv vvξ

( v

vthe

)3
fM,e(v)

=⇒ j∥ =
e2Ene
Te

8τei
3
√
π

∫ +1

−1

dξ ξ2︸ ︷︷ ︸
= 2/3

∫ ∞

0

dv v2
( v

vthe

)5 e−v
2/v2the

√
πvthe

=
e2Ene
Te

8τei
9
√
π

v2the√
π

∫ ∞

0

dxx3e−x︸ ︷︷ ︸
= 3! = 6

=
32

3π

e2neτei
me

E =
32

3π
σE

=⇒ σL =
32

3π
σ (IX.1.11)

Now, 32/3π ≃ 3.40 is greater than 1 (obviously). The increase is because more current
is being carried by high-speed electrons, whose frictional drag is smaller. Indeed, fe1 ∝
v4 exp(−v2/v2the), which peaks at v =

√
2vthe.

To ensure consistency with our expansion, let us check when fe1/fM,e ≪ 1. From
(IX.1.10),

fe1
fM,e

∼ eE

Te
vtheτei =

eE

Te
λmfp ≪ 1;

i.e., the work done on an electron over a distance comparable to the collisional mean
free path must be smaller than the typical electron kinetic energy. In other words, the
energy gain between collisions must not be too large, so that the Maxwellian distribution
function is not significantly distorted. Another way of stating this inequality is by using
E/ED ∼ ϵ to find

√
λmfp(e2/Te) ∼ λD; i.e., the Debye length should be intermediate

between the mean free path and the Landau length.
Doing better than this constitutes the Spitzer–Härm problem:

− e

me
E · ∂fe

∂v
= C[fe, fe] + C[fe, fi] (IX.1.12)

(Spitzer & Härm 1953; Spitzer 1962), where the collision operator on the right-hand side
of (IX.1.12) is the full Landau operator. The solution for the Spitzer–Härm conductivity
σSH was obtained numerically (see Spitzer 1962; Braginskii 1965):

σSH =
σ

αe
with

Z 1 2 3 4 16 ∞
αe (Spitzer) 0.506 0.431 — 0.375 0.319 —

αe (Braginskii) 0.51 0.44 0.40 0.38 — 0.29
(IX.1.13)

Note that the Z = ∞ solution, for which αe = 0.29 ≃ 3π/32, corresponds to our Lorentz-
operator solution, in which electron–electron collisions are negligible. The reduction of
the conductivity when Z = 1 is because electron self-collisions reduce the high-energy
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tails (which was caused by the v4 factor of the Lorentz solution (IX.1.10)) by pushing fe
towards a Maxwellian.

The Spitzer problem can, in fact, be solved analytically to any desired accuracy by
expanding the perturbed distribution function fe1 in a suitable basis of orthogonal
functions, taking moments of the kinetic equation, and then solving the resulting set
of matrix equations for the coefficients in the expansion. This approach was developed in
Braginskii (1958, 1965), Hirshman (1977, 1978), Hirshman & Sigmar (1981), and Hinton
(1983). The appropriate basis of orthogonal functions is that of Laguerre polynomials
(which were shown also to be the appropriate basis functions for determining the most
compact set of moment equation by Grad; see Grad (1949a,b)):

fe1 =
2v∥

v2the
fM,e

N∑
k=0

ue,kL
(3/2)
k

(
v2

v2the

)
, (IX.1.14)

where v∥ = vξ and

L
(3/2)
0 (x) = 1, L

(3/2)
1 (x) =

5

2
− x, L

(3/2)
2 (x) =

35

8
− 7

2
x+

1

2
x2, . . . .

The Laguerre polynomials constitute a good basis because, for the oft-occuring integral
weighting function of

∫ ∞

0

dv v2

v3th

2v2

v2th
e−v

2/v2th =

∫ ∞

0

dxx3/2e−x,

they have the orthogonality relation

∫ ∞

0

dxx3/2e−xL(3/2)
p (x)L(3/2)

q (x) =
(p+ 3/2)!

p!
δpq =

Γ (p+ 5/2)

Γ (p+ 1)
δpq.

Here are the first few integrals, which will ultimately come in handy:

∫ ∞

0

dxx3/2e−x
[
L
(3/2)
0 (x)

]2
=

3
√
π

4
,∫ ∞

0

dxx3/2e−x
[
L
(3/2)
1 (x)

]2
=

15
√
π

8
,∫ ∞

0

dxx3/2e−x
[
L
(3/2)
2 (x)

]2
=

105
√
π

32
.

While the Laguerre polynomials are not eigenfunctions of the Landau collision operator,
they are particularly useful for kinetic transport problems in which the background
distribution is Maxwellian. (Because the lowest-order equation is 0 = C[fe0], with C
being the full Landau collision operator, a Maxwellian background is guaranteed by the
H theorem.) This can be seen by examining the moments. For example, the momentum
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density parallel to the electric field is

neu∥e =

∫
dv v∥fe =

∫
dv v∥

(
�
�>

0
fe0 + fe1 + . . .

)
≃
∫

dv vξfe1

=

∫
dv

2v2

v2the
ξ2fM,e

[
ue,0L

(3/2)
0

(
v2

v2the

)
+ ue,1L

(3/2)
1

(
v2

v2the

)
+ . . .

]
=

4π

3

ne
π
√
π

∫ ∞

0

dxx3/2e−x L
(3/2)
0 (x)︸ ︷︷ ︸

can insert
here, since
it equals 1

[
ue,0L

(3/2)
0 (x) + ue,1L

(3/2)
1 (x) + . . .

]

=
4

3
√
π
neue,0 ×

3
√
π

4
= neue,0. (IX.1.15)

Evidently, the zeroth Laguerre coefficient is the parallel electron fluid flow. Likewise, the
parallel heat flux of electrons is18

q̂∥e =

∫
dv v∥

(
mev

2

2
− 5Te

2

)
fe =

∫
dv v∥

(
mev

2

2
− 5Te

2

)(
�
�>

0
fe0 + fe1 + . . .

)
≃
∫

dv vξ

(
mev

2

2
− 5Te

2

)
fe1

= Te

∫
dv

2v2

v2the
ξ2fM,e

(
v2

v2the
− 5

2

)[
ue,0L

(3/2)
0

(
v2

v2the

)
+ ue,1L

(3/2)
1

(
v2

v2the

)
+ . . .

]
=

4π

3

neTe
π
√
π

∫ ∞

0

dxx3/2e−x
(
x− 5

2

)
︸ ︷︷ ︸

= −L(3/2)
1 (x)

[
ue,0L

(3/2)
0 (x) + ue,1L

(3/2)
1 (x) + . . .

]

= − 4

3
√
π
neTeue,1 ×

15
√
π

8
= −5

2
peue,1. (IX.1.16)

The first Laguerre coefficient is related to the parallel electron heat flux.
Using (IX.1.15) and (IX.1.16), the first-order electron distribution function (IX.1.14)

can thus be written as

fe1 =
2v∥

v2the
fM,e

[
u∥eL

(3/2)
0 (x)− 2

5

q̂∥e

pe
L
(3/2)
1 (x) + . . .

]
; x

.
=

v2

v2the
(IX.1.17)

18This is, of course, not the conductive parallel electron heat flux, which is customarily given by
q∥e

.
=

∫
dvw∥(mew

2/2)fe, where w
.
= v−ue is the peculiar velocity. Using ⟨w∥fe⟩ = 0, this ex-

pression is also equivalent to q∥e =
∫
dvw∥(mew

2/2−5Te/2)fe = −Te

∫
dvw∥L

(3/2)
1 (w2/v2the)fe.

Mathematically, the distinction between this definition and that given in (IX.1.16) doesn’t
matter; it just matters what we dub the “heat flux” and whether we chose to Laguerre expand
about a stationary or drifting Maxwellian. But to avoid confusion, the heat flux defined in
(IX.1.16) is adorned by a hat to distinguish it from q∥e. To be absolutely precise, the vector
q̂ =

∫
dv (mv2/2 − 5T/2)vf = q + Π ·u + (mnu2/2)u, where q ≡

∫
dww(mw2/2)f is the

conductive heat flux, Π ≡
∫
dwm(ww − w2I/3)f is the viscous stress, and u ≡ (1/n)

∫
dv vf

is the fluid velocity.



136 M. W. Kunz

This expression goes into the first-order kinetic equation

− e

me
E · ∂fe0

∂v
=
eEv∥

Te
fM,e = C

[
fe1
]
, (IX.1.18)

where
C
[
fe1
]
= C

[
fe1, fM,e

]
+ C

[
fM,e, fe1

]
+ C

[
fe1, fM,i

]
+ C

[
fM,e, fi1

]
.

is the first-order collision operator. Thus, to solve the Spitzer problem, we substitute
(IX.1.17) into (IX.1.18), take

∫
dv v∥L

(3/2)
k (x) moments of the resulting kinetic equation

to determine the ue,k coefficients, and invert the resulting matrix equation to solve for
ue,k in terms of E. We can continue to higher and higher k to obtain ever more accurate
answers. All this, just to invert a collision operator! Let us proceed with this programme.

The left-hand side of (IX.1.18) is easy: for each k in the sum,∫
dv

eE

me

2v2∥

v2the
fM,eL

(3/2)
k

(
v2

v2the

)
=
eE

me

∫
dv

2v2

v2the
ξ2fM,eL

(3/2)
k

(
v2

v2the

)
=

4π

3

eE

me

ne
π
√
π

∫ ∞

0

dxx3/2e−xL
(3/2)
k (x)

=
4

3
√
π

eEne
me

× δk0
3
√
π

4
=
eEne
me

δk0. (IX.1.19)

The right-hand side of (IX.1.18)? Not so much. The electron–ion operator isn’t too bad
(see (VIII.4.11)):∫

dv v∥L
(3/2)
k (x)C[fe, fi] =

∫
dv v∥L

(3/2)
k (x)

3
√
π

4τei

(vthe
v

)3
L
[
fe1 + 2v ·ui

∂fM,e
∂v2

]
=

3
√
π

4τei
2πv3the

∫ +1

−1

dξ ξ

∫ ∞

0

dv L
(3/2)
k (x)

1

2

∂

∂ξ
(1− ξ2)

∂

∂ξ

×
[
2v∥

v2the
fM,e

N∑
ℓ=0

ue,ℓL
(3/2)
ℓ (x)− 2v∥ui

v2the
fM,e

]
.

Let’s do each term in brackets separately. The first term is

− 3ne
2τei

∫ +1

−1

dξ ξ2
∫ ∞

0

dx e−xL
(3/2)
k (x)

N∑
ℓ=0

ue,ℓL
(3/2)
ℓ (x)

= −ne
τei

∫ ∞

0

dx e−xL
(3/2)
k (x)

[
ue,0L

(3/2)
0 (x) + ue,1L

(3/2)
1 (x) + ue,2L

(3/2)
2 (x) + . . .

]
= −ne

τei

 1 3/2 15/8
3/2 13/4 69/16
15/8 69/16 433/64

ue,0ue,1
ue,2

 for k = 0, 1, 2. (IX.1.20)

The second term is

3ne
2τei

∫ +1

−1

dξ ξ2
∫ ∞

0

dx e−xL
(3/2)
k (x)ui =

ne
τei

 1 0 0
3/2 0 0
15/8 0 0

ui0
0

 for k = 0, 1, 2.

(IX.1.21)
Now the electron–electron piece: we need the perturbed Rosenbluth potentials written
in terms of Laguerre polynomials. I’m not going to do this. See Hirshman (1977) and
Hinton (1983); they exploit certain properties of the linearized collision operator, like it
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being self-adjoint and momentum conserving, to calculate the coefficients. The resulting
contribution to the right-hand side of (IX.1.18) is

− ne
τee

√
2

0 0 0
0 1 3/4
0 3/4 45/16

ue,0ue,1
ue,2

 ; τee = Zτei. (IX.1.22)

Combining (IX.1.20)–(IX.1.22) to obtain the right-hand side of (IX.1.18) leaves us with
a matrix equation to be solved for the ue,k coefficients:

eEτee
me



1

0

0


= −



Z
3

2
Z

15

8
Z

3

2
Z

√
2 +

13

4
Z

3
√
2

4
+

69

16
Z

15

8
Z

3
√
2

4
+

69

16
Z

45
√
2

16
+

433

64
Z





ue,0 − ui

ue,1

ue,2


. (IX.1.23)

The solution to (IX.1.23) is obtained after inverting the 3× 3 matrix:

ue,0 − ui

ue,1

ue,2


= −eEτee

me



9

2Z

(
1 +

151
√
2

72
Z +

217

288
Z2

)
−45

√
2

16
− 33

16
Z −3

√
2

4
+

3

8
Z

−45
√
2

16
− 33

16
Z

45
√
2

16
+

13

4
Z −3

√
2

4
+

3

2
Z

−3
√
2

4
+

3

8
Z −3

√
2

4
+

3

2
Z

√
2 + Z



×



1

0

0


1

9

2

(
1 +

61
√
2

72
Z +

2

9
Z2

) . (IX.1.24)

Knowing that ue,0 = u∥e (see (IX.1.15)), we find

j∥ = −ene
(
u∥e − u∥i

)
= σE∥ ×

1 +
151

√
2

72
Z +

217

288
Z2

1 +
61

√
2

72
Z +

2

9
Z2

, (IX.1.25)

where σ is given by (IX.1.2). The factor in parentheses takes on the following values for
varying Z:

Z 1 2 3 . . . ∞
# 1.9499 2.3210 2.5292 . . . 3.3906

Note that 3.3906 corresponds to the σL value from the calculation using the Lorentz
operator (see (IX.1.11)). These values match the full numerical result to within 0.03%
(not that we know lnλei to that accuracy!). The solution for fe1 to this order is (see
(IX.1.14))

fe1 =
2v∥

v2the
fM,e

[
ue,0 + ue,1

(
5

2
− v2

v2the

)
+ ue,2

(
35

8
− 7

2

v2

v2the
+

1

2

v4

v4the

)]
(IX.1.26)
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with

ue,0 = u∥e = ui −
eEτei
me

×
1 +

151
√
2

72
Z +

217

288
Z2

1 +
61

√
2

72
Z +

2

9
Z2︸ ︷︷ ︸

= 1.9499 for Z = 1

,

ue,1 = −2

5

q̂∥e

pe
=
eEτei
me

×
5
√
2

8
Z +

11

24
Z2

1 +
61

√
2

72
Z +

2

9
Z2︸ ︷︷ ︸

= 0.5545 for Z = 1

,

ue,2 =
energy-
weighted
heat flow

=
eEτei
me

×

√
2

6
Z − 1

12
Z2

1 +
61

√
2

72
Z +

2

9
Z2︸ ︷︷ ︸

= 0.0630 for Z = 1

.

Before proceeding to the next section, I want to point out something rather subtle and ask
you to think about it. Go all the way back to (IX.1.10), where we found that fe1 ∝ v∥v

3fM,e

for a Lorentz operator describing electron-ion collisions. The v3 there was due to the velocity
dependence of the Coulomb collisions. So where is that v3 in (IX.1.26)? All I see there are even
powers of v in the Laguerre sum. . . surely Coulomb collisions don’t change their v dependence
just because we’ve chosen to work in a Laguerre basis. Shouldn’t I recover the Lorentz result by
taking Z → ∞ in the above expression for fe1? The value of j∥ certainly matches. What gives?

IX.2. The Chapman–Enskog expansion
The electrical conductivity is just one material property of a plasma, for which the

kinetic theory provides a rigorous means of calculating. You should know by now that
the moment equations derived by taking velocity moments of the kinetic equation are not
closed, and that one must do analogous calculations to obtain the form of the pressure
tensor and the heat flux in terms of lower-order moments of the distribution function in
order to close the system. For a hydrodynamic system, the Chapman–Enskog expansion
does just this. It results from establishing a hierarchy of temporal and spatial scales and
asymptotically solving the kinetic equation order by order in this scale separation. Before
establishing this hierarchy and carrying out the expansion, let’s do a quick recapitulation
of from whence the hydrodynamic equations came.

Start with the Vlasov–Landau kinetic equation,

Dfα
Dt

.
=
∂fα
∂t

+ v ·∇fα +
qα
mα

E · ∂fα
∂v

= C[fα].

We could of course add additional forces on the charged particles to qαE, such as that
due to gravity, mαg. Since we’ll use quasi-neutrality to eliminate E at one point, let’s
do that:

Dfα
Dt

.
=
∂fα
∂t

+ v ·∇fα +

(
qα
mα

E + g

)
· ∂fα
∂v

= C[fα]. (IX.2.1)

Now, v contains both thermal and mean velocities. It is useful to split them apart (e.g.,
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because they might have very different magnitudes):

w
.
= v − uα(t, r), (IX.2.2)

where

uα(t, r)
.
=

1

nα

∫
dv vfα, nα(t, r)

.
=

∫
dv fα. (IX.2.3)

Enacting this transformation of variables, fα(t, r,v) → fα(t, r,w), through the use of

∂

∂t

∣∣∣∣
v

=
∂

∂t

∣∣∣∣
w

+
∂w

∂t

∣∣∣∣
v

· ∂

∂w
=

∂

∂t

∣∣∣∣
w

−∂uα
∂t

· ∂

∂w
, (IX.2.4)

∂

∂r

∣∣∣∣
v

=
∂

∂r

∣∣∣∣
w

+
∂w

∂r

∣∣∣∣
v

· ∂

∂w
=

∂

∂r

∣∣∣∣
w

−∂uα
∂r

· ∂

∂w
, (IX.2.5)

equation (IX.2.1) becomes

dfα
dtα

+w ·∇fα +

(
qα
mα

E + g − duα
dtα︸ ︷︷ ︸

.
= aα(t, r)

− w ·∇uα

)
· ∂fα
∂w

= C[fα], (IX.2.6)

where

d

dtα

.
=

∂

∂t
+ uα ·∇ (IX.2.7)

is the Lagrangian time derivative taken in the frame comoving with the mean velocity
uα of species α. The additional acceleration terms in (IX.2.6) that result from the frame
transformation, viz. duα/dtα and w ·∇uα, are the result of boosting to a time- and
space-dependent frame. The former term is fairly self-explanatory – particles must be
accelerated so as to continue residing in the “fluid element” they comprise, which is itself
being accelerated by various (magneto)hydrodynamic forces that result in duα/dtα– but
the latter deserves some discussion. Imagine you are trying to walk at constant velocity
w = wx̂ across several layers of differentially moving conveyor belts with velocities
u = u(x)ŷ, as in the figure below. In your frame (and the frame of the conveyor belts),
your velocity will always be wx̂. But, in the lab frame, your velocity will include the
velocity of the conveyor belts. This means that, every time you step onto a new conveyor
belt that has some velocity oriented in the y direction that is different from that of the
last conveyor belt, you will be accelerating in the lab frame. That is, your velocity in
the lab frame will change over an interval of time from one conveyor belt to the next.
Mathematically, the figure below corresponds to an acceleration w∆uy/∆x every time
you step from one conveyor belt at position x with velocity uŷ to another conveyor belt
at position x+∆x with velocity (u+∆u)ŷ. The difference between these two points of
view is enacted by adding −w ·∇uα to the acceleration term of (IX.2.6).
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with every timestap it .

Next, take those moments:∫
dw (IX.2.6) :

d

dtα�
��

��*
nα∫

dw fα +
�������:0∫

dww ·∇fα + aα ·
���

���*
0∫

dw
∂fα
∂w

−
∫

dw (w ·∇uα) ·
∂fα
∂w︸ ︷︷ ︸

bp
= −(∇·uα)����:nα∫

dw fα

=
����

��*
0∫

dwC[fα]

=⇒ dnα
dtα

+ nα∇·uα = 0 (continuity equation for species α) (IX.2.8)

∫
dwmαw(IX.2.6) :

d

dtα�
������:0∫
dwmαwfα +

∫
dwmαww ·∇fα +mαaα ·

∫
dww

∂fα
∂w︸ ︷︷ ︸

bp
= −nαI

−
�������������:0∫

dwmαw(w ·∇uα) ·
∂fα
∂w

=

∫
dwmαwC[fα]

=⇒ ∇·Pα −mαnαaα =

∫
dwmαwC[fα]

.
= Rα (force equation for species α)

(IX.2.9)
where

Pα
.
=

∫
dwmαwwfα (IX.2.10)

is the thermal pressure tensor of species α and Rα is the friction force on species α (recall
Newton’s third law,

∑
αRα = 0). Equation (IX.2.9) may of course be rewritten in the

following, perhaps more familiar, form:

mαnα
duα
dtα

= mαnα

(
qα
mα

E + g

)
−∇·Pα +Rα. (IX.2.11)
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If we sum (IX.2.11) over species, the electric-field term vanishes by quasineutrality,∑
α qαnα = 0. Then, defining the total mass density ϱ

.
=
∑
αmαnα and the mean

center-of-mass velocity u
.
= ϱ−1

∑
αmαnαuα, equation (IX.2.11) implies

ϱ

(
∂

∂t
+ u ·∇

)
u = ϱg −∇·

(
P + D

)
, (IX.2.12)

where P .
=
∑
α Pα is the total pressure tensor and

D .
=
∑
α

mαnα∆uα∆uα (IX.2.13)

is a tensor composed of species drifts relative to the center-of-mass velocity,

∆uα
.
= uα − u. (IX.2.14)

(Note that
∑
αmαnα∆uα = 0, by definition.) Returning to those moments. . .∫

dwmαwiwj(IX.2.6) :
d

dtα

∫
dwmαwiwj︸ ︷︷ ︸
= Pα,ij

+

∫
dwmαwiwjw ·∇fα

+mαaα,k
��������:0∫

dwwiwj
∂fα
∂wk

−
∫

dwmαwiwj(w ·∇uα,ℓ)
∂fα
∂wℓ

=

∫
dwmαwiwjC[fα]. (IX.2.15)

Define the heat flux tensor for species α:

Qα
.
=

∫
dwmαwwwfα. (IX.2.16)

Then, equation (IX.2.15) becomes, after integrating by parts the final term on its left-
hand side,

dPα,ij
dtα

+ (∇·Qα)ij +
(
δiℓPα,jk + δjℓPα,ik + δkℓPα,ij

)∂uα,ℓ
∂rk

=

∫
dwmαwiwjC[fα]

(IX.2.17)
Usually the trace of this equation is taken, with

pα
.
=

1

3
trPα. (IX.2.18)

Then (IX.2.17) provides an evolutionary equation for the internal energy:

3

2

dpα
dtα

+∇· qα +
3

2
pα∇·uα + Pα :∇uα = Qα, (IX.2.19)

where

qα
.
=

∫
dw

1

2
mαw

2wfα (IX.2.20)

is the conductive heat flux of species α and

Qα
.
=

∫
dw

1

2
mαw

2C[fα] (IX.2.21)

is the collisional energy exchange. Further writing

Pα
.
= pαI +Πα, (IX.2.22)
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where Πα is the viscous stress tensor of species α and using (IX.2.8) to replace ∇·uα
in (IX.2.19) by d lnnα/dt, the internal energy equation (IX.2.19) provides an equation
for the hydrodynamic entropy:

3

2
pα

d

dtα
ln

pα

n
5/3
α

= −∇· qα −Πα :∇uα +Qα (IX.2.23)

Note that, in the absence of conductive heat fluxes, viscous stresses, and energy exchange
amongst species, the hydrodynamic entropy of a fluid element is conserved (as it should
be). Finally, using (IX.2.22), the force equation (IX.2.11) becomes

mαnα
duα
dtα

= mαnα

(
qα
mα

E + g

)
−∇pα −∇·Πα +Rα. (IX.2.24)

Clearly, to close the system of hydrodynamic equations (viz., (IX.2.8), (IX.2.23), and
(IX.2.24)), we require (Πα, qα,Rα, Qα) expressed in terms of the lower “fluid” moments
(nα,uα, pα). This is the purpose of the Chapman–Enskog expansion, which is only
possible when the collisional mean free path is much smaller than the lengthscales of
interest (e.g., gradient scales) so that the distribution function fα is nearly Maxwellian.
This will give a tractable kinetic equation, without time variation, which will close the
moment equations and allow evolution on a slow timescale. Let us proceed.

We adopt the ordering

Kn
.
=
λmfp

L

.
= ϵ≪ 1, (IX.2.25)

which defines the Knudsen number Kn in terms of the mean free path and the characteris-
tic gradient lengthscale L, and group the plasma timescales in the (extended) Bogoliubov
hierarchy (§I) as follows:

ωp, ν ≫ vth/L ≫ D/L2(
plasma freq.,
collision freq.

) (sound-crossing
time

)−1 (diffusion
time

)−1

,
(IX.2.26)

where “≫” means ∼ϵ−1. A few things to note before proceeding:

(1) ω−1
p and ν−1 (denoted “t0” below) are lumped together as the smallest timescales

in the problem. Therefore, if you want to tell the difference between these scales,
you’d have to do a subsidiary expansion in Λ−1. But we don’t, which will mean
that Debye clouds are established instantaneously, and velocity-space irreversibil-
ity emerges instantaneously as well (even though ν−1 ∼ ω−1

p Λ/ lnΛ ≫ ω−1
p ).

“Instantaneous” times a factor Λ/ lnΛ is still considered “instantaneous”.

(2) The timescale L/vth ∼ “t1” (see below) is a non-dissipative timescale, and captures
sound waves and the emergence of macroscopic force balance. This timescale is
taken to be ∼t0/ϵ, since t1 ∼ L/vth ∼ (L/λmfp)(λmfp/vth) ∼ t0/ϵ.

(3) The timescale L2/D ∼ “t2” (see below) captures processes leading to spatial
diffusion. In a hydrodynamic plasma, t2 ∼ L2/D ∼ (L/λmfp)

2ν−1 ∼ t0/ϵ
2.

Thus,
∂

∂t
=

∂

∂t0
+ ϵ

∂

∂t1
+ ϵ2

∂

∂t2
is how time variations are measured – on three disparate timescales. The Chapman–
Enskog expansion is a multi-scale analysis of the kinetic equation, which focuses on
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hydrodynamic (rather than kinetic-Vlasov) dynamics. We write

fα = f0 + ϵf1 + ϵ2f2 + . . . (IX.2.27a)
∂

∂t
=

∂

∂t0
+ ϵ

∂

∂t1
+ ϵ2

∂

∂t2
+ . . . (IX.2.27b)

and take the forces qαE and mαg to be O(ϵ) – that is, they drive evolution on the
hydrodynamic (i.e., sound-crossing) timescale. (This says that the electrostatic potential
φ satisfies eφ/T ≲ 1 and that the gravitational potential Φ satisfies mΦ/T ≲ 1.) Then,
equation (IX.2.1) becomes(

D

Dt0
+ ϵ

D

Dt1
+ ϵ2

D

Dt2

)(
f0 + ϵf1 + ϵ2f2 + . . .

)
= C

[
f0 + ϵf1 + ϵ2f2 + . . .

]
(IX.2.28)

Equation (IX.2.28) is analyzed order by order.
At zeroth order in ϵ, equation (IX.2.28) is simply

Df0
Dt0

= C[f0]. (IX.2.29)

This contains kinetic-scale physics that is “instantaneous”. Thus, we drop the D/Dt0 term
and obtain C[f0] = 0. This states that the lowest-order distribution is a local Maxwellian
that is stationary on the t0 timescale:

f0(t,x) =
ñ(t, r)

π3/2ṽth
3
(t, r)

exp

[
−|v − ũ(t, r)|2

ṽth
2
(t, r)

]
, (IX.2.30)

where ṽth
2
(t, r) ≡ 2T̃ (t, r)/m and the species label α has been dropped for economy

of notation (it will be reintroduced when necessary). The reason for the tildes on ñ, ũ,
and T̃ is that we only know that f0 looks like a Maxwellian, not that these parameters
correspond the the density, mean velocity, and temperature of the plasma. But, in fact,
we have the freedom to set ñ = n, ũ = u, and T̃ = T . To prove that, look at the O(ϵ)
terms:

Df0
Dt1

= C[f0, f1] + C[f1, f0] ≡ Ĉf1. (IX.2.31)

(Recall that the collision operator is bi-linear in its argument. The O(ϵ) contributions
correspond physically to a particle in f0 colliding with a particle in f1 and vice versa.)
The solution to (IX.2.31) is

f1 = Ĉ−1

[
Df0
Dt1

]
, (IX.2.32)

provided that we can invert the collision operator. Before discussing how to do that, note
that f1 can contain anything looking like a Maxwellian and the equation Df0/Dt1 =

Ĉf1 would not change. Put differently, the solution to Ĉf1 = 0 doesn’t have to be
f1 = 0; it could be any additive combination of Maxwellians. (Mathematically, f1 could
be expanded in terms of the null eigenfunctions of Ĉ, which are just the basis functions
for density, momentum, and temperature perturbations.) In other words, f1 could simply
adjust ñ until it’s n, and likewise for ũ and T̃ . By choosing f1 = 0 as a solution to Ĉf1 = 0,
we are packing all the information about the density, momentum, and temperature into
f0. In math speak, “fn⩾1 are constructed to be orthogonal to the hydrodynamic subspace”
Krommes (2017). This affords the freedom to associated ñ with n, ũ with u, and T̃ with
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T . Thus,

f0(t,x) =
n(t, r)

π3/2v3th(t, r)
exp

[
−|v − u(t, r)|2

v2th(t, r)

]
(IX.2.33)

with n, u, and T being governed by the fluid equations.
With f0 given by (IX.2.33), we substitute it into (IX.2.31) and solve for f1. To do so,

first note that

ln f0 = const + lnn− 3

2
lnT − w2

v2th
.

Then, with

D

Dt1
=

∂

∂t1
+ u ·∇︸ ︷︷ ︸
.
= d/dt1

+w ·∇+
(
a1 −w ·∇u

)
· ∂

∂w
,

we have

D ln f0
Dt1

=

(
d

dt1
+w ·∇

)
lnn+

(
w2

v2th
− 3

2

)(
d

dt1
+w ·∇

)
lnT

+
(
a1 −w ·∇u

)
·
(
−2w

v2th

)
. (IX.2.34)

The quantities d lnn/dt1 and d lnT/dt1 can be obtained from the moment equations,
appropriately ordered. At this point, the calculation could go in a few different directions.
If we are interested in a one-component plasma (or a multi-component plasma whose
species never interact with one another), then we know that the friction force R = 0
and the energy exchange Q = 0, because the collision operator conserves momentum and
energy. The moment equations to O(ϵ) are then

d lnn

dt1
= −∇·u, d lnT

dt1
= −2

3
∇·u, a1 =

∇p

mn
. (IX.2.35)

(We will explore the situation for an interacting multi-component plasma in §IX.3.)
Substituting (IX.2.35) into (IX.2.34), we find

D ln f0
Dt1

=

(
w2

v2th
− 5

2

)
w ·∇ lnT +

(
ww

v2th
− I

3

w2

v2th

)
:
[
∇u+ (∇u)T

]
,

where T denotes the transpose. Using this in (IX.2.31) leads to the correction equation

Ĉf1
f0

=

(
w2

v2th
− 5

2

)
w ·∇ lnT +

(
ww

v2th
− I

3

w2

v2th

)
:W (IX.2.36)

where the rate-of-strain tensor

W .
= ∇u+ (∇u)T − 2

3
(∇·u)I . (IX.2.37)

Note: If we were interested in a multi-species plasma of, say, ions and electrons, then
we would have to decide how quickly their f0 equilibrate. For example, how long does it
take for ue to become arbitrarily close to ui? How long does it take for Te to become
arbitrarily close to Ti? Depending on these choices (which really amount of a choice of
mass ratio – see §IX.3), the friction force R and the energy exchange rate Q might appear
in the correction equation.
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For now, since it’s our first time through this, let’s suppose that we have a one-
component plasma (OCP). The solution to (IX.2.36) is “simply”

f1 = Ĉ−1

{
f0

[(
w2

v2th
− 5

2

)
w ·∇ lnT +

(
ww

v2th
− I

3

w2

v2th

)
:W
]}
. (IX.2.38)

Just as in the Spitzer–Härm problem (§IX.1), we must invert the collision operator. As
a first pass, let’s take C[f ] = −ν(f − f0), the Krook operator. Then

f1 = −f0
ν

[(
w2

v2th
− 5

2

)
w ·∇ lnT +

(
ww

v2th
− I

3

w2

v2th

)
:W
]

and so

Π
.
=

∫
dwm

(
ww − I

3
w2

)
f1 = −p

ν
W ,

q
.
=

∫
dw

1

2
mw2wf1 = −5

2

p

ν
∇ p

mn
= −5

4

nv2th
ν

∇T

(IX.2.39)

Easy! For the full Landau collision operator, not so easy. But you get the idea. For the
general case, write

Π = −mnµW , q = −nκ∇T (IX.2.40)

with a viscous coefficient µ and heat diffusion coefficient κ (both ∝v2th/ν).

For your benefit, I include here the details of the calculations that lead to (IX.2.39). First,
the heat flux q. Orient ∇ lnT along the z direction and write w in spherical coordinates:
w = wξẑ +

√
1− ξ2(cosϑx̂+ sinϑŷ). Then

q ≡
∫

dw
1

2
mw2wf1

= − 1

ν

d lnT

dz

∫ ∞

0

dww2

∫ +1

−1

dξ

∫ 2π

0

dϑ
1

2
mw2w

(
w2

v2th
− 5

2

)
wξf0

= − 1

ν

d lnT

dz

∫ ∞

0

dww2

∫ +1

−1

dξ 2π
1

2
mw2wξ

(
w2

v2th
− 5

2

)
wξẑ f0 (doing ϑ integral)

= −mn
ν

∇ lnT
v4th√
π

∫ ∞

0

dww6

v7th

(
w2

v2th
− 5

2

)
e−w2/v2

th

︸ ︷︷ ︸
=

1

2

∫ ∞

0
dx x5/2

(
x −

5

2

)
e−x

=
1

2

[
Γ

(
9

2

)
−

5

2
Γ

(
7

2

)]
=

√
π

2

(
105

16
−

5

2

15

8

)
=

15

16

√
π

∫ +1

−1

dξ ξ2︸ ︷︷ ︸
=

2

3

(inserting f0, rearranging)

= −mn
ν

∇ lnT
5

8
v4th = −5

4

nv2th
ν

∇T.

Next, the viscous stress Π:

Π ≡
∫

dwm

(
ww − I

3
w2

)
f1 = − 1

ν

∫
dwm

(
ww − I

3
w2

)(
ww

v2th
− I

3

w2

v2th

)
:W f0.

Before going any further, two simplifications can be made. First, note that I :W = tr(W ) = 0.
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Second, with w written in spherical coordinates as above,∫ +1

−1

dξ

∫ 2π

0

dϑww =
4π

3
w2I =⇒

∫
dwww :W ∝ I :W = 0.

Therefore,

Π = − 1

ν

∫
dwmww

ww

v2th
:W f0 = −2T

ν

∫
dw

wwww

v4th
:W f0.

So we must compute
∫
dξ

∫
dϑwwww. Writing w2

∥ = w2ξ2 and w2
⊥ = w2(1− ξ2) makes things

a bit more compact after performing the ϑ integral, which leaves

2π

∫ +1

−1

dξ

{
w4

∥ẑẑẑẑ +
3

8
w4

⊥
(
x̂x̂x̂x̂+ ŷŷŷŷ

)
+
w2

⊥
2

[
w2

∥
(
ẑẑx̂x̂+ x̂x̂ẑẑ + ẑẑŷŷ + ŷŷẑẑ

)
+
w2

⊥
4

(
x̂x̂ŷŷ + ŷŷx̂x̂

)]
+
w2

⊥
2

[
w2

∥
(
ẑx̂+ x̂ẑ

)(
ẑx̂+ x̂ẑ

)
+ w2

∥
(
ẑŷ + ŷẑ

)(
ẑŷ + ŷẑ

)
+
w2

⊥
4

(
x̂ŷ + ŷx̂

)(
x̂ŷ + ŷx̂

)]}
.

To perform the ξ integration, note that∫ +1

−1

dξ ξ4 =
2

5
,

∫ +1

−1

dξ (1− ξ2)2 =
16

15
,

∫ +1

−1

dξ ξ2(1− ξ2) =
4

15
.

Then,∫ +1

−1

dξ

∫ 2π

0

dϑwwww = 2πw4 × 2

15

[
2
(
ẑẑẑẑ + x̂x̂x̂x̂+ ŷŷŷŷ

)
+ I I +

(
ẑx̂+ x̂ẑ

)(
ẑx̂+ x̂ẑ

)
+

(
ẑŷ + ŷẑ

)(
ẑŷ + ŷẑ

)
+

(
x̂ŷ + ŷx̂

)(
x̂ŷ + ŷx̂

)]
Inserting this expression into the equation for the viscous stress, and using the facts that W is
symmetric and I :W = 0, gives

Π = −2T

ν

8π

15
W

∫ ∞

0

dww2 w
4

v4th
f0 = − p

ν
W

16

15
√
π

∫ ∞

0

dww6

v7th
e−w2/v2

th

︸ ︷︷ ︸
=

1

2
Γ

(
7

2

)
=

15

16

√
π

= − p
ν

W .

Voila. Now, back to the expansion. . .

At O(ϵ2), equation (IX.2.28) is

Df0
Dt2

+
Df1
Dt1

= C[f0, f2] + C[f2, f0] + C[f1, f1]
.
= Ĉf2 + C[f1, f1]. (IX.2.41)

This is called the “solvability condition”; we must ask whether this equation has a solution
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for f2. To do so, take the following moments:∫
dw (IX.2.41) =⇒

∫
dw

(
Df0
Dt2

+
Df1
Dt1

)
= 0 (C conserves number)

(IX.2.42a)∫
dwv(IX.2.41) =⇒

∫
dwv

(
Df0
Dt2

+
Df1
Dt1

)
= 0 (C conserves momentum)

(IX.2.42b)∫
dww2(IX.2.41) =⇒

∫
dww2

(
Df0
Dt2

+
Df1
Dt1

)
= 0 (C conserves energy)

(IX.2.42c)

Now, ∫
dw
(
1,w, w2

)df1
dt1

=
d

dt1

∫
dw
(
1,w, w2

)
f1 = 0,

and∫
dw
(
1,w, w2

)(
a1 −w ·∇u

)
· ∂f1
∂w

bp
= −

∫
dw
(
0, I , 2w

)
·a1f1 +

∫
dw
(
∇·u,w∇·u+w ·∇u, w2∇·u+ 2ww :∇u

)
f1

= 0.

So (IX.2.42) becomes

∫
dw
(
1,w, w2

)(Df0
Dt

)
︸ ︷︷ ︸

hydrodynamic quantities
evolve without dissipation

= −
∫

dw
(
1,w, w2

)
w ·∇f1︸ ︷︷ ︸

dissipative fluxes
= −∇· (0,Π/m, 2q/m)

. (IX.2.43)

The solvability condition (IX.2.41) therefore returns the transport equations! Good. From
Krommes (2018), §23.2.7:

Thus, in this kind of asymptotic expansion, one obtains successively more and
more information about lower-order quantities from solvability conditions at higher
and higher order. This behavior is not unique to this problem; it occurs in virtually
all asymptotic problems in which a large parameter like ϵ−1 determines the lowest-
order physics. The behavior of charged particles in a strong magnetic field is another
such problem, and some derivations of particle drifts and gyrokinetic equations
follow essentially this same asymptotic route. It is an important technique with
which you should be familiar.

One could, of course, do better than what is done in this section by inverting a more
accurate collision operator. But the purpose here was just to show you how Chapman–
Enskog works. Our real goal is the Braginskii equations for an ion-electron plasma, which
is next. There is where we’ll be more sophisticated with our collision operator.

Pictorial summary:
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Different temperatures and velocities driven transport between these fluid elements,
which is approximately linear in the gradients. This is connected with the slight de-
partures from Maxwellian that result from the system trying to achieve global thermo-
dynamic equilibrium by relaxing these gradients diffusively. What we’ll see in the next
section is that a strong magnetic field – “strong” meaning ρ/λmfp ≪ 1 – can impede this
transport.

IX.3. The Braginskii-MHD equations
We now arrive at the crown jewel of classical transport: Braginskii’s equations for a

collisional, magnetized plasma. These are a great example of rewarding mathematics and
rich physics, and we will explore both. Speaking of a good blend of rigorous presentation
and pedagogical discussion, Braginskii’s original article published in Rev. Mod. Phys. in
1965 is a must-read classic. Do yourself a favor and consult it alongside these notes. John
Krommes also has an article on classical transport in a magnetized plasma, recently
published in J. Plasma Phys., which employs a “modern” projection-operator technique
to determine the transport equations. Same physics, different formalism. . . to each their
own.

The basic idea can be seen by returning to the illustration at the end of the Chapman–
Enskog notes:

If we put a magnetic field with ρ/λmfp ≪ 1 perpendicular to the white arrow, then those
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heat and momentum fluxes will be stifled since the particles cannot travel a collisional
mean free path across the magnetic field. If we put a magnetic field along the white arrow,
then heat and momentum fluxes can readily proceed since the particles can stream along
the magnetic field unimpeded but for collisions. Thus, transport in a magnetized plasma
is fundamentally anisotropic. Let’s explore this, and other such effects, rigorously through
a Chapman–Enskog expansion.

IX.4. Ordering of parameters
One difference between the following calculation and the Chapman–Enskog expansion

detailed in §IX.2 is that we will focus on an ion-electron plasma, with collision rates
ordered such that fi and fe are both Maxwellian to zeroth order. But, following Bra-
ginskii, we will exploit the smallness of me/mi to allow the Maxwellian parameters ui

and Ti to be different than ue and Te, respectively. In Braginskii’s words: “this feature
makes it possible to obtain separate transport equations for the electrons and ions with
different temperatures (and different velocities) and to uncouple the electron and ion
kinetic equations.”

There are three different small parameters in this problem:
ρi
L

≪ 1 (the plasma is magnetized)

λmfp

L
≪ 1 (the plasma is collisional)√

me

mi
≪ 1 (temperature and mean velocity equilibration takes some time)

We will take Ti ∼ Te (i.e., ions and electrons have comparable temperatures, not differing
by more than ∼

√
mi/me) and a “high-flow” ordering:

ui ∼ ue ∼ vthi ∼
√
me

mi
vthe ≪ vthe. (IX.4.1)

“Low-flow” orderings with flow velocities of order the diamagnetic drift velocity introduce
additional physics; see Catto & Simakov (2004), which follows Mikhailovskii & Tsypin
(1971, 1984). Note that individual collisional mean free paths are all comparable,

λee ∼ λei ∼ λii, (IX.4.2)

despite the collision frequencies being different: νee ∼ νei ∼
√
mi/me νii.

Within the
∂

∂t
=

∂

∂t0
+ ϵ

∂

∂t1
+ ϵ2

∂

∂t2
+ . . .

timescale ordering in the Chapman–Enskog expansion, which we adopt here as well,
the “t1” dynamical timescale is ∼vthi/L ∼

√
me/mi vthe/L, while the “t0” collisional

timescale is ∼ν−1
ee ∼ ν−1

ei . The timescale “t2” again denotes the diffusion timescale. To
simplify the derivation of the Braginskii equations, we use the ordering

ρi
L

≪ λii
L

∼
√
me

mi
≪ 1 (IX.4.3)

so that the plasma is collisional, but not so collisional that Larmor orbits are disturbed.
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To achieve this, it is common to first expand using the orderings

ρi
L

∼ λii
L

∼
√
me

mi
≪ 1 and

ρe
L

∼ λee
L

∼ λei
L

∼
√
me

mi
≪ 1, (IX.4.4)

and then perform a subsidiary expansion to achieve undisrupted Larmor orbits:

ρi
λii

∼ νii
Ωi

≪ 1 ∼ L

λii

√
me

mi
and

ρe
λee

∼ νee
Ωe

≪ 1 ∼ L

λee

√
me

mi
. (IX.4.5)

Note: This isn’t the only way of obtaining the Braginskii equations. One could first
expand the kinetic equation in ρi/L ≪ 1 with λii/L ∼ 1 to get drift kinetics (which
becomes “kinetic MHD” in the high-flow ordering; Kulsrud (1964, 1983)) and then
perform subsidiary expansions in λii/L≪ 1 and me/mi ≪ 1.

What follows is a derivation of the Braginskii-MHD equations using the full Landau
collision operator, just like Braginskii (1965). I admit that it is certainly not the most
pedagogical exercise to work through Braginskii’s calculation for the first time while re-
taining the full Landau operator. So if you find yourself getting lost, you should probably
skip to the hand-written pages appended to these typed lecture notes, where simplified
collision operators are used to perform the Braginskii–Chapman–Enskog procedure in
a simpler fashion. It’s the same general procedure, but the inversion of the collision
operator there is a trivial task; here, it’s more complicated, involving the projection of
the collision operator onto a Laguerre–Legendre basis.

IX.5. Expansion of the kinetic equation
With the inclusion of the Lorentz force, the kinetic equation in (t, r,w

.
= v − uα)

variables for species α (see (IX.2.6)) is

dfα
dtα

+w ·∇fα +

[
qα
mα

(
E +

uα×B

c

)
+ g − duα

dtα
−w ·∇uα

]
· ∂fα
∂w

= − qα
mα

w×B

c
· ∂fα
∂w

+ C[fα]. (IX.5.1)

(Recall that d/dtα
.
= ∂/∂tα + uα ·∇, with the temporal and spatial derivatives both

taken at fixed w.) Using the force equation for species α (viz., (IX.2.11) with (IX.2.22)),

duα
dtα

=
qα
mα

(
E +

uα×B

c

)
+ g − ∇pα

mαnα
− ∇·Πα

mαnα
+

Rα

mαnα
,

to replace duα/dtα in (IX.5.1) leads to

dfα
dtα

+w ·∇fα +

(
∇pα
mαnα

+
∇·Πα

mαnα
− Rα

mαnα

)
· ∂fα
∂w

− (w ·∇uα) ·
∂fα
∂w

= −Ωα(w× b̂) · ∂fα
∂w

+ C[fα]

(IX.5.2)

where Ωα
.
= qαB/mαc and b̂

.
= B/B is the unit vector in the direction of the magnetic

field. The Braginskii ordering will be applied to (IX.5.2) for each species to solve for fα
and thus obtain the transport coefficients.
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IX.5.1. Expansion of the electron kinetic equation
Let’s do the electrons first. Set

ϵ ∼ ρe
L

∼ λee
L

∼ λei
L

∼
√
me

mi
≪ 1

and write

fe = fe0 + ϵfe1 + ϵfe2 + . . . ,

like we did in the Chapman–Enskog expansion (see (IX.2.27)). Then (IX.5.2) becomes

dfe
dte︸︷︷︸
⃝2

+w ·∇fe︸ ︷︷ ︸
⃝1

+

(
∇pe
mene︸ ︷︷ ︸
⃝1

+
∇·Πe

mene︸ ︷︷ ︸
⃝1

− Rei

mene︸ ︷︷ ︸
⃝1

)
· ∂fe
∂w

− (w ·∇ue) ·
∂fe
∂w︸ ︷︷ ︸

⃝2

= −Ωe(w× b̂) · ∂fe
∂w︸ ︷︷ ︸

⃝0

+Cee[fe, fe]︸ ︷︷ ︸
⃝0

+Cei[fe, fi]︸ ︷︷ ︸
⃝0

, (IX.5.3)

where the circled numbers indicate the lowest order in ϵ at which each term appears.
(Recall that t0 ∼ ν−1

ee ∼ ν−1
ei ∼ Ω−1

e and t1 ∼ (vthi/L)
−1. The term involving the

electron viscous stress tensor Πe will eventually be shown to be ∼ϵ2, rather than ∼ϵ,
after fe0 is found to be an isotropic Maxwellian.)

At zeroth order in ϵ, equation (IX.5.3) is

0 = −Ωe(w× b̂) · ∂fe0
∂w

+ Cee[fe0, fe0] + Cei[fe0, fi0], (IX.5.4)

with the condition that
∫
dwwfe0 = 0. Because of the mass-ratio expansion, we can take

Cei ≃
3
√
π

4τei

(vthe
w

)3
L,

where L is the Lorentz operator (VIII.4.4). Then we multiply (IX.5.4) by ln fe0 and
integrate over velocity space to obtain

0 =

∫
dw ln fe0 Cee[fe0, fe0] +

∫
dw ln fe0

3
√
π

4τei

(vthe
w

)3
L[fe0].

Both of these are positive quantities, and so each must vanish in order to satisfy this
equation. We know that Cee vanishes if fe0 is Maxwellian, and that L vanishes if fe0 is
isotropic in velocity space. Thus,

fe0 = fMe
.
=

ne(t, r)

π3/2v3the(t, r)
exp

[
−|v − ue(t, r)|2

v2the(t, r)

]
(IX.5.5)

with fe1 adjusted so that ne, ue, and Te are the true electron density, flow velocity, and
temperature (recall the discussion in §IX.2). To ensure this, we require∫

dw fe1 =

∫
dwvfe1 =

∫
dww2fe1 = 0

in order that (IX.5.5) hold for the true moments. In other words, fe1 is purely kinetic.
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At first order in ϵ, equation (IX.5.3) is

w ·∇fMe +

(
∇pe
mene

+
∇·Πe

mene
+

Rei

mene

)
· ∂fMe
∂w

= −Ωe(w× b̂) · ∂fe,1
∂w

+ Cℓee[fe1] +
3π

4τei

(vthe
w

)3
L[ . . . ], (IX.5.6)

where

Cℓee[fe1] = Cee[fe1, fMe] + Cee[fMe, fe1]

is the linearized electron–electron collision operator (see (VIII.7.6)) and the [ . . . ] argu-
ment of the Lorentz operator is

fe1 −
mew · (ui − ue)

Te
fMe,

the O(
√
me/mi) piece of the Lorentz operator for electron–ion collisions (VIII.4.4). We

can simplify some terms in (IX.5.6) by using the following:

• L
[
w · (ui − ue)

]
= −w · (ui − ue) ;

• w ·∇fMe =

[
w ·∇ ln pe +

(
w2

v2the
− 5

2

)
w ·∇ lnTe

]
fMe ;

•
∂fMe
∂w

= − 2w

v2the
fMe ;

• Rei =
mene
τei

(ui − ue)−
3
√
π

4τei
mev

3
the

∫
dw′ w

′

w′3 fe1(w
′) ;

• Πe ≃
∫
dwme

(
ww − I

3
w2

)
fMe = 0 .

Thus, equation (IX.5.6) becomes

fMe

(
w2

v2the
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)
w ·∇ lnTe + fMe

[
1− 3

√
π

4

(vthe
w

)3]2w · (ui − ue)

v2theτei

= −Ωe(w× b̂) · ∂fe1
∂w

+ Cℓee[fe1] +
3
√
π

4τei

(vthe
w

)3
L[fe1]

+
3
√
π

2τei

fMe
ne

vthew ·
∫

dw′ w
′

w′3 fe1(w
′). (IX.5.7)

Believe it or not, we can solve this in a way similar to the Spitzer–Härm problem by using
Laguerre polynomials. But first, let us cast (w× b̂) · ∂/∂w in a more mathematically
useful and physically revealing form.

Anticipating that the material properties of the plasma are biased with respect to the
magnetic-field direction, decompose the peculiar velocity of the particle as follows:

w = w∥ +w⊥
.
= w∥b̂+ w⊥(cosϑx̂+ sinϑŷ), (IX.5.8)

where w∥
.
= wξ (w⊥) is the component of w oriented along (across) the magnetic field.

The angle ϑ is the “gyrophase”, which tracks the angular position of a particle as it
gyrates about the magnetic-field line in the x̂–ŷ plane:
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Using (IX.5.8), it is straightforward to show that

∂

∂w
= b̂

∂

∂w∥

∣∣∣∣
w⊥,ϑ

+
w⊥

w⊥

∂

∂w⊥

∣∣∣∣
w∥,ϑ

− w× b̂

w2
⊥

∂

∂ϑ

∣∣∣∣
w∥,w⊥

and that dw = dϑw⊥dw⊥dw∥. Also useful will be

⟨w⟩ϑ = w∥b̂,

⟨ww⟩ϑ = ⟨w⟩ϑ⟨w⟩ϑ + ⟨w⊥w⊥⟩ϑ = w2
∥b̂b̂+

w2
⊥
2

(
I − b̂b̂

)
,

where 〈
. . .
〉
ϑ

.
=

1

2π

∫ 2π

0

dϑ
(
. . .
)

(IX.5.9)

denotes the gyro-average. It will be helpful in what follows to note the following identities:

∂w⊥

∂ϑ
= −w⊥ × b̂ and

∂(w⊥ × b̂)

∂ϑ
= w⊥. (IX.5.10)

With these results, equation (IX.5.7) becomes

fMe

(
w2

v2the
− 5

2

)
w ·∇ lnTe + fMe

[
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√
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4
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w

)3]2w · (ui − ue)

v2theτei
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∂fe1
∂ϑ

+ Cℓee[fe1] +
3
√
π

4τei

(vthe
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)3
L[fe1]

+
3
√
π

2τei

fMe
ne

vthew ·
∫

dw′ w
′

w′3 fe1(w
′). (IX.5.11)

The solution to (IX.5.11) must have the form

fe1 = ⟨fe1⟩ϑ︸ ︷︷ ︸
gyrophase-
independent

piece

+ f̃e1︸︷︷︸
gyrophase-
dependent

piece

. (IX.5.12)

Note that ⟨Cℓee[fe1]⟩ϑ = Cℓee[⟨fe1⟩ϑ] and ⟨L[fe1]⟩ϑ = L[⟨fe1⟩ϑ]. Then, using ⟨w⟩ϑ = w∥b̂,
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the gyro-average of (IX.5.11) is

fMe

(
w2

v2the
− 5

2

)
w∥b̂ ·∇ lnTe + fMe

[
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√
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4
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3
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′
∥

w′3 fe1(w
′).

(IX.5.13)

(Note that the fe1(w
′) in the final integral term of (IX.5.13) may be replaced with

impunity by its gyro-average, ⟨fe1⟩ϑ.) Following (IX.1.14), write

⟨fe1⟩ϑ =
2w∥

v2the
fMe

N∑
k=1

ue,kL
(3/2)
k

(
w2

v2the

)
. (IX.5.14)

Here, the Laguerre sum starts at k = 1 since ue,0 = 0; i.e., there is no parallel mean
flow in fe1, since it’s in fe0 by construction. The right-hand side of (IX.5.13) was already
calculated in §IX.1 (see (IX.1.23)):
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τee
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√
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
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 .
The transformed left-hand side of (IX.5.13) is (with x .
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Inverting, we find

ue,1 =
5

2

τei
me

b̂ ·∇Te ×
45
√
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16
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, (IX.5.16)
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3
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4
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= 0.032 for Z = 1

, (IX.5.17)

Thus, for Z = 1,

⟨fe1⟩ϑ = w∥fMeL
(3/2)
1

(
w2

v2the

)[
0.506× 5

2
τeib̂ ·∇ lnTe + 0.284× me(u∥i − u∥e)
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v2the

)[
0.253× 5

2
τeib̂ ·∇ lnTe − 0.032× me(u∥i − u∥e)

Te

]
(IX.5.18)

Next we obtain f̃e1, the gyrophase-dependent piece. Do (IX.5.11) minus (IX.5.13):

fMe

(
w2

v2the
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)
w⊥ ·∇ lnTe + fMe

[
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4
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√
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+
3
√
π

2τei

fMe
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w′3 f̃e1(w
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where w⊥
.
= w − w∥b̂. Now we impose our subsidiary expansion (IX.4.5) on (IX.5.19).

To lowest order, the only terms in (IX.5.19) that survive are

fMe

(
w2

v2the
− 5

2

)
w⊥ ·∇ lnTe = Ωe

∂f̃
(0)
e1

∂ϑ
, (IX.5.20)
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where we have written f̃e1 = f̃
(0)
e1 + f̃

(1)
e1 + . . . . To next order,
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(IX.5.21)

Equation (IX.5.20) becomes, upon integrating over ϑ,

f̃
(0)
e1 = −fMe L(3/2)

1 (x)
w⊥ × b̂

Ωe
·∇ lnTe (IX.5.22)

There is no need to solve (IX.5.21) for f̃ (1)e1 ; ultimately we’ll only need to know ∂f̃
(1)
e1 /∂ϑ.

It will pay, however, to insert (IX.5.22) into (IX.5.21) and simplify where possible. “Where
possible” means that pesky integral over w′ on the right-hand side of (IX.5.21):∫

dw′ w
′

w′3 f̃
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Well, that’s nice. Equation (IX.5.21) becomes
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Now that we have fe1, let’s compute some moments.
First, the electron heat flux:
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∫
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∫
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∫
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stuff

)
(IX.5.24)
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Using (IX.5.18), the parallel electron heat flux for Z = 1 is (with x .
= w2/v2the)
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Using (IX.5.22), the diamagnetic electron heat flux for any Z is

q×e = −Te
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Finally, using (IX.5.23), the perpendicular electron heat flux is

q⊥e = −Te
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Next, the electron viscosity. Simple: Πe = 0, at least to the order at which we’re
working, since fe1 ∝ P1(ξ) and non-zero viscosity requires a contribution from P2(ξ).
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Finally, the friction terms. Recall the friction force for electron–ion collisions (see
(VIII.4.17))
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Likewise, the perpendicular friction force is
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The collisional energy exchange was already obtained in (VIII.5.16) using Maxwellian
electrons and ions; it is given by

Qie =
3mene
miτei

(Te − Ti). (IX.5.30)

With fe0 Maxwellian and (as we will show) fi0 Maxwellian with Ti ̸= Te, the difference
between the temperatures of fe1 and fi1 will only give small corrections to the collisional
energy exchange rate, and so (IX.5.30) remains valid to leading order. This energy
exchange is, indeed, on a long timescale, and our use of a small mass ratio captures
this.
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A summary of electron transport is as follows (NB: Ωe < 0 and Z = 1):
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The physics captured by these expressions is thoroughly discussed in §IX.6.

IX.5.2. Expansion of the ion kinetic equation
Now the ions. Following the expansion procedure used for the electrons, set

ϵ ∼ ρi
L

∼ λii
L

∼
√
me

mi
≪ 1

and write

fi = fi0 + ϵfi1 + ϵ2fi2 + . . . .

Then (IX.5.2) becomes
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, (IX.5.31)

where the circled numbers indicate the lowest order in ϵ at which each term appears.
(Note that Cie ∼ νie ∼ νii

√
me/mi ∼ ϵCii.)

At zeroth order in ϵ, equation (IX.5.31) is

0 = −Ωi(w× b̂) · ∂fi0
∂w

+ Cii[fi0, fi0], (IX.5.32)

with the condition that
∫
dwwfi0 = 0. The solution to (IX.5.32) is a Maxwellian:

fi0 = fMi
.
=

ni(t, r)

π3/2v3thi(t, r)
exp

[
−|v − ui(t, r)|2

v2thi(t, r)

]
(IX.5.33)

with fi1 adjusted so that ni, ui, and Ti are the true ion density, flow velocity, and
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temperature (recall the discussion in §IX.2). To ensure this, we require∫
dw fi1 =

∫
dwwfi1 =

∫
dww2fi1 = 0

in order that (IX.5.33) hold for the true moments. In other words, fi1 is purely kinetic
(as in the electron case).

At first order in ϵ, equation (IX.5.31) is

dfMi
dti

+w ·∇fMi +

(
∇pi
mini

− Rie

mini
−w ·∇ui

)
· ∂fMi
∂w

= −Ωi(w× b̂) · ∂fi,1
∂w

+ Cℓii[fi1] + Cie[fMi, fMe], (IX.5.34)

where

Cℓii[fi1] = Cii[fi1, fMi] + Cii[fMi, fi1]

is the linearized ion–ion collision operator (see (VIII.7.6)) and Cie[fMi, fMe] is given by
(VIII.5.12) written to O(ϵ):

Cie[fMi, fMe] = −Rei

pi
·wfMi −

2mene
mini

1

τei

(
1− Te

Ti

)(
w2

v2thi
− 3

2

)
fMi

= − Rie

mini
· ∂fMi
∂w

+
2

3

Qie
pi

(
w2

v2thi
− 3

2

)
fMi, (IX.5.35)

where we have used Rie = −Rei and (VIII.5.16) to obtain the final line. We can simplify
some terms in (IX.5.34) by using the following:

•
dfMi
dti

=

[
d lnni
dti

+

(
w2

v2thi
− 3

2

)
d lnTi
dti

]
fMi ;

•
d lnni
dti

= −∇·ui,
d lnTi
dti

= −2

3
∇·ui +

2

3

Qie
pi

;

• w ·∇fMi =

[
w ·∇ ln pi +

(
w2

v2thi
− 5

2

)
w ·∇ lnTi

]
fMi ;

•
∂fMi
∂w

= − 2w

v2thi
fMi .

Thus, equation (IX.5.34) becomes

fMi

[(
w2

v2thi
− 5

2

)
w ·∇ lnTi +

(
ww

v2thi
− I

3

w2

v2thi

)
:Wi

]
= Ωi

∂fi1
∂ϑ

+ Cℓii[fi1]. (IX.5.36)

As before, the solution to (IX.5.36) must have the form

fi1 = ⟨fi1⟩ϑ︸ ︷︷ ︸
gyrophase-
independent

piece

+ f̃i1︸︷︷︸
gyrophase-
dependent

piece

. (IX.5.37)

Note that ⟨Cℓii[fi1]⟩ϑ = Cℓii[⟨fi1⟩ϑ]. Then, using ⟨w⟩ϑ = w∥b̂ and ⟨ww⟩ϑ = w2
∥b̂b̂ +
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(w2
⊥/2)(I − b̂b̂), the gyro-average of (IX.5.36) is

fMi

[(
w2

v2thi
− 5

2

)
w∥b̂ ·∇ lnTi +

(
w2

∥ − w2
⊥/2

v2thi

)(
b̂b̂− I

3

)
:Wi

]
= Cℓii[⟨fi1⟩ϑ]. (IX.5.38)

To solve this equation, we must invert the collision operator on its right-hand side.
Before doing so, note that the difference between (IX.5.38) and its electron equivalent,

equation (IX.5.13), is the second (viscous) term on its left-hand side. The addition of this
term requires the use of both L

(3/2)
k and L

(5/2)
k as our basis functions, where the latter

satisfy the orthogonality relation∫ ∞

0

dxx5/2e−xL(5/2)
p (x)L(5/2)

q (x) =
Γ (p+ 7/2)

Γ (p+ 1)
δpq.

Thus

⟨fi1⟩ϑ =
2w∥

v2thi
fMi

N∑
k=1

ui,kL
(3/2)
k

(
w2

v2thi

)
+

2

3

(
w2

∥ − w2
⊥/2

piv2thi

)
fMi

N∑
k=0

πi,kL
(5/2)
k

(
w2

v2thi

)
(IX.5.39a)

.
= ⟨fi1⟩qϑ + ⟨fi1⟩πϑ. (IX.5.39b)

(Once again, note that the 3/2-Laguerre sum starts at k = 1 since ui,0 = 0; i.e., there
is no parallel mean flow in fi1, since it’s in fi0 by construction.) This expansion works
because the viscous stress associated with ⟨fi1⟩πϑ is∫

dwmi

(
ww − I

3
w2

)
⟨fi1⟩πϑ =

∫
dwmi

〈
ww − I

3
w2

〉
ϑ

⟨fi1⟩πϑ

=

(
b̂b̂− I

3

)∫
dwmi

(
w2

∥ −
w2

⊥
2

)
⟨fi1⟩πϑ

=

(
b̂b̂− I

3

)∫
dwmi

(
w2

∥ −
w2

⊥
2

)
2

3

(
w2

∥ − w2
⊥/2

piv2thi

)
fMi

N∑
k=0

πi,kL
(5/2)
k

(
w2

v2thi

)

=

(
b̂b̂− I

3

)
4

3
√
π

∫ +1

−1

dξ

(
3ξ2 − 1

2

)2 N∑
k=0

πi,k

∫ ∞

0

dxx5/2e−x L
(5/2)
0 (x)︸ ︷︷ ︸

can insert
here, since
it equals 1

L
(5/2)
k (x)

=

(
b̂b̂− I

3

)
4

3
√
π
× 2

5

N∑
k=0

πi,k
15
√
π

8
δk0

=

(
b̂b̂− I

3

)
πi,0,

i.e., the zeroth Laguerre coefficient is the parallel component of the viscous stress tensor.
Good. Before proceeding, it is also worth noting that

w2
∥ −

w2
⊥
2

=
3ξ2 − 1

2
w2 = P2(ξ)w

2,

where P2 is the second Legendre polynomial, so that

⟨fi1⟩πϑ =
2

3
xP2(ξ)fMi

N∑
k=0

πi,k

pi
L
(5/2)
k (x),
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The factor of 2/3 provides the proper normalization of the second Legendre polynomial:
recall that ∫ +1

−1

dξ Pp(ξ)Pq(ξ) =
2

2p+ 1
δpq.

Thus, equation (IX.5.39) may be written

⟨fi1⟩qϑ + ⟨fi1⟩πϑ = 2xP1(ξ)fMi

N∑
k=1

ui,k
vthi

L
(3/2)
k (x) +

2

3
xP2(ξ)fMi

N∑
k=0

πi,k

pi
L
(5/2)
k (x).

(IX.5.40)
If you’re seeing a pattern here, you might be interested to read Grad (1949a,b), in
which the distribution function is expanded in terms of Laguerre-polynomial energy
moments and Legendre-polynomial angular moments of the departures of the lowest-
order distribution function from a Maxwellian. (His expansion was in terms of Hermite
polynomials, but this is equivalent.)

The expansion (IX.5.39) means that we need the linearized collision operator written
out in terms of L(5/2)

k polynomials. Before doing so, let’s handle the heat-flux term first
(⟨fi1⟩qϑ) and then worry about the viscous term (⟨fi1⟩πϑ). In order to calculate the ion
heat flux from (IX.5.38), we must solve

∫
dww∥L

(3/2)
k (x)fMi

(
w2

v2thi
− 5

2

)
w∥b̂ ·∇ lnTi =

ni
τii


√
2

3
√
2

4

3
√
2

4

45
√
2

16


 ui,1

ui,2

 .
(IX.5.41)

The left-hand side of this equation is equal to

− 4

3
√
π

pi
mi

b̂ ·∇ lnTi × δk1
15

√
π

8
,

and so, inverting the 2× 2 matrix on the right-hand side of (IX.5.41), we find

ui,1 =
5

4

√
2τii
mi

b̂ ·∇Ti ×
(
5

4

)
, (IX.5.42)

ui,2 =
5

4

√
2τii
mi

b̂ ·∇Ti ×
(
−1

3

)
. (IX.5.43)

Thus,

⟨fi1⟩qϑ = w∥fMiτi
5

4
b̂ ·∇ lnTi

[
5

4
L
(3/2)
1

(
w2

v2thi

)
− 1

3
L
(3/2)
2

(
w2

v2thi

)]
, (IX.5.44)

where τi
.
=

√
2τii.

Now the viscous term. Consulting Hirshman & Sigmar (1981, equations (4.31)–(4.40)),
the linearized ion–ion collision operator written in terms of the L(5/2)

k (x) polynomials is
(to the order we’re seeking)

−6

5

ni
τi

[
1 3/4
3/4 205/48

][
πi,1
πi,2

]
. (IX.5.45)
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So, we must solve

−6

5

ni
τi

[
1 3/4

3/4 205/48

][
πi,1
πi,2

]
= mini

∫
dw

(
w2

∥ −
w2

⊥
2

)
L
(5/2)
k (x)

× fMi

(
w2

∥ − w2
⊥/2

v2thi

)(
b̂b̂− I

3

)
:Wi. (IX.5.46)

Following through with the velocity-space integration, the right-hand side of (IX.5.46) is

=
3

2
pini

(
b̂b̂− I

3

)
:Wi δk0.

Inverting the 2× 2 matrix on the left-hand side of (IX.5.46) thus obtains

πi,0 = −1025

712
piτi

(
b̂b̂− I

3

)
:Wi (IX.5.47)

πi,1 =
45

178
piτi

(
b̂b̂− I

3

)
:Wi, (IX.5.48)

so that

⟨fi1⟩πϑ = −
(
w2

∥ − w2
⊥/2

v2thi

)
fMiτi

(
b̂b̂− I

3

)
:Wi

[
1025

1068
L
(5/2)
0 (x)− 45

267
L
(5/2)
1 (x)

]
(IX.5.49)

Next we calculate f̃i1, the gyrophase-dependent piece. Do (IX.5.36) minus (IX.5.38):

fMi

(
w2

v2thi
− 5

2

)
w⊥ ·∇ lnTi + fMi

[
w∥w⊥ +w⊥w∥ +w⊥w⊥ − (w2

⊥/2)(I − b̂b̂)

v2thi

]
:Wi

= Ωi
∂f̃i1
∂ϑ

+ Cℓii[f̃i1]. (IX.5.50)

Now we impose our subsidiary expansion (IX.4.5) on (IX.5.50). To lowest order, the only
terms in (IX.5.50) that survive are

fMi

(
w2

v2thi
− 5

2

)
w⊥ ·∇ lnTi + fMi

[
. . .

]
:Wi = Ωi

∂f̃
(0)
i1

∂ϑ
, (IX.5.51)

where we have written f̃i1 = f̃
(0)
i1 + f̃

(1)
i1 + . . . . To next order,

0 = Ωi
∂f̃

(1)
i1

∂ϑ
+ Cℓii[f̃

(0)
i1 ]. (IX.5.52)

Equation (IX.5.51) becomes, upon integrating over ϑ,

f̃
(0)
i1 = fMi L

(3/2)
1 (x)

w⊥ × b̂

Ωi
·∇ lnTi + fMi

w∥w⊥ × b̂+w⊥ × b̂w∥

v2thi
:

Wi

Ωi

+ fMi
w2

⊥
4v2thi

[
sin 2ϑ(x̂x̂− ŷŷ)− cos 2ϑ(x̂ŷ + ŷx̂)

]
:

Wi

Ωi
.

(IX.5.53)

As before, we need not solve (IX.5.52) for f̃ (1)i1 , because an integration by parts will move
a ∂/∂ϑ onto f̃ (1)i1 when computing moments. Now that we have fi1, let’s compute some
moments.
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First, the ion heat flux:

qi =

∫
dww

1

2
miw

2fi ≃
∫

dww
1

2
miw

2fi1

= Ti

∫
dww

(
w2

v2thi
− 5

2

)
fi1 (since

∫
dwwfi1 = 0)

= −Ti
∫

dwwL
(3/2)
1

(
w2

v2thi

)(
⟨fi1⟩ϑ︸ ︷︷ ︸
gives
q∥i

+ f̃
(0)
i1︸︷︷︸

gives
q×i

+ f̃
(1)
i1︸︷︷︸

gives
q⊥i

+ . . .︸︷︷︸
higher-
order
stuff

)
(IX.5.54)

Using (IX.5.44), the parallel ion heat flux is (with x .
= w2/v2thi)

q∥i
.
= −Ti

∫
dwwL

(3/2)
1 (x)⟨fi1⟩ϑ

= −Ti
∫

dw ⟨w⟩ϑ L(3/2)
1 (x)⟨fi1⟩ϑ = −Ti

∫
dww∥b̂L

(3/2)
1 (x)⟨fi1⟩ϑ

= −4π

3

∫
dww4

[
L
(3/2)
1 (x)

]2
fMi

[
25

16
τib̂b̂ ·∇Ti

]
= −4π

3

ne
π
√
π

v2the
2

[
25

16
τib̂b̂ ·∇Ti

] ∫ ∞

0

dxx3/2e−x
[
L
(3/2)
1 (x)

]2
= − 4

3
√
π

pe
me

[
25

16
τib̂b̂ ·∇Ti

]
× 15

√
π

8

= − 125

32︸︷︷︸
≃3.91

piτi
mi

b̂b̂ ·∇Ti. (IX.5.55)

Using (IX.5.53), the diamagnetic ion heat flux is

q×i = −Ti
∫

dww⊥L
(3/2)
1 (x)f̃

(0)
i1

=

∫
dww⊥

[
L
(3/2)
1 (x)

]2
fMi

w⊥ × b̂

Ωi
·∇Ti

=
1

Ωi

∫
dw ⟨w⊥w⊥⟩ϑ

[
L
(3/2)
1 (x)

]2
fMi × b̂ ·∇Ti

=
1

Ωi

4π

3

ni
π
√
π

v2thi
2

(
I − b̂b̂

)
× b̂ ·∇Ti

∫
dxx3/2e−x

[
L
(3/2)
1 (x)

]2
=

1

Ωi

4

3
√
π

pi
mi

b̂×∇Ti ×
15
√
π

8

=
5

2

pi
miΩi

b̂×∇Ti. (IX.5.56)



Irreversible Processes in Plasmas 165

Finally, using (IX.5.52), the perpendicular ion heat flux is

q⊥i = −Ti
∫

dww⊥L
(3/2)
1 (x)f̃

(1)
i1

= −Ti
∫

dw
∂(w⊥ × b̂)

∂ϑ
L
(3/2)
1 (x)f̃

(1)
i1

bp
= Ti

∫
dw (w⊥ × b̂)L

(3/2)
1 (x)

∂f̃
(1)
i1

∂ϑ

= −Ti
∫

dw
w⊥ × b̂

Ωi
L
(3/2)
1 (x)Cℓii[f̃

(0)
i1 ]

= . . . crunch, crunch, crunch . . .

= −2
piτ

−1
i

miΩ2
i

∇⊥Ti. (IX.5.57)

Next, the ion viscosity:

Πi =

∫
dwmi

(
ww − I

3
w2

)
fi ≃

∫
dwmi

(
ww − I

3
w2

)
fi1

=

(
b̂b̂− I

3

) ∫
dwmi

(
w2

∥ −
w2

⊥
2

)
⟨fi1⟩ϑ︸ ︷︷ ︸

= Π∥i

+

∫
dwmi

(
ww − I

3
w2

)(
f̃
(0)
i1︸︷︷︸

gives
Π×i

+ f̃
(1)
i1︸︷︷︸

gives
Π⊥i

+ . . .︸︷︷︸
higher-
order
stuff

)
(IX.5.58)

We already found the parallel ion viscosity Π∥i = πi,0:

Π∥i = − 1025

1068︸ ︷︷ ︸
≃0.96

piτi
3

2

(
b̂b̂− I

3

)
:Wi. (IX.5.59)
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Using (IX.5.53), the diamagnetic ion viscosity is

Π×i =

∫
dwmi

(
ww − I

3
w2

)
f̃
(0)
i1

=

∫
dwmi

(
w∥w⊥ +w⊥w∥ +w⊥w⊥

)
fMi

×
{
w∥w⊥ × b̂+w⊥ × b̂w∥

v2thi
+

w2
⊥

4v2thi

[
sin 2ϑ(x̂x̂− ŷŷ)− cos 2ϑ(x̂ŷ + ŷx̂)

]}
:

Wi

Ωi

= . . . crunch, crunch, crunch . . .

=
pi
4Ωi

[
2
(
b̂ŷ + ŷb̂

)(
b̂x̂+ x̂b̂

)
− 2
(
b̂x̂+ x̂b̂

)(
b̂ŷ + ŷb̂

)
+
(
x̂x̂− ŷŷ

)(
x̂ŷ + ŷx̂

)
+
(
x̂ŷ + ŷx̂

)(
x̂x̂− ŷŷ

)]
:Wi

=
pi
4Ωi


Wxy +Wyx Wxx −Wyy −2(Wzy +Wyz)

Wxx −Wyy −(Wxy +Wyx) 2(Wzx +Wxz)

−2(Wzy +Wyz) 2(Wzx +Wxz) 0


=

pi
4Ωi

[
b̂×Wi ·

(
I + 3b̂b̂

)
−
(
I + 3b̂b̂

)
·Wi× b̂

]
. (IX.5.60)

Finally, using (IX.5.52), the perpendicular ion viscosity is

Π⊥i =

∫
dwmi

(
ww − I

3
w2

)
f̃
(1)
i1

=

∫
dwmi

(
w∥w⊥ +w⊥w∥ +w⊥w⊥

)
f̃
(1)
i1

=

∫
dwmi

∂

∂ϑ

(
w∥w⊥ × b̂+w⊥ × b̂w∥

)
f̃
(1)
i1

+

∫
dwmi

w2
⊥
4

∂

∂ϑ

[
sin 2ϑ(x̂x̂− ŷŷ)− cos 2ϑ(x̂ŷ + ŷx̂)

]
f̃
(1)
i1

bp
= −

∫
dwmi

(
w∥w⊥ × b̂+w⊥ × b̂w∥

)∂f̃ (1)i1

∂ϑ

−
∫

dwmi
w2

⊥
4

[
sin 2ϑ(x̂x̂− ŷŷ)− cos 2ϑ(x̂ŷ + ŷx̂)

]∂f̃ (1)i1

∂ϑ

=

∫
dwmi

(
w∥

w⊥ × b̂

Ωi
+

w⊥ × b̂

Ωi
w∥

)
Cℓii[f̃

(0)
i1 ]∫

dwmi
w2

⊥
4Ωi

[
sin 2ϑ(x̂x̂− ŷŷ)− cos 2ϑ(x̂ŷ + ŷx̂)

]
Cℓii[f̃

(0)
i1 ].
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Insert (IX.5.53) for f̃ (0)i1 to obtain

Π⊥i = −
∫

dwmi

(
w∥

w⊥ × b̂

Ωi
+

w⊥ × b̂

Ωi
w∥

)
6

5

fMi
τi

(
w∥w⊥ × b̂+w⊥ × b̂w∥

v2thi

)
:

Wi

Ωi

−
∫

dwmi
w2

⊥
4Ωi

[
sin 2ϑ(x̂x̂− ŷŷ)− cos 2ϑ(x̂ŷ + ŷx̂)

]
× 6

5

fMi
τi

w2
⊥

4v2thi

[
sin 2ϑ(x̂x̂− ŷŷ)− cos 2ϑ(x̂ŷ + ŷx̂)

]
:

Wi

Ωi

= . . . crunch, crunch, crunch . . .

= −3

5

piτ
−1
i

Ω2
i

[(
b̂ŷ + ŷb̂

)(
b̂ŷ + ŷb̂

)
+
(
b̂x̂+ x̂b̂

)(
b̂x̂+ x̂b̂

)]
:Wi

− 3

20

piτ
−1
i

Ω2
i

[(
x̂ŷ + ŷx̂

)(
x̂ŷ + ŷx̂

)
+
(
x̂x̂− ŷŷ

)(
x̂x̂− ŷŷ

)]
:Wi

= − 3

10

piτ
−1
i

Ω2
i


1

2
(Wxx −Wyy)

1

2
(Wxy +Wyx) 2(Wxz +Wzx)

1

2
(Wxy +Wyx) −1

2
(Wxx −Wyy) 2(Wyz +Wzy)

2(Wzx +Wxz) 2(Wzy +Wyz) 0


= − 3

10

piτ
−1
i

Ω2
i

[
I⊥ ·Wi · I⊥ +

1

2
I⊥b̂b̂ :Wi + 4I⊥ ·Wi · b̂b̂+ 4b̂b̂ ·Wi · I⊥

]
, (IX.5.61)

where I⊥
.
= I − b̂b̂.

A summary of ion transport is as follows:

q∥i = −3.91
piτi
mi

b̂b̂ ·∇Ti

q×i =
5

2

pi
miΩi

b̂×∇Ti

q⊥i = −2
piτ

−1
i

miΩ2
i

∇⊥Ti

Π∥i = −0.96piτi
3

2

(
b̂b̂− I

3

)(
b̂b̂− I

3

)
:Wi

Π×i =
pi
4Ωi

[
b̂×Wi ·

(
I + 3b̂b̂

)
−
(
I + 3b̂b̂

)
·Wi× b̂

]
Π⊥i = − 3

10

piτ
−1
i

Ω2
i

[
I⊥ ·Wi · I⊥ +

1

2
I⊥b̂b̂ :Wi + 4I⊥ ·Wi · b̂b̂+ 4b̂b̂ ·Wi · I⊥

]
where τi

.
=

√
2τii and

W .
= ∇u+ (∇u)T − 2

3
(∇·u)I .

is the rate-of-strain tensor.19

19If you’d like to read more about transport coefficients, heat fluxes, and viscous stresses, consult
Catto & Simakov (2004). Those authors talk about so-called Mikhailovskii–Tsypin contributions
to these transport terms when a drift ordering is assumed (rather than Braginskii’s “high-flow”
ordering, which takes the Mach number of be of order unity).
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IX.6. Discussion of Braginskii transport
First, read §3 of Braginskii (1965)!
That there should be different transport efficiencies in different directions in a mag-

netized plasma should not be surprising: the smallness of Larmor radii puts constraints
on the motions of particles comprising the fluid elements, and these constraints manifest
quite clearly in all the b̂ · , b̂× , b̂b̂ : , etc. operations. The parallel transport is the easiest
to understand: when Ωατα ≫ 1, particles are constrained to move along field lines, and
so a collisional mean free path can easily be transversed along the field, but not across
it. Here’s an illustration:

and can viscously transport momentum and conductively transport heat
between one another. But these two cannot easily do so with , because of the
smallness of the particles’ Larmor radii. It is very difficult for a particle to travel a
collisional mean free path across a field line. In fact, in Braginskii’s ordering, to leading
order in ρ/λmfp, such particles cannot do so. The result is that transport is along field
lines, and only gradients of quantities oriented along field lines are adequately sampled. If
we relax Ωατα ≫ 1, then there is some cross-field transport, which is a bit more difficult
to understand. We’ll get to that after a discussion of parallel transport.

IX.6.1. Discussion of parallel transport

Collecting together all the terms related to collisional transport occurring along the
magnetic field, we have

q∥e = −3.16
peτe
me

b̂b̂ ·∇Te − 0.71ne(u∥i − u∥e), (IX.6.1a)

q∥i = −3.91
piτi
mi

b̂b̂ ·∇Ti, (IX.6.1b)

Π∥i = −0.96piτi
3

2

(
b̂b̂− I

3

)(
b̂b̂− I

3

)
:Wi, (IX.6.1c)

R∥ei = −0.71neb̂b̂ ·∇Te + 0.51
mene
τe

(u∥i − u∥e) (IX.6.1d)

We have already discussed R∥ei in the context of the electron–ion collision operator. But
why does a temperature gradient provide a friction force, and why are ion–electron drifts
giving a heat flux?

The former, the −0.71neb̂b̂ ·∇Te term in the parallel friction force, is due to the fact
that, in the presence of a temperature gradient, the energy of a particle is correlated with
its direction: particles from high-temperature regions will have more energy than those
from low-temperature regions. The difference in energy gives a friction force because
particles coming from the low-temperature regions will collide more often (recall τ ∝
T 3/2) and will lose more momentum than particles going in the opposite direction, coming
from high-temperature regions. Figure 1 in Braginskii (1965) shows this:
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Flows arriving at z = 0 from the left (u+) come from regions with higher T and thus
experience a weaker friction force R+. Flows arriving at z = 0 from the right (u−)
come from regions with lower T and thus experience a stronger friction force R−. The
unbalanced part of the friction will be ∼−λmfp(d lnT/dz) × mnvth/τ , which is just a
Taylor expansion of the friction force about z = 0. While the form −neb̂b̂ ·∇Te makes no
explicit reference to the collision timescale, the force is due to collisions: the dependence
on the temperature gradient actually comes via d ln τ/dz = (3/2)d lnT/dz.

The latter, the −0.71ne(u∥i−u∥e) term in the parallel electron heat flux, has a similar
origin: slow electrons are more likely to collide with ions and so are more apt to acquire
the mean ion velocity than are fast electrons. This gives a heat flow, even if u∥e = 0.
Again, even though this term does not explicitly make reference to the collision frequency,
is it physically caused by the temperature dependence of τei.

The fact that both electron-heat-flux terms have a 0.71 prefactor is not an accident.
This is related to something called “Onsager symmetry”, a symmetry of the off-diagonal
terms in the transport laws. You can read about it in, e.g., Chapter 26 of Krommes
(2018).

Regarding the b̂b̂ ·∇T heat fluxes, note that (i) electron heat transport is a factor
∼
√
mi/me faster than is ion heat transport (i.e., electrons dominate the thermal con-

ductivity) and (ii) one must be very careful in a system in which b̂ is a fluctuating
quantity, since the heat flux is not only directed along b̂ but also is proportional to
the projection of ∇T along b̂. (This causes interesting effects in a weakly collisional,
stratified plasma; see Balbus (2000, 2001); Quataert (2008); Kunz (2011) for a Braginskii
calculation and Xu & Kunz (2016) for a more general approach starting from the Vlasov
equation.)

Finally, the parallel ion viscous stress Π∥i. First, note that the ions dominate the
parallel viscosity (by a factor ∼

√
mi/me). Secondly, while the illustration of field-line-

separated fluid elements can give some intuition for why momentum would be difficult
to transport across field lines, consider the following alternative interpretation of Π∥. . .

Recall (IX.5.8): w = w∥b̂ + w⊥(cosϑx̂ + sinϑŷ). Using this in the definition of the
pressure tensor P (see (IX.2.22)), we find

P =

∫
dwmw2

∥f b̂b̂+

∫
dwmw2

⊥
(
cos2 ϑx̂x̂+ sin2 ϑŷŷ

)
f

+

∫
dw

1

2
mw2

⊥ sin 2ϑ(x̂ŷ + ŷx̂)f +

∫
dwmw∥w⊥

[
cosϑ(x̂b̂+ b̂x̂) + sinϑ(ŷb̂+ b̂ŷ)

]
f.

(IX.6.2)

To lowest order in ω/Ω, we have shown that f is gyrotropic, f = ⟨f⟩ϑ = f(w∥, w⊥).
Thus, the integrals over sinϑ, cosϑ, and sin 2ϑ are all zero and the entire second line of
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(IX.6.2) vanishes. The result is that

P =

∫
dwmw2

∥f︸ ︷︷ ︸
.
= p∥

b̂b̂+

∫
dw

1

2
mw2

⊥f︸ ︷︷ ︸
.
= p⊥

(I − b̂b̂) = p∥b̂b̂+ p⊥(I − b̂b̂), (IX.6.3)

where p∥ (p⊥) is the parallel (perpendicular) pressure; i.e., the pressure tensor is diagonal
in a frame aligned with the magnetic field. Just to remind you: if ν−1 and λmfp were the
smallest interesting scales, then the dominant term in the kinetic equation would be
C[f ] = 0, and so f would be Maxwellian and the pressure would be isotropic. Thus, we
are considering deviations from a Maxwellian. Now then, with

p
.
=

1

3
trP =

2

3
p⊥ +

1

3
p∥, (IX.6.4)

equation (IX.6.3) may be written as

P = pI −
(
b̂b̂− I

3

)
(p⊥ − p∥)

.
= pI +Π. (IX.6.5)

And so we see that the viscous stress is related to the pressure anisotropy, p⊥ − p∥.
Why would there be a bias in the thermal pressure with respect to the magnetic-field

direction? Recall adiabatic invariance in a magnetized plasma:

µ
.
=
mw2

⊥
2B

≃ const, (IX.6.6)

J
.
=

∮
dℓmw∥ ≃ const. (IX.6.7)

Averaging (IX.6.6) over the particle distribution function gives ⟨µ⟩ = T⊥/B ≃ const;
i.e., if the magnetic-field strength changes in a fluid element, so too must T⊥. Similarly
averaging the square of (IX.6.7) over the particle distribution function gives ⟨J2⟩ ∝
T∥ℓ

2 ≃ const. Taking the length of the mirroring field ℓ to be ∝B/n, this implies
T∥(B/n)

2 ≃ const; i.e., if the ratio of magnetic-field strength and plasma density change
in a fluid element, so too must T∥. Thus, we obtain the double-adiabatic laws discussed
in Chew et al. (1956),

d

dt

(
T⊥
B

)
=

d

dt

(
p⊥
nB

)
≃ 0, (IX.6.8)

d

dt

(
T∥B

2

n2

)
=

d

dt

(
p∥B

2

n3

)
≃ 0. (IX.6.9)

You should understand the “≃” as holding true on timescales smaller than those on which
the two adiabatic invariants are broken (e.g., collisional timescales or, in the case of the
second adiabatic invariant J , acoustic timescales). Note that combining (IX.6.11) and
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(IX.6.12) yields an equation for the evolution of the total pressure p (see (IX.6.4)):

dp

dt
=

2

3

dp⊥
dt

+
1

3

dp∥

dt

=
2

3
p⊥

d

dt
lnBn︸ ︷︷ ︸

use p⊥ = p
+ (p⊥ − p∥)/3

− 2

3
ν(p⊥ − p) +

1

3
p∥

d

dt
ln
n3

B2︸ ︷︷ ︸
use p∥ = p

− 2(p⊥ − p∥)/3

− 1

3
ν(p∥ − p)

=
5

3
p
d lnn

dt
+

2

3
(p⊥ − p∥)

d

dt
ln

B

n2/3
.

Multiplying through by 3/2 and moving the d lnn/dt term to the left-hand side results
in an evolutionary equation for the hydrodynamic entropy, ln pn−5/3:

3

2
p
d

dt
ln

p

n5/3
= (p⊥ − p∥)

d

dt
ln

B

n2/3
(IX.6.10)

Note that if p⊥ = p∥, entropy is conserved in a fluid element. This will come in handy.
Now, if our interest is in weakly collisional plasmas – which, in this class, it is – then

the difference between p⊥ and p∥ will remain small. One way to model this (correctly, in
fact) is to modify (IX.6.8) and (IX.6.9) to include the isotropizing effect of collisions:

dp⊥
dt

= p⊥
d

dt
lnBn− ν(p⊥ − p), (IX.6.11)

dp∥

dt
= p∥

d

dt
ln
n3

B2
− ν(p∥ − p). (IX.6.12)

Note that, if ν ≫ d/dt, these equations effectively push p⊥, p∥ → p. Subtracting (IX.6.12)
from (IX.6.11) provides an equation for the time evolution of the pressure anisotropy:

d

dt
(p⊥ − p∥) = p⊥

d

dt
lnBn− p∥

d

d
ln
n3

B2
− ν(p⊥ − p∥)

≃ 3p
d

dt
ln

B

n2/3
− ν(p⊥ − p∥), (IX.6.13)

where in the second equality we have used |p⊥ − p∥| ≪ p. In this case, the left-hand side
of (IX.6.13) is much smaller than the collisional term (recall Braginskii’s ordering), so
that

p⊥ − p∥ ≃ 3p

ν

d

dt
ln

B

n2/3
. (IX.6.14)

This states that pressure anisotropy in a weakly collisional, magnetized plasma is set via
a balance between adiabatic production and collisional relaxation. In this case, equation
(IX.6.14) becomes

3

2
p
d

dt
ln

p

n5/3
=

3p

ν

(
d

dt
ln

B

n2/3

)2

⩾ 0. (IX.6.15)

Entropy cannot decrease. Good. Namely, collisional isotropization of the pressure in-
creases entropy.

How does all this relate to the form of Π∥ that we derived by using the Braginskii
ordering in the Chapman–Enskog expansion? Recall the continuity equation

d lnn

dt
= −∇·u,
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and, from the induction equation,

d lnB

dt
=
(
b̂b̂− I

)
:∇u

(to be proven in HW07). Then

d

dt
ln

B

n2/3
=

[(
b̂b̂− I

)
− 2

3

(
−I
)]

:∇u =

(
b̂b̂− I

3

)
:∇u. (IX.6.16)

Inserting this expression into (IX.6.14) obtains the Braginskii pressure anisotropy

p⊥ − p∥ =
3p

ν

(
b̂b̂− I

3

)
:∇u (IX.6.17)

Do you see it yet? Substitute (IX.6.17) into (IX.6.5) to find

P = pI − 3p

ν

(
b̂b̂− I

3

)(
b̂b̂− I

3

)
:∇u = pI +Π. (IX.6.18)

If we identify ν with (0.96τ)−1, then the expression for Π in (IX.6.18) is precisely
the same as was obtained via the Chapman–Enskog procedure for the parallel viscous
stress (cf. (IX.5.59))! Pressure anisotropy in a weakly collisional, magnetized plasma is
parallel viscosity (“Braginskii viscosity”). Note further that the entropy equation (IX.6.15)
becomes

3

2
p
d

dt
ln

p

n5/3
=

3p

ν

[(
b̂b̂− I

3

)
:∇u

]2
; (IX.6.19)

i.e., viscous heating. Thus, only motions that change the magnetic-field strength and
density (provided that B ̸∝ n2/3) are viscously damped. Linear shear Alfvén waves
are not damped. Nonlinear circularly polarized Alfvén waves are not damped. Neither
produce any change in the form of the distribution function; rather, they simply define
the frame in which the distribution function is to be measured. Magnetosonic waves, on
the other hand, do produce pressure anisotropy, and thus are viscously damped.

IX.6.2. Discussion of perpendicular transport
Collecting together all the terms related to collisional transport occurring across the

magnetic field, we have

q×e =
5

2

pe
meΩe

b̂×∇Te, (IX.6.20a)

q×i =
5

2

pi
miΩi

b̂×∇Ti, (IX.6.20b)

q⊥e = −4.66
peτ

−1
ee

meΩ2
e

∇⊥Te +
3

2

peτ
−1
ei

Ωe
b̂× (ui − ue), (IX.6.20c)

q⊥i = −2
piτ

−1
i

miΩ2
i

∇⊥Ti, (IX.6.20d)

Π×i =
pi
4Ωi

[
b̂×Wi ·

(
I + 3b̂b̂

)
−
(
I + 3b̂b̂

)
·Wi× b̂

]
, (IX.6.20e)

Π⊥i = − 3

10

piτ
−1
i

Ω2
i

[
I⊥ ·Wi · I⊥ +

1

2
I⊥b̂b̂ :Wi + 4I⊥ ·Wi · b̂b̂+ 4b̂b̂ ·Wi · I⊥

]
, (IX.6.20f )

R⊥ei =
3

2

me

Ωeτei
b̂×∇Te +

mene
τei

(u⊥i − u⊥e). (IX.6.20g)



Irreversible Processes in Plasmas 173

Let us focus first on the terms with subscript “⊥” and set aside those with a b̂× operator
in them.

The first thing to notice is that |q⊥i/q⊥e| ∼
√
mi/me ≫ 1, and so the ions dominate the

perpendicular transport of heat along ∇⊥Ti. This dominance is the opposite of |q∥i/q∥e| ∼√
me/mi ≪ 1 for the parallel transport. The reason is that |q⊥/q∥| ∼ (Ωτ)−2 ∼

(ρ/λmfp)
2, and so the species with the larger Larmor radius has more perpendicular

transport. Physically, having a larger Larmor radius means that the particle orbits sample
more widely differing temperatures for a given ∇⊥T . Put differently, particles travel a
distance ∆ℓ ∼ ρ in a collision time, and so diffusive transport ∼(∆ℓ)2/∆t ∼ ρ2ν is larger
for larger ρ. By contrast, parallel diffusive transport ∼(∆ℓ)2/∆t ∼ λ2mfpν ∼ λmfpvth, and
so the species with the larger thermal speed (viz., the electrons) has the faster parallel
diffusion of heat.

Next, the (mene/τei)(u⊥i−u⊥e) term in Rei. This, again, is just the standard friction
force due to collisional drag, but is oriented across the field lines. Since cross-field drifts
are, at least in Braginskii’s “high-flow” ordering, species independent (think E×B), this
term is small.

Finally, Π⊥i. This is ∼(Ωiτi)
−2 times smaller than Π∥i. Gradients in velocity are

sampled across the magnetic field by gyromotion, and so diffusive transport of momentum
by collisions is constrained by how large ρi is relative to λmfp. Same idea as with the
cross-field heat flow.

Next, the weird b̂× terms: these arise because the act of particle gyration about the
magnetic field rotates temperature and velocity differences by 90◦. Let us look first at
the heat fluxes q×e and q×i. Note that |q×e| ∼ |q×i|; their magnitude is independent
of mass! Also note that they are in different directions, since Ωe < 0 and Ωi > 0. This
will make sense, since the sense of rotation in the Larmor orbits of ions and electrons
is different, and so the species might herald from different thermal environments. These
are fundamentally finite-Larmor-radius (FLR) terms; they rely on ρ/L being finite. Note
that the collision time is not in q×. Below is a diagram explaining their physical origin:

Bigger Larmor orbit on the left, since hotter plasma is over there. This orbit is taken
by a faster particle than the one on the right, and so there is a net energy flow in the
direction −b̂×∇Te (upwards in the picture). NB: heat is transported along isotherms!

The friction force ∝b̂×∇Te and the corresponding (Onsager-symmetric) heat flow
∝b̂× (ui−ue) also have their origin in FLR effects, but for them collisions are involved.
The former is due to the fact that, in the presence of a temperature gradient, the energy
of a particle is correlated with its direction. This is just as in the parallel friction force, but
now its direction is not along the field (b̂ ·∇T ̸= 0) but rather across the radius because
of Larmor motion. The particles arrive from a gyroradius away rather than a mean free
path away: particles coming from low-temperature regions will collide more often and
experience a larger friction force (R− > R+), giving an imbalance along b̂×∇T/Ω:
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The latter is caused by the fact that, for one-half of a Larmor orbit, the electrons are
traveling against the ion flow and, for the other half, the electrons are traveling with the
ion flow. That means that the friction force is different along the Larmor orbit. Picture
this:

Electrons arriving from below are gaining energy from ion collisions, whereas those
arriving from above are losing energy from ion collisions. This gives a net energy transport
at the intersection of these orbits.

Finally, Π×i. This is called “gyroviscosity”; it arises from Larmor-scale spatial varia-
tions in the guiding-center E×B drifts. It is dissipationless and transports momentum
across the magnetic field. Note that it is independent of collision frequency. Momentum
transport is deflected in the cross-field direction due to Larmor motion. Braginskii passes
the explanation of this term to a “lucid discussion” by Kaufman (1960). I do not find
Kaufman’s discussion particularly lucid, so I’ll offer up my own.

Gyroviscosity is a peculiar feature of working with particle coordinates rather than
guiding-center coordinates. In the latter, with R

.
= r − ρ, the distribution function

evaluated at the guiding-center position is f(R) = f(r) − ρ ·∇f(r) + O(ρ/L)2. The
−ρ ·∇f(r) term here is what is responsible for the “diamagnetic” fluxes of momentum
and heat that appear in the Braginskii equations as b̂×∇T and b̂×W terms. “Gyro-
viscosity” is a bit of a misnomer, though – no momentum is being dissipated! – and it
even appears in collisionless plasmas with finite Larmor radii. What it does is reorient
momentum through rotation.

Consider an oscillatory displacement ξ⊥ perpendicular to the magnetic field in a
plasma (collisional or collisionless, doesn’t matter). It is straightforward to show using
flux freezing and the momentum equation that ξ⊥, in the limit me/mi → 0, satisfies

(
d2

dt2
+ k2∥v

2
A

)
ξ⊥ = −

k2∥v
2
thi

2Ωi

dξ⊥
dt

× b̂

if ξ⊥ ∝ exp(ik∥z). The right-hand side of this equation is due to off-diagonal components
of the pressure tensor – the “gyroviscosity”. The left-hand side is just an Alfvén wave.
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Note that the right-hand side rotates the displacement about b̂:

(
d2

dt2
+ k2∥v

2
A

)
ξx = −

k2∥v
2
thi

2Ωi

dξy
dt

,(
d2

dt2
+ k2∥v

2
A

)
ξy = +

k2∥v
2
thi

2Ωi

dξx
dt

,

which lends the Alfvén wave some circular polarization on scales k∥ρi ∼ β
−1/2
i . Let

ξ⊥ ∝ exp(−iωt) to obtain

(
−ω2 + k2∥v

2
A

)
ξx = +iω

k2∥v
2
thi

2Ωi
ξy,

(
−ω2 + k2∥v

2
A

)
ξy = −iω

k2∥v
2
thi

2Ωi
ξx,

=⇒ ω2 = k2∥v
2
A +

1

2

(
k2∥v

2
thi

2Ωi

)2

±
k2∥v

2
thi

2Ωi

√√√√k2∥v
2
A +

1

4

(
k2∥v

2
thi

2Ωi

)2

. (IX.6.21)

Note that gyroviscosity gives dispersion, not dissipation! At long wavelengths, one re-
covers Alfvén waves. At small wavelengths such that k∥ρi ≫ β

−1/2
i , one gets either

ω ≈ k2∥v
2
thi/2Ωi or ω ≈ 2Ωi/βi, depending on whether the wave is right-handed or left-

handed.

One way of thinking about this is that, as a particle streams along a field line with
speed ∼vthi, it samples different E×B drifts. If the structure along the field is such that
the particle encounters different E×B drifts in one Larmor orbit, then gyroviscosity is
important. This occurs when k∥ρi ∼ vwave/vparticle. For waves/instabilities whose vwave

is proportional to some inverse power of k∥, gyroviscosity can be stabilizing (e.g., see §5.2
of Xu & Kunz (2016) or Ferraro (2007) for astrophysical examples).

IX.7. Curvilinear considerations

There are a lot of vectors, tensors, and gradients in the Braginskii transport model,
and so it’s useful to catalog here a few vector identities and expressions of these objects
in curvilinear coordinates. Given a scalar f , vector A with components Ai, and tensor
T with components Tij . . .
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Cylindrical polar coordinates (R,ϕ, z):

∇f =
∂f

∂R
R̂+

1

R

∂f

∂ϕ
ϕ̂+

∂f

∂z
ẑ, (IX.7.1)

∇·A =
1

R

∂(RAR)

∂R
+

1

R

∂Aϕ
∂ϕ

+
∂Az
∂z

, (IX.7.2)

∇A =
∂AR
∂R

R̂R̂+

(
1

R

∂AR
∂ϕ

− Aϕ
R

)
R̂ϕ̂+

∂AR
∂z

R̂ẑ

+
∂Aϕ
∂R

ϕ̂R̂+

(
1

R

∂Aϕ
∂ϕ

+
AR
R

)
ϕ̂ϕ̂+

∂Aϕ
∂z

ϕ̂ẑ

+
∂Az
∂R

ẑR̂+
1

R

∂Az
∂ϕ

ẑϕ̂+
∂Az
∂z

ẑẑ, (IX.7.3)

(B ·∇)A =

(
BR

∂AR
∂R

+
Bϕ
R

∂AR
∂ϕ

+Bz
∂AR
∂z

− BϕAϕ
R

)
R̂

+

(
BR

∂Aϕ
∂R

+
Bϕ
R

∂Aϕ
∂ϕ

+Bz
∂Aϕ
∂z

+
BϕAR
R

)
ϕ̂

+

(
BR

∂Az
∂R

+
Bϕ
R

∂Az
∂ϕ

+Bz
∂Az
∂z

)
ẑ, (IX.7.4)

∇·T =

(
∂TRR
∂R

+
1

R

∂TϕR
∂ϕ

+
∂TzR
∂z

+
TRR − Tϕϕ

R

)
R̂

+

(
∂TRϕ
∂R

+
1

R

∂Tϕϕ
∂ϕ

+
∂Tzϕ
∂z

+
TRϕ + TϕR

R

)
ϕ̂

+

(
∂TRz
∂R

+
1

R

∂Tϕz
∂ϕ

+
∂Tzz
∂z

+
TRz
R

)
ẑ. (IX.7.5)

For example, the rate-of-strain tensor for a differentially rotating plasma with velocity
u = Rϖ(R, z)ϕ̂ is given by

W =
∂ϖ

∂ lnR
(R̂ϕ̂+ ϕ̂R̂) +R

∂ϖ

∂z
(ϕ̂ẑ + ẑϕ̂). (IX.7.6)
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Spherical polar coordinates (r, θ, ϕ):

∇f =
∂f

∂r
r̂ +

1

r

∂f

∂θ
θ̂ +

1

r sin θ

∂f

∂ϕ
ϕ̂, (IX.7.7)

∇·A =
1

r2
∂(r2Ar)

∂r
+

1

r sin θ

∂(sin θAθ)

∂θ
+

1

r sin θ

∂Aϕ
∂ϕ

, (IX.7.8)

∇A =
∂Ar
∂r

r̂r̂ +

(
1

r

∂Ar
∂θ

− Aθ
r

)
r̂θ̂ +

(
1

r sin θ

∂Ar
∂ϕ

− Aϕ
r

)
r̂ϕ̂

+
∂Aθ
∂r

θ̂r̂ +

(
1

r

∂Aθ
∂θ

+
Ar
r

)
θ̂θ̂ +

(
1

r sin θ

∂Aθ
∂ϕ

− cot θ
Aϕ
r

)
θ̂ϕ̂

+
∂Aϕ
∂r

ϕ̂r̂ +
1

r

∂Aϕ
∂θ

ϕ̂θ̂ +

(
1

r sin θ

∂Aϕ
∂ϕ

+
Ar
r

+ cot θ
Aθ
r

)
ϕ̂ϕ̂, (IX.7.9)

(B ·∇)A =

(
Br

∂Ar
∂r

+
Bθ
r

∂Ar
∂θ

+
Bϕ
r sin θ

∂Ar
∂ϕ

− BθAθ +BϕAϕ
r

)
r̂

+

(
Br

∂Aθ
∂r

+
Bθ
r

∂Aθ
∂θ

+
Bϕ
r sin θ

∂Aθ
∂ϕ

+
BθAr
r

− cot θ
BϕAϕ
r

)
ϕ̂

+

(
Br

∂Aϕ
∂r

+
Bθ
r

∂Aϕ
∂θ

+
Bϕ
r sin θ

∂Aϕ
∂ϕ

+
BϕAr
r

+ cot θ
BϕAθ
r

)
ϕ̂, (IX.7.10)

∇·T =

(
∂Trr
∂r

+
1

r

∂Tθr
∂θ

+
1

r sin θ

∂Tϕr
∂ϕ

+
2Trr − Tθθ − Tϕϕ

r
+ cot θ

Tθr
r

)
r̂

+

(
∂Trθ
∂r

+
1

r

∂Tθθ
∂θ

+
1

r sin θ

∂Tϕθ
∂ϕ

+
2Trθ + Tθr

r
+ cot θ

Tθθ − Tϕϕ
r

)
θ̂

+

(
∂Trϕ
∂r

+
1

r

∂Tθϕ
∂θ

+
1

r sin θ

∂Tϕϕ
∂ϕ

+
2Trϕ + Tϕr

r
+ cot θ

Tθϕ + Tϕθ
r

)
ϕ̂.

(IX.7.11)

For example, the rate-of-strain tensor for a differentially rotating plasma with velocity
u = Rϖ(r, θ)ϕ̂ with R = r sin θ is given by

W = sin θ
∂ϖ

∂ ln r
(r̂ϕ̂+ ϕ̂r̂) + sin θ

∂ϖ

∂θ
(θ̂ϕ̂+ ϕ̂θ̂). (IX.7.12)

IX.8. Linear waves in Braginskii-MHD
In many situations, it is sufficient to consider only the dominant component of col-

lisional transport occurring in the local magnetic-field direction. In this situation, the
viscous stress tensor and the heat flux are given by

Πα = −
(
b̂b̂− I

3

)
(p⊥α − p∥α) = −mαnαµα

(
b̂b̂− I

3

)(
b̂b̂− I

3

)
:∇uα, (IX.8.1)

qα = b̂qα = −nακαb̂b̂ ·∇Tα, (IX.8.2)
where the viscous and thermal diffusion coefficients for ions (α = i) and electrons (α = e)
are given by

µi = 0.96× 3

2
v2thiτi, µe = 0.73× 3

2
v2theτe,

κi = 1.56× 5

4
v2thiτi, κe = 1.26× 5

4
v2theτe.
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As you know by now, the multiplicative prefactors above are specific to the Landau
collision operator (they all equal 1 for a Krook operator). The ion and electron collision
timescales are

τi =
3
√
miT

3/2
i

4
√
πnλie4

= 0.67
T 2
i

nλi
yr, τe =

3
√
meT

3/2
e

4
√
2πnλee4

= 0.011
T 2
e

nλe
yr;

where λα is the Coulomb logarithm of species α; in the final numerical expressions, T
is measured in eV and n in cm−3. Note that particle collisional mean free paths are all
comparable, λe ∼ λi, despite the collision timescales being different.

As a reminder, two further assumptions in the Braginskii model are that (i) the Mach
number M of the bulk flows is of order unity with respect to the square root of the mass
ratio,

√
mi/me, and (ii) the ions and electrons have comparable temperatures differing by

no more than ∼
√
mi/me. The former assumption is called a “high-flow” ordering: subsonic

and supersonic flows are allowed, so long as they do not interfere with various mass-ratio
expansions that occur in Braginskii’s calculation. A consequence of this ordering is that
the perpendicular flow velocity of the ions and electrons are very nearly the same and
equal to the E×B drift velocity.

Under these conditions, the single-fluid Braginskii-MHD equations for a quasi-neutral
ion-electron plasma are:

Dϱ

Dt
= −ϱ∇·u, (IX.8.3)

ϱ
Du

Dt
= g −∇

(
p⊥ +

B2

8π

)
+∇·

[
b̂b̂

(
B2

4π
+ p⊥ − p∥

)]
= g −∇

(
p+

B2

8π

)
+

B ·∇B

4π
+∇·

[
ϱµ

(
b̂b̂− I

3

)(
b̂b̂− I

3

)
:∇u

]
, (IX.8.4)

DB

Dt
= B ·∇u−B∇·u, (IX.8.5)

p
Ds

Dt
= ∇·

(
nκb̂b̂ ·∇Te

)
+ ϱµ

[(
b̂b̂− I

3

)
:∇u

]2
, (IX.8.6)

where ϱ is the mass density, p = pi+pe, s = (3/2) ln pϱ−5/3, µ ≃ µi, κ ≃ κe, and Te ≃ Ti.
To obtain some additional intuition for the transport physics captured by (IX.8.3), it

helps to calculate the linear theory using a simple equilibrium state: a uniform, stationary,
pressure-isotropic plasma threaded by a uniform magnetic field. Ignore gravity. Write
ϱ → ϱ + δϱ, u → δu, p → p + δp, B → B + δB, and retain only those terms linear in
the fluctuation amplitude. The resulting set of equations support plane-wave solutions
∝ exp(−iωt+ ik · r) with k = k∥b̂+ k⊥ and ω a complex frequency. The linear theory is
as in ideal MHD except for the addition of the linearized viscous stress to the right-hand
side of the momentum equation,

+ ik ·
[
ϱµ

(
b̂b̂− I

3

)(
b̂b̂− I

3

)
: ikδu

]
= −ϱµ

(
k∥b̂−

k

3

)(
k∥δu∥ −

k · δu
3

)
,

and the addition of the linearized heat flux to the right-hand side of the entropy equation,

+ ik ·
(
nκb̂b̂ · ikδTe

)
= −nk2∥κδTe.

Unless otherwise explicitly stated, we shall assume that the ions and electrons maintain
the same temperature T = p/2n (recall that p = pi + pe = 2pi). Note that the parallel-
viscous heating is quadratic in the perturbations and thus does not enter the analysis.

One might be tempted to keep things “simple” and retain the effects of just one
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additional term at a time (e.g., ν ̸= 0 but κ = 0). But the incorporation of the heat-flux
term into the linearized entropy equation is surprisingly straightforward, and there is a
pain-free way to carry the influence of this heat flux through the entire calculation. To
see this, note that the linearized heat-flux term may be written as

− nTek
2
∥κ

(
δp

p
− δϱ

ϱ

)
= −p

2
k2∥κ

(
δp

p
− δϱ

ϱ

)
,

so that the linearized entropy equation

3

2
iω

(
δp

p
− 5

3

δϱ

ϱ

)
=

1

2
k2∥κ

(
δp

p
− δϱ

ϱ

)
=⇒ δp

p
=
δϱ

ϱ

(
5iω − k2∥κ

3iω − k2∥κ

)
.
=
δϱ

p
a2eff .

When conduction is unimportant (k2∥κ ≪ ω), a2eff → a2
.
= (5/3)p/ϱ, the square of

the usual adiabatic sound speed. The perturbations are adiabatic. When conduction is
strong (k2∥κ ≫ ω), we find that a2eff = p/ϱ. The perturbations are isothermal, because
rapid conduction along field lines causes magnetically tethered fluid elements to behave
isothermally as they are displaced. Thus, everywhere we see an a2 in our linear theory,
we simply replace it with a2eff and use that as a tag to follow the influence of conduction.

Our linearized equations are then:

−iω
δϱ

ϱ
= −ik · δu, (IX.8.7)

−iωδu = −ik

(
δp

ϱ
+ v2A

δB∥

B

)
+ ik∥v

2
A

δB

B
− µ

(
k∥b̂−

k

3

)(
k∥δu∥ −

k · δu
3

)
, (IX.8.8)

−iω
δB

B
= ik∥δu− b̂ ik · δu, (IX.8.9)

with δp = a2effδϱ. Solving this set is straightforward. First, use (IX.8.7) to replace k · δu
everywhere by ω(δϱ/ϱ). Then solve (IX.8.9) for δu in terms of δB and δϱ, and substitute
the result into (IX.8.8). Multiply through by ik∥ and rearrange to find(

ω2 − k2∥v
2
A

)δB
B

+

[
kk∥v

2
A + iµωk∥

(
k∥b̂−

k

3

)]
δB∥

B

=

[
ω2b̂− kk∥a

2
eff +

2i

3
µωk∥

(
k∥b̂−

k

3

)]
δϱ

ϱ
. (IX.8.10)

Dot this equation with k/k∥ and use k · δB = 0 to obtain an expression for the density
fluctuation in terms of the magnetic-field-strength fluctuation:[

ω2 − k2a2eff +
2i

3
µω

(
k2∥ −

k2

3

)]
δϱ

ϱ
=

[
k2v2A + iµω

(
k2∥ −

k2

3

)]
δB∥

B
.

This is then substituted back into (IX.8.10) to obtain an equation involving only δB:(
ω2 − k2∥v

2
A

)δB
B

+

[
kk∥v

2
A + iµωk∥

(
k∥b̂−

k

3

)]
δB∥

B

=

[
ω2b̂− kk∥a

2
eff +

2i

3
µωk∥

(
k∥b̂−

k

3

)] k2v2A + iµω

(
k2∥ −

k2

3

)
ω2 − k2a2eff +

2i

3
µω

(
k2∥ −

k2

3

)
δB∥

B
.

(IX.8.11)

This equation may be split into two decoupled branches by first dotting it with k× b̂ to
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eliminate all terms proportional to δB∥. The resulting dispersion relation

ω2 − k2∥v
2
A = 0 (IX.8.12)

describes undamped Alfvén waves whose magnetic-field fluctuations are perpendicular
to both k and b̂. Anisotropic viscosity and conduction play no role, which shouldn’t be
surprising: such waves do not change density or magnetic-field strength to linear order in
the fluctuation amplitudes, thus they do not produce any pressure anisotropy, thus they
are not subject to collisional damping. To obtain the other branch, dot (IX.8.11) with b̂.
After some rearrangement, the dispersion relation governing these magnetosonic modes
is

ω2 + iµωk2∥
k2⊥
k2

− k2∥v
2
A =

ω

(
ω +

2i

3
µk2∥

)[
k2⊥v

2
A + iµω

k2⊥
k2

(
k2∥ −

k2

3

)]
ω2 − k2a2eff +

2i

3
µω

(
k2∥ −

k2

3

) . (IX.8.13)

The advantage to writing this equation in this form is that we make readily take the limit
k2a2 → ∞ to eliminate sound waves (and thus the fast mode) and find the dispersion
relation for the slow mode:

ω2 + iµωk2∥
k2⊥
k2

− k2∥v
2
A = 0. (IX.8.14)

Now this mode is viscously damped, and it’s no wonder: slow modes have δB∥ ̸= 0, which
drives pressure anisotropy, which results in viscous damping of the wave.

Anisotropic transport of momentum and heat result in very interesting dynamics and
MHD instabilities. Typesetting in progress. . .

IX.9. Resistivity of a poorly ionized plasma
This is optional material presenting a derivation of the electrical resistivity of a

poorly ionized, magnetized plasma. Its content is important in the study of astrophysical
plasmas – namely, molecular clouds, protostellar cores, and protoplanetary disks – but is
somewhat peripheral to what else is covered in this course. The closest chapter to which
it’s related is Chapter IX.1 on the Spitzer–Härm problem, but here the current-bearing
species are taken to be much less abundant than a population of neutral particles and
a magnetic field is present that effectively promotes the electrical conductivity from a
scalar to a tensor (à la Braginskii). Let’s get started.

Consider a collisional plasma composed of neutrals, ions, and electrons. To give some
physical context here, the cold (T ∼ 10 K) plasma out of which stars form is comprised
primarily of neutral molecular hydrogen H2 (nH2 ≳ 103 cm−3) with 20% He by number,
along with trace (≲10−7) amounts of electrons, molecular ions (primarily HCO+), and
atomic ions (primarily Na+, Mg+, K+). There are also neutral, negatively charged, and
positively charged dust grains, conglomerates of silicate and carbonaceous materials
that are between a few molecules to 0.1 µm in size. While of critical importance to
interstellar chemistry and thermodynamics, and magnetic-field diffusion, we ignore dust
grains in what follows. Molecular clouds are poorly ionized because their densities are
large enough to screen the most potent sources of ionization (e.g., UV radiation) and their
temperatures are low enough to render thermal ionization completely negligible. This
leaves only infrequent cosmic rays of energy ≳100 MeV (and extremely weak radioactive
nuclides like 26Al and 40K) to ionize the plasma. So sad.

Assuming these species are collisional enough for their local distribution functions to
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described by isotropic Maxwellians, the momentum equations for the neutrals, ions, and
electrons are

mnnn

(
∂

∂t
+ un ·∇

)
un = −∇pn +Rni +Rne +mnnn g, (IX.9.1a)

mini

(
∂

∂t
+ ui ·∇

)
ui = −∇pi +Rin +Rie + Zeni

(
E +

ui ×B

c

)
+mini g,

(IX.9.1b)

mene

(
∂

∂t
+ ue ·∇

)
ue = −∇pe +Ren +Rei − ene

(
E +

ue ×B

c

)
+mene g,

(IX.9.1c)

respectively, where Rαβ is the friction force on α due to collisions with β and g is the
gravitational acceleration. The other symbols have their usual meanings: mα is the mass,
nα is the number density, uα is the fluid velocity, pα = nαTα is the gas pressure, and Tα
is the temperature, all of which refer to species α; E is the electric field and B is the
magnetic field. The ion charge qi = Ze. The goal is to use these equations to derive the
electrical conductivity tensor of a poorly ionized, quasi-neutral, collisional plasma with
Zni = ne ≪ nn.

Under molecular-cloud and protostellar conditions, interspecies collisions are strong
enough to guarantee that Tn = Ti = Te. The friction forces are primarily due to elastic
collisions and are accurately modeled by

Rin = −Rni =
mnnn
τni

(un − ui) (IX.9.2a)

with τni =
ϱn
ϱi
τin = 1.23

mi +mH2

ϱi⟨σw⟩iH2

≃ 0.23 Myr

(
1 +

mH2

mi

)(
10−7

xi

)(
103 cm−3

nn

)
,

Ren = −Rne =
mnnn
τne

(un − ue) (IX.9.2b)

with τne =
ϱn
ϱe
τen = 1.21

me +mH2

ϱe⟨σw⟩eH2

≃ 0.29 Myr
mH2

me

(
10−7

xi

)(
103 cm−3

nn

)(
10 K

T

)1/2

,

Rie = −Rei =
mini
τie

(ue − ui) (IX.9.2c)

with τie =
ϱi
ϱe
τei ≃ 1.2 hr

mi

me

(
10−7

xi

)(
103 cm−3

nn

)(
T

10 K

)3/2

,

where xi
.
= ni/nn is the degree of ionization, ⟨σw⟩iH2

≃ 1.69×10−9 cm3 s−1 for HCO+–H2

collisions, and ⟨σw⟩eH2
≃ 1.3× 10−9 cm3 s−1 for e–H2 collisions. The collision timescales

are calculated using fiducial molecular-cloud parameters; the numerical pre-factors of
1.23 and 1.21 are the factors by which the presence of He lengthens the slowing-down
time relative to the value it would have if only H2–s collisions were considered (s refers
to a charged species). The following mass ratios are useful: mi/mp = 29 for HCO+,
mi/mp = 23 for Na+, mi/mp = 24 for Mg+, and mp/me = 1836. The mean mass per
neutral particle in molecular clouds is mn = 2.33mp.

To give the above timescales some context, and to educate you a bit on a non-
laboratory plasma, dynamical timescales in star-forming molecular clouds are ∼0.1–
10 Myr. Magnetic-field strengths are ∼10–100 µG, giving an ion cyclotron frequency
Ωi ∼ 0.1 Hz and an Alfvén speed ∼1 km s−1. Every plasma astrophysicist should know
that 1 km s−1 ≃ 1 pc Myr−1, and so an Alfvén wave crosses a typical molecular cloud of
size ∼10 pc in ∼10 Myr and a typical pre-stellar core of size ∼0.1 pc in ∼0.1 Myr. Sound
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travels slower at ≃0.2 km s−1, and so the plasma β ∼ 0.01 or so. The gravitational free-
fall time is roughly ∼1 Myr at the mean density of a molecular cloud, although support
against gravitational collapse provided by magnetic tension renders this timescale almost
meaningless.

Okay, enough of this astrophysics propaganda. . .

Add (IX.9.1b) and (IX.9.1c) together:

mini
Dui

Dti
+mene

Due

Dte
= −∇(pi + pe) +Rin +��Rie +Ren +��Rei + (mini +mene)g

+ (qini − ene)︸ ︷︷ ︸
= 0 by quasi-

neutrality

E +
1

c
(qiniui − eneue)︸ ︷︷ ︸

= j by def’n

×B. (IX.9.3)

Now add (IX.9.1a) and (IX.9.3):

mnnn
Dun

Dtn
+mini

Dui

Dti
+mene

Due

Dte
= −∇(pn + pi + pe) + (mnnn +mini +mene)g

+��Rni +���Rne +��Rin +��Ren +
j

c
×B. (IX.9.4)

All the friction forces cancel by Newton’s third law. Recalling (IX.2.11)–(IX.2.13), the
left-hand side of (IX.9.4) may be written as

ϱ
Du

Dt
+∇·

(∑
α

mαnα∆uα∆uα

)
,

where ϱ .
=
∑
αmαnα and ∆uα

.
= uα − u are the species drifts relative to the center-of-

mass velocity u. Further using Ampère’s law to write

j

c
×B = ∇·

(
BB

4π
− I

B2

8π

)
, (IX.9.5)

equation (IX.9.4) becomes

ϱ
Du

Dt
= −∇·

[
I

(∑
α

pα +
B2

8π

)
+
∑
α

mαnα∆uα∆uα − BB

4π
+ ϱg

]
. (IX.9.6)

With ni, ne ≪ nn, equation (IX.9.6) is, to a very good approximation,

mnnn

(
∂

∂t
+ un ·∇

)
un = −∇

(
pn +

B2

8π

)
+

B ·∇B

4π
+mnnn g. (IX.9.7)

So, collisions between the charged species and the neutrals are responsible for transmit-
ting the Lorentz force to the bulk neutral plasma. By virtue of the relatively large mass
of the neutrals and the low degree of ionization in many system, u ≃ un, and so it looks
like the neutrals are magnetized. Not true. They just need to collide often enough with
the magnetized particles.

With that borne in mind, let us again return to the MHD induction equation,

∂B

∂t
= ∇× (u×B).

Now, that u cannot be the neutral velocity; it would make no sense for the magnetic flux
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to be frozen into a neutral fluid! Let us instead write
∂B

∂t
= ∇× (uf ×B), (IX.9.8)

where uf is the velocity of the field lines. This must be true: field lines are frozen into
themselves (i.e., there exists a frame where the electric field vanishes). Now add zero:

∂B

∂t
= ∇×

[
(uf − ue)︸ ︷︷ ︸
electron-B

drift

O

×B + (ue − ui)︸ ︷︷ ︸
ion-electron

drift

H

×B + (ui − un)︸ ︷︷ ︸
ion-neutral

drift

A

×B + un ×B︸ ︷︷ ︸
advection

by neutrals
I

]
. (IX.9.9)

The terms in (IX.9.9) labelled O (Ohmic), H (Hall), and A (ambipolar) are formally
zero in ideal MHD.20 Let us estimate their relative sizes:

O

I
∼ 1

Rm

.
=

η

vAℓB
∼
(
de
ℓB

)
︸ ︷︷ ︸
small

(
de

vAτen

)
︸ ︷︷ ︸

could be
large

(IX.9.10)

H

I
∼
∣∣∣∣j/ene

un

∣∣∣∣ ∼ ( diℓB
)

︸ ︷︷ ︸
small

(
ϱ

ϱi

)1/2

︸ ︷︷ ︸
∼1, but
could be

large

∣∣∣∣vAun
∣∣∣∣︸ ︷︷ ︸

∼1

(IX.9.11)

A

I
∼
∣∣∣∣Rniτni
ϱnun

∣∣∣∣ ∼ ∣∣∣∣j×B

c

∣∣∣∣ τni
ϱnvA

∣∣∣∣vAun
∣∣∣∣ ∼ vAτni

ℓB︸ ︷︷ ︸
could be

∼1

(
ϱ

ϱn

)1/2

︸ ︷︷ ︸
≳1

∣∣∣∣vAun
∣∣∣∣︸ ︷︷ ︸

∼1

(IX.9.12)

Note that H / I is the only ratio not involving collisions. . . we’ll come back to this.
Our task now is to compute these Ohmic, Hall, and ambipolar terms more rigorously.

To do that, start with the momentum equation for the charged species s (= i, e), which
under poorly ionized, collisional, and strongly magnetized conditions may be simplified
without great consequence to obtain

0 = qsns

(
E +

us×B

c

)
+Rsn. (IX.9.13)

The assumptions here are that collisions between charged species, the thermal pressure
of charged species, and the inertia of charged species are all negligible compared to
collisions with the neutrals and electromagnetic forces. Introduce the velocity of species

20Plasma physicists and plasma astrophysicists have different definitions of “ambipolar diffusion”.
The former use the term to describe the diffusion of oppositely charged species as they interact
via an electric field that is trying to enforce quasi-neutrality. The idea is that an electric field is
set up to ensure electrons and ions diffuse at the same rate, preserving quasi-neutrality (“ambi”
means “both”.) The latter community uses the term to describe ion-neutral drifts, by which
the magnetic flux diffuses along with flux-frozen ions (and electrons) through a predominantly
neutral fluid (Mestel & Spitzer 1956; Mouschovias 1979).
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s relative to the neutrals, ws
.
= us−un, and the electric field in the frame of the neutrals,

En
.
= E + un ×B/c. With these definitions, equation (IX.9.13) may be written as

0 = qsns

(
En +

ws×B

c

)
− msns

τsn
ws. (IX.9.14)

(Note that τsn ̸= τns, or else Newton would be very unhappy!) Using quasi-neutrality,
the current density

j =
∑
s

qsnsus =
∑
s

qsnsws. (IX.9.15)

Equation (IX.9.14) may be solved to relate the components of j in the directions parallel
(∥) and perpendicular (⊥) to the magnetic field to the corresponding components of En.

Start by taking the cross product of (IX.9.14) with B and multiplying the result by
qsτsn/msc to find

0 =
q2snsτsn
msc

(
En ×B − ws⊥

c
B2
)
− qsns

ws

c
×B. (IX.9.16)

Adding (IX.9.16) to (IX.9.14) and multiplying by τsn/ϱs,

0 =
qsτsn
ms

En + (Ωsτsn)
2
( c
B
En × b̂−ws⊥

)
−ws. (IX.9.17)

Note that if the entire charged plasma is well magnetized, viz. (Ωsτsn)2 ≫ 1 for each s,
then the leading-order motion of all species consists of the same E×B drift.

We solve (IX.9.17) by examining its parallel and perpendicular components separately.
The former gives

ws∥ =
qsτsn
ms

En∥ =⇒ j∥ =

(∑
s

q2snsτsn
ms

)
En∥

.
=

(∑
s

σs

)
En∥

.
= σ∥En∥,

(IX.9.18)
where the parallel conductivity σ∥ has been defined in situ. The perpendicular component
of (IX.9.17) may be rearranged to obtain

ws⊥ =
qsτsn
ms

[
1

1 + (Ωsτsn)2
En⊥ +

Ωsτsn
1 + (Ωsτsn)2

En × b̂

]

=⇒ j⊥ =

[∑
s

σs
1 + (Ωsτsn)2

]
En⊥ +

[∑
s

σsΩsτsn
1 + (Ωsτsn)2

]
En × b̂

.
= σ⊥En⊥ − σHEn × b̂, (IX.9.19)

where the perpendicular conductivity σ⊥ and Hall conductivity σH have been defined in
situ. (Question: What if Ωsτsn ≫ 1 for all charged species? What if Ωsτsn ≪ 1 for all
charged species? Do the asymptotic values of σ∥, σ⊥, and σH make sense to you?)

Combining (IX.9.18) and (IX.9.19), the total current density

j = σ∥En∥ + σ⊥En⊥ − σHEn × b̂, (IX.9.20)

which may be inverted to find

En = η∥j∥ + η⊥j⊥ + ηHj× b̂, (IX.9.21)

where the parallel, perpendicular, and Hall resistivities are

η∥
.
=

1

σ∥
, η⊥

.
=

σ⊥
σ2
⊥ + σ2

H

, ηH
.
=

σH
σ2
⊥ + σ2

H

, (IX.9.22)
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respectively. Knowing that Ohmic dissipation affects the total current while ambipolar
diffusion affects only the perpendicular component, the Ohmic (O) and ambipolar (A)
resistivities are

ηO
.
= η∥ and ηA

.
= η⊥ − η∥, (IX.9.23)

respectively. Thus,

E = −un

c
×B + ηOj + ηAj⊥ + ηHj× b̂ (IX.9.24)

is the generalized Ohm’s law. Note that an arbitrary number of species may be included
in this expression by simply adding their contributions to the conductivity tensor σ,
so long as their abundances are small enough that they may be considered inertia- and
pressure-less and so long as the dominant collisional processes affecting their dynamics
involve only the neutrals. For example, the collision time between a neutral and a charged
grain is

τng =
ϱn
ϱg
τgn = 1.09

mg +mH2

ϱg⟨σw⟩gH2

, (IX.9.25)

where the mean collisional rate between the grain species and H2 is

⟨σw⟩gH2
= πa2gr

(
8kBT

πmH2

)1/2

(IX.9.26)

for sub-sonic drift speeds and grains of radius agr. Inelastic collisions between charged
grains, neutral grains, ions, and electrons can also be included (with some effort; see
Kunz & Mouschovias 2009.)

Equation (IX.9.24 can be inserted into Faraday’s law to obtain

∂B

∂t
= −c∇×E = ∇×

[
un ×B − cηOJ − cηAJ⊥ − cηHJ × b̂

]
. (IX.9.27)

In the ideal-MHD limit η → 0, the flux is effectively frozen into the neutrals. Note that
the Hall effect depends on the sign of the magnetic field, which can make for interesting
dynamics (e.g., Wardle 1999; Balbus & Terquem 2001; Kunz 2008; Kunz & Lesur 2013).
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PART X

Problem sets
X.1. Homework #1: Prerequisites

1. Things bumping into things. In this problem, you’ll work through what ought to
be a familiar problem: binary Coulomb collisions. This should serve as a remembrance
of things past and a preview of things to come. Pluck two charged particles from a fully
ionized plasma and label them 1 and 2 (what else?). Their charges are q1 and q2 and
their masses are m1 and m2, respectively. The nonrelativistic equations of motion for the
two charged particles are, of course,

m1
d2r1
dt2

= q1q2
r1 − r2

|r1 − r2|3
and m2

d2r2
dt2

= q1q2
r2 − r1

|r1 − r2|3
, (X.1.1)

where r1 is the position of charge 1 and r2 is the position of charge 2.

(a) Show that the center of mass R ≡ (m1r1+m2r2)/(m1+m2) satisfies d2R/dt2 = 0
and that the relative position r ≡ r1 − r2 obeys

µ
d2r

dt2
=
q1q2
|r|3 r , where µ ≡ m1m2

m1 +m2
(X.1.2)

is the reduced mass.

v0

m1, q1

m2, q2

b r1

r2

r
incident
particle

target
particle

recoil path

O

(b) Now throw one at the other, so that their relative velocity is v0 and the impact
parameter is b. (You may take them to start infinitely far apart; see the figure
above.) Show that angular momentum is conserved and, thus, that the solution to
(X.1.2) may be written parametrically as

b

r
= −cos(θ + α) + cosα

sinα
, where tanα ≡ µbv20

q1q2
(X.1.3)

and θ is the deflection angle in the center-of-mass frame. [Hint: set u(θ) = b/r(θ)
and show that d2u/dθ2+u = − cotα. The initial polar angle θ0 = π, corresponding
to particles starting infinitely far apart with m1 approaching from the left in a
standard polar coordinate system.] Use this to show that the asymptotic deflection
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angle in the center-of-mass frame θ∞ at r = ∞ satisfies

tan
θ∞
2

=
q1q2
µbv20

. (X.1.4)

Note that the magnitude of this angle depends only on the impact parameter and
initial relative velocity, and not on the sign of the binary force: like and unlike
charges are deflected by the same amount. Larger impact parameters and larger
initial relative velocities give smaller deflections, which intuitively makes sense. To
get a 90◦ deflection angle requires an impact parameter

b90◦ =
q1q2
µv20

. (X.1.5)

Scattering an ion-electron pair to 90◦ requires a smaller impact parameter (by
a factor of ≃2) than does scattering a pair of electrons (given the same v0).
Physically, why?

(c) Repeat this experiment many times while varying the impact factor between b
and b + db. You will find that particle 1 will be scattered into asymptotic angles
between θ∞ and θ∞ + dθ∞. Use conservation of particles to argue that the ratio
of the number of scattered particles per unit solid angle dΩ = 2π sin θ∞dθ∞ to
the total number of incoming particles per unit area (i.e., the “differential cross
section”) is given by

dσ

dΩ
=

b

sin θ∞

∣∣∣∣ db

dθ∞

∣∣∣∣ = ( q1q22µv20

)2
1

sin4(θ∞/2)
. (X.1.6)

This should look familiar – it’s the Rutherford scattering cross section. Use this
and (X.1.5) to show that the cross section for scattering of a particle by 90◦ or
more in a single encounter is πb290◦ .

(d) Instead of a single large-angle scattering event, let us now consider the cumulative
effect of many small-angle scatterings, for which (X.1.4) gives θ∞ ≃ 2q1q2/µbv

2
0 ≡

ϑ(b). (Such scatterings could result from a series of large-impact-parameter en-
counters.) For concreteness, imagine an electron (m1 = me, q1 = −e) moving
through a bath of ions (m2 = mi ≫ me, q2 = Ze, number density n), undergoing
such small-angle scatterings.21 If random, these scatterings will accumulate like
a random walk in angle away from the original trajectory of the electron, with
an average deflection angle ⟨θ⟩ = 0 but with a mean-square deflection angle ⟨θ2⟩
proportional to the number of scattering events. Use this reasoning to argue that,
after the electron has traversed a distance L through the ion bath and scattered
many times,

⟨θ2⟩ = 2πnL

∫ bmax

bmin

db b ϑ2(b) =
8πnLZ2e4

m2
ev

4
0

ln
bmax

bmin
, (X.1.7)

where bmax and bmin are the maximum and minimum impact parameters encoun-
tered.

21The specification to an electron in a bath of ions is not really necessary. One could perform the
same calculation without making any assumptions about the characteristics of the charges, as
long as q1 is considered to be a test particle – that is, q1 is assumed not to noticeably disturb the
q2 charges off of whose Coulomb potentials it scatters. Of course, the accuracy of this assumption
improves as m1 → 0; you can’t get much better than an electron!
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That upper and lower cutoffs for the impact parameter must be enforced should
be familiar from GPP1. The divergence as bmax → ∞ is due to the fact that
the Coulomb potential used in (X.1.1) is long-range. By now, you should know
well that the potential between a test particle (electron) and a plasma particle
(ion) is not φ = −Ze2/r but rather φ = −(Ze2/r) exp(−r/λD), where λ−2

D ≡∑
α 4πq

2
αnα/Tα is the Debye length. That is, the ion scatterer is Debye-shielded

by the surrounding plasma so that its Coulomb potential is appreciably screened at
distances greater than the Debye length. Of course, this screening can be taken into
account, and we will do so later in the course. But, for now, let’s take bmax = λD.
The lower cutoff on b is needed to justify the small-angle approximation used in
obtaining ϑ(b). With ϑmax ∼ 1 we have bmin ∼ Ze2/Te, where we have estimated
v20 ∼ 2Te/me. When quantum-mechanical effects are not important, this estimate
is almost as good as any (it’s in a logarithm!); if the temperature is high enough
that Te > Z2e4me/(2πℏ2), the bmin should be the de Broglie wavelength. Anyway,
note that bmax/bmin ∼ Λ ≡ nλ3D using the classical estimate of bmin, so let’s just
call it Λ and get on with it. . .

(e) Equation (X.1.7) provides an estimate for the mean deflection angle of an electron
undergoing many small-angle scatterings over a distance L. Use this formula to
derive how far an electron must travel to accumulate a large deflection angle,
i.e., ⟨ϑ2⟩ ∼ 1 (see the illustration below, taken from Krommes’ notes). Use this to
obtain an estimate of the cross section for multiple small-angle scatterings to result
in a large-angle deflection. Compare this with the single large-angle scattering
cross section, πb290◦ , found in part (c). Knowing that lnΛ ∼ 10–30 in most weakly
coupled plasmas, what does this say about the statistical importance of small-
angle vs large-angle scatterings? What does this say about the ratio of the collision
frequency and the plasma frequency?

(f) Use lnΛ = 20 and Z = 1 in your expression from part (e) to compute the multi-
scattering cross section for a 100 keV plasma. Compare this to the cross section
for a d-d fusion reaction and write something intelligent.

2. Ballistic propagation with Fourier, Laplace, and Green. In this course, a lot
of particles will be zooming around. To get irreversibility (as the course promises), they
ought to interact at some point; but let’s forget about that for now. Consider the following
partial differential equation:

(
∂

∂t
+ v ·∇

)
f(t, r,v) = S(t, r,v), t ⩾ 0 (X.1.8)

where S(t, r,v) is some unspecified phase-space- and time-dependent source term. In this
problem, you’ll solve it in two different, but equivalent, ways. This should be review.
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(a) Define the (multi-dimensional) Fourier and inverse-Fourier transforms as follows:

f(k) =

∫
dr

(2π)3
e−ik·rf(r) and f(r) =

∫
dk eik·rf(k). (X.1.9)

Note the 2π convention used in this course. It is different than that used by
Klimontovich and Krommes, but is the same as that used by Nicholson, Ichimaru,
Montgomery, and Krall and Trivelpiece.22 I like it this way because, then, the
Fourier transform of f(r) = 1 is just the delta function δ(k). So, Fourier transform
(X.1.8) to find (

∂

∂t
+ ik ·v

)
fk(t,v) = Sk(t,v), t ⩾ 0. (X.1.10)

I know this is a one-liner and is stupidly easy, but I belabor the point simply to
establish conventions and note in passing that, sometimes, I write f(t,k,v) instead
of fk(t,v).

(aa) While you’re at it, prove the following:

i.

∫
dr

(2π)3
e−ik·r f(r ) = 1

2π2k

∫ ∞

0

dr r sin kr f(r ), where r ≡ |r| in 3D;

(X.1.11a)

ii.

∫
dr

(2π)2
e−ik·r f(R) =

1

2π

∫ ∞

0

dRRJ0(kR)f(R), where R ≡ |r| in 2D;

(X.1.11b)

iii.

∫
dr

(2π)3
e−ik·r

∫
dr′

(2π)3
e−ik′·r′

f(r − r′) = f(k) δ(k + k′). (X.1.11c)

You won’t need these for this homework, but they’ll come in handy later.

(b) Okay. First, we’ll solve (X.1.10) using Laplace and inverse-Laplace transforms; my
convention for these is the same as Nicholson’s and Ichimaru’s:

f(ω) =

∫ ∞

0

dt eiωtf(t) and f(t) =

∫
L

dω

2π
e−iωtf(ω), (X.1.12)

where L denotes the Laplace contour (i.e., a straight line in the complex plane
parallel to the real ω axis running from −∞ to ∞ and intersecting the imaginary
ω axis at Im(ω) = σ, where σ > 0 is a real number such that |f(t)| < exp(σt)
as t → ∞). The reason I normalize the transforms in this fashion is that the
inverse-Laplace transform almost always involves the use of Cauchy’s residue
theorem; the 2π from the residues neatly cancels the 2π in the denominator of
(X.1.12). You might be used to seeing the Laplace transform written as f(s) =∫∞
0

dt exp(−st)f(t), but pretty much everything we’ll look at in this course is
dominantly an oscillation, and so I prefer to work directly with the frequency ω.
So, use (X.1.12) to show that the solution to (X.1.10) is

fk(t,v) = i

∫
L

dω

2π

e−iωt

ω − k ·v + i0

[
fk(0,v) + Sk,ω(v)

]
, (X.1.13)

where fk(0,v) is the initial distribution function and +i0 is shorthand for

22Or, rather, Krall or Trivelpiece: Chapter 10 and the latter part of Chapter 11 of their text
inexplicably shift the factor of 2π into the inverse transform, so perhaps the authors themselves
had conflicting conventions.
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limϵ→0+(iϵ). Explain physically why I added +i0 to the denominator. Again, this
is simple, but I’m dragging you through it to establish notation.

(c) Let us set the source term S = 0 for now. Perform the remaining ω-integral in
(X.1.13) to obtain the ballistic response

fk(t,v) = fk(0,v) e
−ik·vt. (X.1.14)

Provide the details of your calculation. Namely, (i) draw the original and the shifted
Laplace contours in the Re(ω)-Im(ω) plane; (ii) explain why you can analytically
continue the integrand into the lower half-ω plane; (iii) explain why (in this case)
it’s “−2πi” times the sum of the residues, and not the usual “2πi”; and (iv) show
that all the straight pieces of the shifted contour (i.e., those not encircling a pole)
vanish. Finally, perform the inverse Fourier transform to obtain f(t,v, r).

(d) There is a mathematically equivalent, but conceptually different, way of solving
(X.1.8), which is provided by the theory of Green’s functions. Recall that a Green’s
function describes the response due to a unit point source. It is used to propagate
initial conditions or the response to a pulse at some time into the future (or the
past, if desired, but we won’t desire such a thing in this course . . . it’s named
irreversible processes, after all). Thus, causality is built into the Green’s functions
in a more transparent way than for the Laplace transform, which requires you to
think about the complex plane as some kind of temporal plane with ±i telling
you something about the past or future. To remind you of the details: the idea
behind the Green’s function is that one can divide up the source into a collection
of impulses,

S(t) =

∫ ∞

−∞
dt′ δ(t− t′)S(t′),

the response to each being given by the appropriate Green’s function. This results
from the linearity of the system, i.e., we can just integrate up or “superpose” the
responses to stimuli at different times to get the full solution. Thus, if we can solve(

∂

∂t
+ v ·∇

)
G(t,x; t′,x′) = δ(t− t′)δ(x− x′), (X.1.15)

where x = (r,v) is shorthand for the phase-space variables, then our solution to
(X.1.10) is simply

f(t,x) =

∫
dx′

[
f(0,x′)G(t,x; 0,x′) +

∫ t

0

dt′ S(t′,x′)G(t,x; t′,x′)

]
, (X.1.16)

where dx′ = dr′dv′. Physically, the Green’s function propagates the initial con-
ditions forward in time while taking into account phase-space stimuli from the
source term. By solving (X.1.15), prove that the relevant Green’s function is

Gk,ω(v;v
′) =

i δ(v − v′)

ω − k ·v =⇒ G(t,x; t′,x′) = δ(r − r′ − v(t− t′))δ(v − v′)

(X.1.17)
and so

f(t, r,v) = f(0, r − vt,v) +

∫ t

0

dt′ S(t′, r − v(t− t′),v). (X.1.18)
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X.2. Homework #2: Klimontovich & Vlasov

Generals prep. Make sure you can provide brief definitions of the following terms:
Klimontovich distribution, Liouville theorem, Bogoliubov timescale hierarchy, BBGKY
hierarchy

1. Practice with particle correlations. Recall the definition of the Klimontovich
distribution

Fα(t,x)
.
=

Nα∑
i=1

δ(x−Xαi(t)),

where x = (r,v) is shorthand for the phase-space variables and Xαi = (Rαi,Vαi) is
shorthand for the phase-space location of particle i of species α; Nα ≫ 1 denotes the
total number of particles of species α. Also recall the definitions of the one-, two-, and
three-particle reduced distribution functions:23

fα(t,x)
.
= Nα

∫
dXall

PN
dXα1

,

fαβ(t,x,x
′)
.
= NαNβ

∫
dXall

PN
dXα1dXβ1

, (X.2.1)

fαβγ(t,x,x
′,x′′)

.
= NαNβNγ

∫
dXall

PN
dXα1dXβ1dXγ1

, (X.2.2)

respectively, where PN is the Liouville distribution and the differential

dXall
.
= dXα1dXα2 . . . dXαNα dXβ1dXβ2 . . . dXβNβ

dXγ1dXγ2 . . . dXγNγ . . .

indicates integration over all of the ‘Γ space’ (including all species α, β, γ, . . . ). Denote
an average over the Liouville distribution by angle brackets:

⟨G(Fα, Fβ , Fγ , . . . )⟩ .=
∫

dXall PN G(Fα, Fβ , Fγ , . . . ).

In many cases, one is interested in the differences between the fine-grained (Klimontovich)
and coarse-grained (reduced) distribution functions, viz., δFα(t,x)

.
= Fα(t,x)− fα(t,x).

For example, in class we used the above definitions to calculate the correlation ⟨δFαδE⟩,
where δE is the fluctuating electric field given by Coulomb’s law,

δE(t, r) = − ∂

∂r

∑
β

qβ

∫
dx′ δFβ(t,x

′)

|r − r′| .

Calculating ⟨δFαδE⟩ ∝ ⟨δFαδFβ⟩ was necessary to obtain the right-hand side of the
kinetic equation governing the evolution of the one-particle distribution function. Ulti-
mately, we found that

⟨δFα(t,x)δFβ(t,x′)⟩ = ⟨Fα(t,x)Fβ(t,x′)⟩ − fα(t,x)fβ(t,x
′)

= gαβ(t,x,x
′) + δαβ δ(x− x′)fα(t,x), (X.2.3)

where gαβ
.
= fαβ − fαfβ is the two-particle correlation function. In other words, the

23If α and β refer to the same species, then β1 → α2 and NαNβ → Nα(Nα − 1) in the definition
of the two-particle distribution function (eq. X.2.1). If α, β, and γ refer to the same species, then
β1 → α2, γ1 → α3, and NαNβNγ → Nα(Nα − 1)(Nα − 2) in the definition of the three-particle
distribution function (eq. X.2.2). But, because the number of particles is asymptotically large,
there is really no practical difference between Nα, Nα − 1, and Nα − 2.
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evolution of the one-particle distribution function depends on correlations between two
particles instigated by the Coulomb interaction. (The last term in (X.2.3) describes self-
interaction, and thus is ultimately dropped.)

In this problem, you will calculate a few other correlations that we needed along the
way in deriving the evolution equation for gαβ .

(a) Follow steps similar to those leading up to equation (II.5.9) in the lecture notes to
show that

⟨Fα(x)Fβ(x′)Fγ(x
′′)⟩ = fαβγ(x,x

′,x′′) + δαβ δ(x− x′)fαγ(x,x
′′)

+ δβγ δ(x
′ − x′′)fαγ(x,x

′′) + δαγ δ(x− x′′)fαβ(x,x
′)

+ δαβδβγ δ(x− x′)δ(x′ − x′′)fα(x), (X.2.4)

where I’ve omitted the time arguments for notational ease. Such a correlation is
needed to calculate the term

− qα
mα

〈
Fβ(x

′) δE(r) · ∂Fα(x)
∂v

〉
− qβ
mβ

〈
Fα(x) δE(r′) · ∂Fβ(x

′)

∂v′

〉
, (X.2.5)

in equation (II.5.15) of the lecture notes. These two terms represent the change
in the correlation between a particle of species α at position x and a particle of
species β at position x′ due to electric-field fluctuations from the bath accelerating
each one of the particles. With δE given by

δE(t, r) = − ∂

∂r

∑
γ

qγ

∫
dx′′ δFγ(t,x

′′)

|r − r′′| , (X.2.6)

it is clear that we need to compute ⟨FαFβ δFγ⟩ = ⟨FαFβFγ⟩ − ⟨FαFβ⟩fγ . . .

(b) Use the Mayer cluster expansions for fαβ and fαβγ in (X.2.4) to show that

⟨Fα(x)Fβ(x′) δFγ(x
′′)⟩ = hαβγ(x,x

′,x′′) + fα(x)gβγ(x
′,x′′) + fβ(x

′)gαγ(x,x
′′)

+ δαβ δ(x− x′)
[
gαγ(x,x

′′) + δβγ δ(x
′ − x′′)fα(x)

]
+ δβγ δ(x

′ − x′′)
[
gαγ(x,x

′′) + fα(x)fγ(x
′′)
]

+ δαγ δ(x− x′′)
[
gαβ(x,x

′) + fα(x)fβ(x
′)
]
. (X.2.7)

The first term on the right-hand side of (X.2.7) describes three-particle correla-
tions; we discussed in class why it can be dropped. The next two terms on that
first line, when substituted into (X.2.5), yield important shielding terms (see the
last part of §II.6 in the lecture notes). When substituted into (X.2.5), the second
line of (X.2.7) ultimately vanishes, since it describes self-interactions. As for the
final two lines of (X.2.7). . .

(c) . . . substitute them into (X.2.5) with (X.2.6) to obtain what becomes the source
term in the evolution equation for gαβ :

∂

∂r

qαqβ
|r − r′| ·

(
1

mα

∂

∂v
− 1

mβ

∂

∂v′

)[
fα(x)fβ(x

′) + gαβ(x,x
′)
]
. (X.2.8)

State under what conditions the second term (gαβ) can be neglected compared
to the first term (fαfβ), and explain physically why the first term generates two-
particle correlations.

2. Landau damping via Hermite polynomials. Consider the following (1+1)-
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dimensional model of a homogeneous plasma perturbed about a Maxwellian equilibrium:

∂g

∂t
+ v

∂g

∂z︸︷︷︸
phase mixing

+ vF0
∂φ

∂z︸ ︷︷ ︸
electric field

= C[g]︸︷︷︸
collisions

, (X.2.9)

φ = α

∫ ∞

−∞
dv g. (X.2.10)

Equation (X.7.1) is a linearized kinetic equation for the perturbed distribution function
g(t, z, v), which includes its advection by the particles (“phase mixing”), the acceleration
of its constituent particles by the gradient of an electrostatic potential φ(t, z) (“electric
field”), and the removal of free energy by a collision operator C[g] (“collisions”); the
Maxwellian equilibrium distribution F0(v) = e−v

2

/
√
π. For convenience, I have normal-

ized the velocity v (in the z direction) to the thermal speed vth =
√
2T/m, the spatial

coordinate z to an arbitrary lengthscale L, and time t to L/vth.
Equation (X.2.10) can be variously interpreted, depending upon the value of α. For

example, if g is taken to be the perturbed ion distribution function in a plasma and
the electrons are assumed to have a Boltzmann response, then α = Te/Ti (the ratio
of the electron and ion temperatures) and the resulting system of equations describes
Landau-damped ion-acoustic waves propagating in the z direction. Equation (X.2.10)
is then just a statement of quasineutrality. On the other hand, if g is taken to be the
perturbed electron distribution function and the ions are assumed to have no response,
then α = 2/k2λ2D and the resulting system of equations describes collisionlessly damped
Langmuir waves (this case was originally considered by Landau in 1946; here, λD is the
Debye length). Equation (X.2.10) then is the Gauss–Poisson equation. Finally, for

α± = −

− Ti
Te

+
1

βi
±
√(

1 +
Ti
Te

)2

+
1

β2
i

−1

,

equations (X.7.1) and (X.2.10) describe the evolution of compressive perturbations in
a magnetized plasma at scales much larger than the ion Larmor radius (Schekochihin
et al. 2009). In this case, there are two corresponding decoupled fluctuations g+ and g−,
which are certain linear combinations of the zeroth and w2

⊥ moments of the perturbed
distribution function. All this is to say that equations (X.7.1) and (X.2.10) capture a
variety of interesting kinetic physics.

(a) It is fruitful to recast the kinetic equation (X.7.1) in Hermite space by writing

g(v) =

∞∑
m=0

Hm(v)F0(v)√
2mm!

gm, gm =

∫
dv

Hm(v)√
2mm!

g(v), (X.2.11)

where

Hm(v)
.
= (−1)m ev

2 dm

dvm
e−v

2

(X.2.12)

is the Hermite polynomial of (integer) order m. Before we do so, first make a
plot of Hm(v)F0(v)/

√
2mm! versus v ∈ [−4, 4] for m ∈ [0, 8]. Note that increasing

m corresponds to increasingly fine-scale structure in velocity (the same way that
increasing k in Fourier space corresponds to increasingly fine-scale structure in
configuration space).

Note that the Hermite polynomials are orthogonal with respect to a Maxwellian
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weight: ∫
dv

Hm(v)Hm′(v)

2mm!
F0(v) = δmm′ , (X.2.13)

where δmm′ is the Kronecker delta function. It will also be helpful in what follows
to note that g0 =

∫
dv g(v) is the zeroth moment of the perturbed distribution

function (i.e., the perturbed number density), g1/
√
2 =

∫
dv vg(v) is the first

moment (i.e., the perturbed momentum density), and g2/
√
2+ g0/2 =

∫
dv v2g(v)

is the second moment. Higher m’s are often referred to as the “kinetic moments”.

(b) Use the recursion relation dHm/dv = 2vHm−Hm+1 = 2mHm−1 to show that the
linearized Lenard–Bernstein collision operator (about which you’ll learn later),

C[g] = ν

[
∂

∂v

(
vg +

1

2

∂g

∂v

)
+ 2vuF0

]
(X.2.14)

with ν being the collision frequency and u ≡
∫
dv vg(v), becomes −νmgm (m ⩾ 2)

in Hermite space. That’s rather convenient.

(c) Show that equation (X.2.10) implies φ = αg0. Use this in equation (X.7.1) to derive
the following set of equations coupling higher-m moments of g to the lower-m ones:

∂g0
∂t

= − ∂

∂z

g1√
2
, (X.2.15a)

∂g1
∂t

= − ∂

∂z

(
g2 +

1 + α√
2
g0

)
, (X.2.15b)

∂gm
∂t

= − ∂

∂z

(√
m+ 1

2
gm+1 +

√
m

2
gm−1

)
− νmgm, m ⩾ 2. (X.2.15c)

Given your plot from part (a) and your understanding of Landau damping, explain
each of equations (X.2.15a,b,c) physically.

Because equations (X.2.15a,b,c) are linear, whatever free energy is in one wavenumber
k cannot be transferred to another wavenumber. As such, the “cascade” is entirely in
velocity space (i.e., to higher m), with each wavenumber evolving independently of all
the others. Therefore, we need only solve (X.2.15) for a single wavenumber k; the solution
is then easily rescaled for different wavenumbers. So write

gm(t, z) =
∑
k

gm,k(t) exp(ikz) (X.2.16)

and proceed. . .

(d) Show that the free energy in wavenumber k,

Wk
.
=

1

2

∞∑
m=0

|gm,k|2 +
α

2
|g0,k|2 (X.2.17)

satisfies
dWk

dt
= −ν

∞∑
m=2

m|gm,k|2. (X.2.18)

Interpret this equation physically, making contact with the kinetic free-energy
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conservation law derived in class, in which

WVlasov =

∫
dr

[∑
α

∫
dv
T ⟨δf2α⟩
2f0α

+
⟨E2⟩
8π

]
. (X.2.19)

In particular, what must happen for irreversible dissipation to occur as ν → 0?

(e) Download landau_damping.f90 from

https://www.astro.princeton.edu/~kunz/Site/AST554

This code (modified from one written by Prof. Michael Barnes) solves the following
implicit set of equations (cf. equations (X.2.15)):24

g
(n+1)
0,k − g

(n)
0,k

∆t
= −ik

g
(n+1)
1,k√

2
,

g
(n+1)
1,k − g

(n)
1,k

∆t
= −ik

(
g
(n+1)
2,k +

1 + α√
2
g
(n+1)
0,k

)
,

g
(n+1)
m,k − g

(n)
m,k

∆t
= −ik

(√
m+ 1

2
g
(n+1)
m+1,k +

√
m

2
g
(n+1)
m−1,k

)
− νm4g

(n+1)
m,k , 2 ⩽ m ⩽ Nm

where time has been discretized as t(n) = n∆t with (fixed) timestep ∆t and the
integer n ⩾ 0. The default free parameters in the code are as follows: Nm = 128,
α = 1, k = 2π, ν = 10−9, and g

(0)
0,k = 1 (which is arbitrary, because the equations

are linear). Note that the collision term −νmgm,k has been replaced by −νm4gm,k,
which is a sort of “hyper-collisionality”; the higher power of m here is useful for
allowing a larger “collisionless” range of m before the cascade to higher values of
m is affected by collisions. You can compile the code using

gfortran -o landau_damping landau_damping.f90

Run it. It will output two files: landau_damping.phik2 and landau_damping.gkm.
The former contains |φk|2 versus time; the latter contains the real and imaginary
parts of gm,k versus time. These files can be read using the following python script:

import numpy as np

fname = ’landau damping.phik2’
data = np.genfromtxt(fname,autostrip=True)
tphi = data[:,0] ; phik2 = data[:,1]

fname = ’landau damping.gkm’
data = np.genfromtxt(fname,autostrip=True)
time = data[:,0] ; mlab = data[:,1]
gkmr = data[:,2] ; gkmi = data[:,3]

nm = 128 ; nt = int(time.size/nm)

24If you’re interested in such details, the resulting matrix equation can be cast in the
form

∑Nm
m Aℓm g

(n+1)
m,k = g

(n)
ℓ,k , where Aℓm is a tri-diagonal matrix. There is an O(Nm)

algorithm known as the Thomas algorithm for solving tri-diagonal matrix equations (see
https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm).

https://www.astro.princeton.edu/~kunz/Site/AST554
https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm
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m = np.arange(0,nm) ; indx = np.arange(0,nt)*nm
t = time[indx]
gkm = np.zeros((nm,nt),dtype=complex)
for m in range(nm):

gkm[m,:] = gkmr[indx+m] + 1j*gkmi[indx+m]

Make semilogy plots of |φk|2 and Wk vs time. Be sure to label your axes. Comment
on what you observe.

(f) Use gm,k and equations (X.2.11) and (X.5.24) to reconstruct and plot g(t, z, v) at
t = 0, t = 0.5, and t = 1. (Did you remember to take the real part?) Comment on what you
observe.

(g) Re-run the code with ν = 10−2 and make plots of |φk|2 vs time and g(t, z, v) at
t = 1. Comment on what you observe.

We’re going to revisit this Landau–Hermite problem in HW05, so keep your notes and
code.
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X.3. Homework #3: Balescu–Lenard & Equilibrium BBGKY

Generals prep. Make sure you can provide brief definitions of the following terms:
Balescu–Lenard collision operator, Landau collision operator, Boltzmann’s H theorem

1. Balescu–Lenard in 1D. The Balescu–Lenard collision operator may be written in
the following highly suggestive form:(
∂fα
∂t

)
c

=
∑
β

∫
dk

(2π)3
k

mα
· ∂
∂v

×
∫
dv′

∣∣∣∣ 4πqαqβ
k2 D(k,k ·v)

∣∣∣∣2 πδ(k ·v − k ·v′)

(
k

mα
· ∂
∂v

− k

mβ
· ∂

∂v′

)
fα(v)fβ(v

′).

(X.3.1)

By the end of this course, you should be able to promptly identify the physical meaning
of each and every ingredient of this operator and state all the assumptions that went
into their derivation. But that’s then. For now, simply note that, in a one-dimensional
plasma, the delta function

δ(k ·v − k ·v′) = δ[k(v − v′)] =
1

|k|δ(v − v′)

implies that only particles with the same speed can collisionally interact.

(a) Use this fact to prove that (X.3.1) vanishes for a single-species plasma in one
dimension. (Note: the Coulomb potential in 1D is still ∝k−2 in Fourier space, just
accompanied by a different coefficient.)

(b) As shown in the lecture notes (§IV.4), the Balescu–Lenard collision operator
independently conserves the total energy and the total momentum of a plasma.
Use this to explain in physical terms your answer to part (a).

(c) This led to a puzzle in the early development of kinetic particle-in-cell (PIC) sim-
ulations of plasmas (most notably, by John Dawson), which were one-dimensional
and yet somehow exhibited relaxation to a Maxwellian. How do you resolve this
paradox? Is the Balescu–Lenard operator incomplete in 1D, or were Dawson’s
simulation results simply as a result of uncontrolled PIC noise? Explain your
answer.

Hint:

2. Equilibrium thermodynamics to O(Λ−1). In thermodynamic equilibrium, the Li-
ouville distribution PN (Γ ) reduces to the familiar Gibbs distribution from undergraduate
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statistical mechanics:

DN (Γ ) ≡ 1

Z exp

(
−H(Γ )

T

)
, (X.3.2)

where T is the (species-independent) temperature, Z =
∫
dΓ exp(−H(Γ )/T ) is the

partition function, and the Hamiltonian

H(Γ ) =
∑
α

Nα∑
i=1

(
1

2
mαV

2
αi

+
∑
β

Nβ∑
j=1

(βj ̸=αi)

1

2

qαqβ
|Rαi −Rβj |

)
(X.3.3)

contains the kinetic and potential energies of the constituent particles. The one- and
two-particle equilibrium reduced distribution functions are then

fα(x) ≡
Nα∑
i=1

∫
dΓ DN (Γ ) δ(x−Xαi),

fαβ(x,x
′) ≡

Nα∑
i=1

Nβ∑
j=1

∫
dΓ DN (Γ ) δ(x−Xαi)δ(x

′ −Xβj)

= fα(x)fβ(x
′) + gαβ(x,x

′)

≡ fα(v)fβ(v
′)
[
1 + ĝαβ(r, r

′)
]
,

where x = (r,v) is shorthand for the phase-space variables and, in the last line, we
have introduced ĝαβ ≡ gαβ/fαfβ as the part of the equilibrium two-particle correlation
function that depends only on position. (Recall fα(x) = fα(v) in equilibrium.) In this
problem, you will calculate O(Λ−1) corrections to familiar thermodynamic quantities.

(a) The thermodynamic energy

U ≡ ⟨H⟩ =
∫

dΓ H(Γ )DN (Γ ) (X.3.4)

is defined as the expectation value of the Hamiltonian. Using the indistinguisha-
bility of like-species particles and the definitions of the one- and two-particle
equilibrium reduced distribution functions, show that

U =
3

2
NT + V

∑
α

∑
β

2πqαnαqβnβ

∫ ∞

0

dr r ĝαβ(r ), (X.3.5)

whereN ≡∑αNα is the total number of particles in the system, V is the volume of
the system, and r ≡ |r− r′| is the radial separation between two generic particles
of species α and β. The first term in (X.3.5) is (obviously) the thermal energy
of the plasma; the second term measures the importance of the correlation, or
potential, energy.

(b) Remember undergraduate statistical mechanics? Neither did I. The free energy
W can be obtained from the partition function via W = −T lnZ.25 With this in

25 In some plasma texts, the free energy is denoted A, after the German “Arbeit”, meaning
“work”. (Remember that the free energy is the amount of energy available in the form of useful
work.) But I’m going to use A for something different in this course, so it’ll have to be W for
the English “work”.
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hand, other thermodynamic quantities may be obtained. Show that the pressure

P = −
(
∂W

∂V

)
N,T

,

satisfies

PV = NT +
V
3

∑
α

∑
β

2πqαnαqβnβ

∫ ∞

0

dr r ĝαβ(r ). (X.3.6)

(Hint: You may be wondering where is the V in the partition function. Well,∫
dΓ ∝ VN and |Rαi −Rβj | ∝ V1/3, so. . . )

(c) Evaluate the thermodynamic energy (X.3.5) and pressure (X.4.19) for the equilib-
rium two-particle correlation

ĝαβ(r ) = −qαqβ
Tr exp(−kDr ), (X.3.7)

where k2D ≡ ∑
γ 4πq

2
γnγ/T , and show explicitly that the corrections to the ther-

modynamic quantities are O(Λ−1).

If you’re interested in the above, you might enjoy reading this paper by Foster et al.
(2023), in which they compute the two-particle correlation function from the BBGKY
hierarchy and the associated thermodynamics for a moderately coupled plasma, i.e., one
in which the plasma parameter satisfies 1 ≪ Λ/ lnΛ≪ (mi/me)

1/2.

3. Semi-convergent equilibrium pair correlations. We saw in class that the diver-
gence of the equilibrium two-particle distribution function fαβ(x,x

′) as |r − r′| → 0
is related to our neglect of two-particle correlations in the source term for gαβ(x,x′).
Dropping that term amounted to an assumption that particles enter into two-body
interactions initially uncorrelated. We really should have fαβ → 0 as |r − r′| → 0,
i.e., the probability of finding a particle of species α and a particle of species β at the
same location, regardless of what all other particles are probably doing, should vanish.
To get this physically reasonable result, we require that ĝαβ

.
= gαβ/(fαfβ) → −1. So,

let’s retain the contribution of two-particle correlations to the source term and see what
happens. With φα(r, r

′)
.
= qα/|r − r′| in 3D, equation (IV.6.10) in the lecture notes

should be replaced by

(v − v′) · ∂
∂r

[
gαβ(x,x

′) +
qαφβ(r, r

′)

T
fα(v)fβ(v

′) +
∑
γ

∫
dx′′ qαφγ(r, r

′′)

T
fα(v)gβγ(x

′,x′′)

]

= −(v − v′) · ∂
∂r

[
qαφβ(r, r

′)

T

]
gαβ(x,x

′),

(X.3.8)

the additional term having been placed on the right-hand side. You already know from
class that the solution to (X.3.8) without this extra source term is

ĝ
(B–L)
αβ (r ) = −qαφβ(r )

T
exp (−kDr ) , (X.3.9)

and that its kDr ≪ 1 (Landau) limit is

ĝ
(Landau)
αβ (r ) = −qαφβ(r )

T
. (X.3.10)

https://ui.adsabs.harvard.edu/abs/2023JPlPh..89e9006F/abstract
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(a) Show that, in the (Boltzmann) limit in which shielding is negligible, the equilibrium
two-particle correlation function is

ĝ
(Boltz)
αβ (r ) = −1 + exp

(
−qαφβ(r )

T

)
. (X.3.11)

Note that, for like-signed charges, this safely asymptotes to −1 as r → 0, unlike
the Balescu–Lenard correlation function (good), but that the kDr ≫ 1 limit is
now wrong (bad). Why is this, physically? Unfortunately, the case with unlike-
signed charges blows up as r → 0. As Greg Hammett put it in his lecture notes:
“Nothing classical can prevent electrons from collapsing onto ions with infinite
negative potential energy. Only quantum effects can prevent this collapse.”

(b) The combination

gαβ = g
(B–L)
αβ + g

(Boltz)
αβ − g

(Landau)
αβ (X.3.12)

is globally convergent, asymptotes to the correct limits (at least for Λ→ ∞), and
results in a collision operator

qα
mα

∂fα
∂v

·
∑
β

∫
dv′ fβ(v

′)

∫
dr′ ĝαβ(r, r

′)
∂φβ(r, r

′)

∂r

whose spatial integral exists without artificial regularization (at least for like-signed
charges).26 Sweet! Make a plot of (X.3.12) in the same format as Fig. 5 in Section
IV.6 of the lecture notes and comment on the differences. Unfortunately, despite
these advantages, the internal energy per particle (X.3.5) diverges for this choice
of gαβ .

(c) We know that the third term in (X.3.8) is ultimately responsible for “dressing”
the Coulomb potential: φβ(r ) = qβ/r → (qβ/r ) exp(−kDr ). Another approach to
obtaining a globally convergent collision operator is to solve (X.3.8) after neglecting
that third term but using this dressed Coulomb potential for φβ . Do so to derive
the two-particle correlation

ĝαβ(r ) = −1 + exp
[
−qαqβ
Tr exp(−kDr )

]
, (X.3.13)

and show that it asymptotes to the correct limits. Plot it on top of your plot from
(b).

4. Debye shielding and equilibrium pair correlations in 2D. Finally, let’s return to
the original version of (X.3.8) featured in class, which has its right-hand side neglected:

gαβ(x,x
′) +

∑
γ

∫
dx′′ qαφγ(r, r

′′)

T
fα(v)gβγ(x

′,x′′) +
qαφβ(r, r

′)

T
fα(v)fβ(v

′) = 0,

(X.3.14)
The solution to this equation may be written for arbitrary dimensionality d (= 1, 2, 3) in
Fourier space as follows:

ĝαβ(k) ≡
gαβ(k,v,v

′)

fα(v)fβ(v′)
= −qαφβ(k)

T

[
1 + (2π)d

∑
γ

qγnγφγ(k)

T

]−1

. (X.3.15)

26 Equation (X.3.12) is what results by matching solutions of (X.3.8) across the various
asymptotic limits; see Frieman & Book (1963). If you’d like to read more about globally
convergent collision operators, I recommend Baalrud & Daligault (2019).
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This may be compared with equation (IV.6.13) in the lecture notes.
Use (X.3.15) to calculate the two-particle correlation function for an equilibrium

plasma with only two spatial dimensions (d = 2), so that the “particles” are infinitely long
charged rods aligned with the z axis of a cylindrical-polar coordinate system (R,ϕ, z).
You’ll first need to calculate the appropriate φ(k) from Poisson’s equation. Plot ĝαβ(R)
and discuss the limiting cases kDR → 0 and → ∞ mathematically and physically.
Compare with the d = 3 case worked out in the lecture notes and given by equation
(X.3.9) above.27

27Hint: The two-dimensional Fourier transform of an axisymmetric function, which you derived
in HW01 Problem 2(aa.ii), is called the Hankel transform of order zero. (It’s used in spectral
gyrokinetic codes.) You’ll need its inverse for this problem. Also worth noting: δ(r) = δ(R)/πR
in polar coordinates.
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X.4. Homework #4: Cerenkov & Bremsstrahlung

Generals prep. Make sure you can provide brief definitions of the following terms: test-
particle superposition principle, polarization drag, Bremsstrahlung. Also, 1 eV ∼ 104 K

1. Cerenkov wakes from moving test charges. In class, we showed that a moving
test charge provokes a polarization response from the background plasma through which
it travels. This response dresses the test particle, so that the steady-state potential

φ(t, r) =
qT
2π2

∫
dk

exp[ik · (r −R0 − V0t)]

k2 D(k ·V0,k)
(X.4.1)

for a particle of charge qT with initial position R0 and velocity V0, where

D(ω,k) = 1 +
∑
α

ω2
pα

k2
1

nα

∫
dv

k · ∂fα/∂v
ω − k ·v + i0

(X.4.2)

is the dielectric function. The other symbols have their usual meanings: k is the wavevec-
tor, ω2

pα ≡ 4πq2αnα/mα is the square of the plasma frequency, and fα(v) and nα are the
(spatially uniform) distribution function and number density of the background (i.e.,
undisturbed) plasma, respectively. In class, we discussed the physically reasonable result
that

φ(t, r) ≈ qT
|r −R0 − V0t|

exp
(
−KD|r −R0 − V0t|

)
for V0 ≪ vthα (X.4.3)

and

φ(t, r) ≈ qT
|r −R0 − V0t|

for V0 ≫ vthα, (X.4.4)

where vthα is the thermal speed of species α; i.e., a sufficiently slow particle has efficient
Debye shielding, whereas a sufficiently fast particle has inefficient Debye shielding.28 In
this problem, you will analytically compute the first-order correction to (X.4.3) and then
examine the exact solution, which was numerically obtained and presented in the lecture
notes. You will also examine the corresponding density response of the plasma through
which the test charge travels (so-called “Cerenkov wakes”).

(a) For simplicity, take the background plasma to be composed of Maxwellian electrons
and cold, immobile ions. Show that the dielectric function may be written as

D(k ·V0,k) = 1 +
k2De

k2
[
1 + ζeZ(ζe)

]
, (X.4.5)

where k2De ≡ 4πe2ne/Te is the square of the inverse Debye length, Z(ζ) denotes
the plasma dispersion function, and ζe ≡ k̂ ·V0/vthe.

(b) Suppose V0/vthe ≪ 1. Expand the Z function in its small argument to show that
the first-order correction to (X.4.3) is given by

δφ(r ) = qTkDe

(kDer )3
4Ψ(kDer )√

π
r̂rr · V0

vthe
, (X.4.6)

28In (X.4.3), we have employed the square of the Debye wavenumber for an arbitrary distribution
function,K2

D ≡ −∑
γ ω

2
pγ

∫
du (1/u)(∂Fγ/∂u), where Fγ(u) = (1/nγ)

∫
dv fγ(v) δ(u−k̂ ·v). For

the usual Maxwellian distribution, K2
D =

∑
γ 4πq

2
γnγ/Tγ ≡ k2D.
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where rrr ≡ r −R0 − V0t and the function

Ψ(x) ≡ 1

2

∫ ∞

0

dy
sin y − y cos y

(y2/x2 + 1)2
(X.4.7)

is shown in the figure below:

At large distances from the test charge, it’s clear from the figure that Ψ(kDer ) →
1.29 The potential δφ(r ) thus falls off as 1/r 3 at large distances. Note further
the asymmetry revealed by (X.4.6): observers in front of the moving test charge
(r̂rr ·V0 > 0) see an enhanced potential, whereas observers in back (r̂rr ·V0 < 0) see
a reduced potential. Explain physically why this is so.

(c) For r̂rr ·V0 = 0 (i.e., directions perpendicular to the velocity of the test charge),
the first-order potential (X.4.6) vanishes. Whoops. If I were mean, I would make
you calculate the second-order correction to (X.4.3). But I’m not, so it’s up to you
whether you want to torture yourself with six different contour integrals. Here I’ll
just give the answer:

δφ(2)(r ) = − qTkDe

(kDer )3
2(π− 2)T (kDer ) :

V0V0

v2the
, (X.4.8)

where

T (x) ≡ −
(
3r̂rr r̂rr − I

)[
1− e−x

(
1 + x+

x2

2

)]
+ e−x

x3

8

[
4 r̂rr r̂rr +

(
x r̂rr r̂rr − I

) π

π− 2

]
and I is the unit dyad. Note that, at large distances (x ≫ 1), T → −(3r̂rr r̂rr − I),
and so qTδφ(x≫ 1) is negative in the direction perpendicular to V0. Why is this,
physically?

(d) Section V.1 of the lecture notes includes five plots of equipotential contours of
(φ/qTkDe) in the rest frame of the test particle for V0/vthe = 0.1, 0.3, 1, 2, 3, 10.
These were obtained by numerically performing the integral in (X.4.1) using
(X.4.5) for the dielectric function. Explain what you see there in physical terms.
For example, why is the potential negative behind the moving test charge (if
qT > 0)? How is this related to polarization drag? What’s happening in front of
the test charge? What happens to the Debye cloud at V0/vthe = 10 and why? Is the
potential in the direction perpendicular to the test charge’s velocity qualitatively
consistent with (X.4.8)?

29You won’t earn extra points for doing it, but the mathematically inclined might enjoy the
asymptotics challenge of proving this analytically.
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(e) The perturbed charge density,∑
α

qαδnα(t,rrr ) =
qT

(2π)3

∫
dk exp(ik ·rrr )

[
1

D(k ·V0,k)
− 1

]
, (X.4.9)

is given by equation (V.1.13) in the lecture notes. Numerically evaluating this
integral for V0/vthe = 10 results in the isodensity contours shown on pg. 69 of the
lecture notes. You can see a nice Mach cone trailing behind the test charge, with
the density fluctuations confined inside |y/x| ≈ C/V0 ≪ 1 where C =

√
3vthe.

Explain this result physically (including the factor of
√
3).

(f) In the above, we’ve assumed that the ions are cold and immobile. Equation (V.3.10)
of the lecture notes states that the polarization drag force on a test charge qT > 0
of velocity V0 in a bath of electrons of number density ne and temperature Te is
given by

Fpol = −q2Tk2De lnλie
2

3
√
π

V0

vthe
.

This expression is traced by the blue dashed line in the figure below. As you can
see, it does rather well for V0/vthe ≪ 1 at approximating the red line, which is the
full velocity-dependent drag force (equation (V.3.2) in the lecture notes) when the
ions are taken to be cold and immobile.30 You can also see that the drag force drops
off for V0/vthe ≳ 1; physically, this is because the charge is out-running its Debye
cloud of electrons. Ah, but what’s happening with the black line for V0/vthe ≲ 0.3?
That line is the full drag force (V.3.2) with active ions having mi/me = 1836 and
Ti/Te = 1. Explain physically why this curve rises and then falls as V0 approaches
vthi (the vertical dotted line) from above. Perhaps some drawings might help.

2. Thermal Bremsstrahlung. In class, we computed the radiation emitted as a test
particle moves through a continuous plasma—so-called Cerenkov radiation. In this prob-
lem, you will use similar test-particle methods to compute the radiation due to collisions
between discrete particles, which is called Bremsstrahlung (German for “braking radia-
tion”). In particular, you will focus on collisions between ions and electrons. Consistent
with the rest of the course thus far, only electrostatic fluctuations are considered, so

30I took kmax = 105kDe in numerically evaluating (V.3.2).
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that the wavevector k is parallel to Ek. (At the end of this problem, I comment on the
arguably more important case of transverse polarization.) Your first goal is to compute
the radiation emitted as a shielded test electron scatters off a test ion, which is given by

W = lim
T →∞

∫ T /2

−T /2
dt

∫
drE(t, r) ·JT(t, r), (X.4.10)

where JT(t, r) is the current density of the test particles and T is the time over which
the radiation is emitted. I’ll lead you through the process.

(a) Write the electric field and current density in Fourier space,

E(t, r) =

∫ ∞

−∞

dω

2π

∫ ∞

−∞
dkE(ω,k) exp[i(k · r − ωt)],

JT(t, r) =

∫ ∞

−∞

dω′

2π

∫ ∞

−∞
dk′ JT(ω

′,k′) exp[i(k′ · r − ω′t)],

and use Maxwell’s equations with Ek ∥ k to show that (X.4.10) becomes

W = (2π)3 Re

∫
dω

2π

∫
dkE(ω,k) ·J∗

T(ω,k)

= 2(2π)4 Im

∫
dω

2π

∫
dk

|k̂ ·JT(ω,k)|2
ωD(ω,k)

≡
∫

dω

2π
Wω, (X.4.11)

where k̂ = k/k and D is given by

D(ω,k) = 1 +
∑
α

ω2
pα

k2
1

nα

∫
dv

k · ∂fα/∂v
ω − k ·v + i0

. (X.4.12)

You should prove this step by step. But, once you’ve become an expert at these
things, you could just surmise that the current density of the undressed test
particles JT ought to be “dressed” with a 1/D(ω,k) factor. On pg. 76 of the
lecture notes, this formula was used to compute the power emitted by Cerenkov
radiation from a single test charge; see equation (V.3.9) there.

(b) Apparently, we need to compute the square of the test-particle current in the ω-k
space. To do so, write the current of the test ion-electron pair as

JT(t, r) = ZeVi(t) δ(r −Ri(t))− eVe(t) δ(r −Re(t)), (X.4.13)

where Ze (−e) is the charge of the ion (electron) and (Rα,Vα) are the position
and velocity of species α at time t. Assuming that kvthe ≪ ω and me/mi ≪ 1, use
(X.4.13) along with Newton’s second and third laws to obtain

|k̂ ·JT(ω,k)|2 =
Z2e4

ω2m2
e

|k̂ ·Ee(ω,Ri)|2
(2π)6

, (X.4.14)

where Ee(ω,Ri) is the electric field due to the (dressed!) test electron evaluated
at the location of the ion. Thus,

Wω =
1

2π2
Im

∫
dk

Z2e4

ω2m2
e

|k̂ ·Ee(ω,Ri)|2
ωD(ω,k)

. (X.4.15)

(c) Show that, in the long-wavelength limit for which ω ≫ kvthe,

D(ω,k) ≈ 1− ω2
pe

ω2

(
1 +

3

2

k2v2the
ω2

)
+ i ImD. (X.4.16)
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Also show that ImD ≪ 1 when ω ≳ ωpe. Use these properties in (X.4.15) and
perform the k-space integration to obtain

Wω =
2Z2e4

9m2
ev

3
the

√
2

3

(
1− ω2

pe

ω2

)
|Ee(ω,Ri)|2. (X.4.17)

You’ll need the following tricks:

lim
ϵ→+0

ϵ

x2 + ϵ2
= πδ(x),

δ(f(x)) =
∑
i

δ(x− xi)

|f ′(xi)|
, where f(xi) = 0.

(d) In class, we calculated the electric field excited by a test charge moving through
a responsive plasma. Taking the electron to be that test charge, the electric field
evaluated at the position of the ion is

Ee(ω,Ri) =
ie

π

∫
dk

k δ(ω − k ·Ve)

k2 D(ω,k)
exp[ik · (Ri −Re)]. (X.4.18)

Plug this into (X.4.17). The result is the total radiation emitted when a single test
electron, dressed by the surrounding plasma, scatters off a single ion. Now invoke
the test-particle superposition principle to show that the total power radiated per
unit volume by a distribution fe(v) of electrons is

P =
4Z2e6ni
9πm2

ev
3
the

∫
dω

√
2

3

(
1− ω2

pe

ω2

)∫∫
dk dv fe(v)

δ(ω − k ·v)
k2|D(ω,k)|2 , (X.4.19)

where ni is the number density of ions.

Hint : It might help you to set up a coordinate system with the impact parameter
b ≡ Re − Ri = bx̂, the electron velocity Ve = Veẑ, and the wavevector k =
k∥ẑ + k⊥. If you do this, then you’ll have to recall that δ(k⊥ − k′

⊥) = 2 δ(k2⊥ −
k′2⊥) δ(ϕk−ϕk′) in cylindrical coordinates. Alternatively, keep b as a general vector
and eventually use δ2(ω) = (T /2π)δ(ω) – see equation (III.7.15) in the lecture
notes for an explanation.

(e) Using the equations for Cerenkov radiation (e.g., equation (V.3.9) in the lecture
notes), argue that (X.4.19) is a factor ∼1/Λ smaller than its Cerenkov counterpart.
Physically, why is this? (Think in terms of the particle trajectories in the two
calculations and how and why they differ.) Does the Balescu–Lenard operator
capture Bremsstrahlung emission? If so, where is it? If not, what assumption
precluded Bremsstrahlung from entering?

(f) Evaluate (X.4.19) for a Maxwellian electron distribution,

fe(v) =
ne

π3/2v3the
exp

(
− v2

v2the

)
. (X.4.20)

For simplicity, just take D(ω,k) = 1 and cut off the wavenumber integration
using a maximum wavenumber kmax. (Note that you need not specify a minimum
wavenumber.) You should be able to massage your answer into the following form:

P =
16Z2e6nine
9m2

ev
3
the

√
2

3
kmaxG(ξmin), (X.4.21)
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where ξmin ≡ (ωpe/kmaxvthe)
2,

G(ξmin) ≡
1

2
√
π

∫ ∞

ξmin

dξ E1(ξ)

√
1

ξ

(
1− ξmin

ξ

)
, (X.4.22)

and the exponential integral

E1(ξ) =

∫ 1

0

dt
e−ξ/t

t
. (X.4.23)

The function G(ξmin) = 1 at ξmin = 0 and decreases sharply thereafter. For
plasmas with Te > 27.2Z2 eV (the Hartree energy), the electron thermal de Broglie
wavelength provides the maximum wavenumber: kmax =

√
meTe/ℏ2. In this case,

P ∝ nineT
−1
e . Otherwise, kmax ∼ Te/e

2 (the “Landau length”, or the distance of
closest approach of thermal electrons) and P ∝ nineT

−1/2
e .

An additional note for your own edification (please read):

One can repeat the ion-electron thermal Bremsstrahlung calculation outlined above but
with transverse (rather than longitudinal) electromagnetic fluctuations (i.e., light). Now,
k ·Ek = 0 but k×Ek ̸= 0, and so there are magnetic-field fluctuations. This is the kind
of Bremsstrahlung radiation you can (and one does) observe, e.g., at radio wavelengths
from Hii regions in the interstellar medium and in the X-ray band from hot astrophysical
plasmas, such as the intracluster medium of galaxy clusters and the accretion flow onto
the black hole at our Galactic center. (Of course, a test current JT of accelerated charges
will excite both longitudinal and transverse electromagnetic fluctuations. Problem 2
focused on the former; the following focuses on the latter.) One can straightforwardly
generalize the calculation from Problem 2 for this case by using the relevant dielectric
function,

D(ω,k) = 1− ω2

k2c2
+
ω2
peω

k2c2

∫
dv

fe(v)

ω − k ·v + i0
≡ 1− ω2

k2c2
− 4πiω

k2c2
σ, (X.4.24)

where σ is the conductivity, and revising equation (X.4.11) for the new polarization. The
derivation will be given in my solutions; the result is that

P =
4Z2e6ni
3πm2

ec
3

∫
dω

√
1− ω2

pe

ω2

∫∫
dk dv fe(v)

δ(ω − k ·v)
k2|D(ω,k)|2 , (X.4.25a)

=
16Z2e6nine

3m2
ec

3
kmaxG(ξmin) for a Maxwellian with |D(ω,k)|2 ≃ 1. (X.4.25b)

For kmax =
√
meTe/ℏ2, the total power radiated per unit volume is ∝ nineT

1/2
e . In CGS

units with temperature measured in Kelvin, its numerical value is ≈10−27 Z2nineT
1/2
e ,

a formula routinely used to infer number densities of X-ray emitting astrophysical
plasmas from the observed emission. The temperature may be obtained from the ob-
served cutoff of the otherwise flat frequency spectrum dP/dω ∝ E1(ξ/2), where ξ .

=
(ℏω/kBTe)2. Namely, taking the cutoff to be at ξ ≈ 1 implies an emitted frequency
ν = ω/2π ≈ 1018 Hz (kBTe/5 keV), right in the middle of the X-ray band. Here, I’ve
normalized the temperature to that of the most abundant plasma in the Universe –
the intracluster medium, a hot and dilute plasma that fills the space between galaxies
in so-called galaxy clusters (the largest virialized objects in the Universe). Thermal
Bremsstrahlung is the main cooling process in this plasma, despite a characteristic cooling
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time ≈6 Gyr (kBTe/5 keV)1/2 (ne/0.01 cm−3)−1 . . . do you know the age of the Universe?
In fusion plasmas, the density and temperature are known by other means (generals
prep: do you know what they are?), and so the amount of Bremsstrahlung emission (in
the visible range) provides a measurement of Zeff . This is an important number because
radiation from impurities can affect the confinement time. X-ray Bremsstrahlung emission
is also used in laser-plasma experiments (where ne ∼ 1020 cm−3, kBTe ∼ 0.5 keV) to
measure density fluctuations and in ICF experiments to estimate the neutron yield.
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X.5. Homework #5: Langevin’ing

1. Langevin dynamics in a magnetic field (after Krommes Ex. 6.8). Consider
random, sub-Debye-scale, electrostatic fluctuations δE(t) in the presence of a weak
(Ω/ωp ≪ 1), straight magnetic field B0 = B0ẑ, where B0 is a constant. The classical
Langevin equations for a test particle with charge q and mass m moving in these fields
are

dr

dt
= v, (X.5.1a)

dv

dt
= −γv +Ωv× ẑ + a(t), (X.5.1b)

where γ is the drag coefficient, Ω ≡ qB0/mc is the cyclotron frequency, and a(t) =
(q/m)δE(t) is the random acceleration due to the electrostatic fluctuations. In the spirit
of Langevin’s approach (in which the time axis is coarse grained into time intervals much
larger than ω−1

p , the transit time through a Debye cloud), one may assume that a is
Gaussian white noise:

⟨a(t)⟩ = 0, (X.5.2a)

⟨a(t)aT(t′)⟩ = εδ(t− t′)I , (X.5.2b)
where T denotes the transpose and I is the unit dyadic. Remember that the brackets
indicate an ensemble average over many individually deterministic realizations of the
system. Thus, the position r and velocity v of the test particle are random variables.

(a) One expects that at long times (γt≫ 1) the particle will diffuse in space, although
it may diffuse at different rates in the directions parallel (∥) and perpendicular (⊥)
to B0. Argue (no mathematics) that the parallel spatial diffusion coefficient is the
same one that was calculated in class for the one-dimensional Langevin equation.
Then use the simplest random-walk formula you can think of to predict how the
cross-field diffusion coefficient ought to scale with γ and B0 in the physically
relevant regime γ/Ω ≪ 1. Hopefully this scaling will agree with the detailed
formula you derive in this problem.

(b) Solve for the random velocity of the particle v(t) in terms of a(t). There are several
ways to do this, but my preferred method is to first solve

∂G
∂t

+ γG −ΩG × ẑ = δ(t− t′)I (X.5.3)

for the (matrix) Green’s function G(t; t′) and then write

v(t) = G(t; 0) ·v(0) +
∫ t

0

dt′ G(t; t′) ·a(t′). (X.5.4)

You should find that

G(t; t′) = e−γ(t−t
′)

cos[Ω(t− t′)] − sin[Ω(t− t′)] 0
sin[Ω(t− t′)] cos[Ω(t− t′)] 0

0 0 1

 . (X.5.5)

Compute the correlations ⟨v∥(t)⟩, ⟨v⊥(t)⟩, ⟨δv2∥(t)⟩, and ⟨δv⊥(t)δv
T
⊥(t)⟩, where

δv ≡ v − ⟨v⟩ is the departure in the velocity from its mean value.

The rotation matrix R(θ) has the following properties:

RT(θ) = R−1(θ) = R(−θ) and R(θ1)R(θ2) = R(θ1 + θ2).
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I just thought I’d say that.31

(c) At this point, it should be clear that the solution in the direction parallel to
the magnetic field is the same as the solution to the standard one-dimensional
Langevin problem. So let’s concentrate on the perpendicular dynamics. Integrate
δv⊥(t) to find an expression for the perpendicular displacement

δr⊥(t) ≡
∫ t

0

dt′ δv⊥(t
′) =

∫ t

0

dt′
∫ t′

0

dt′′ G(t′; t′′) ·a⊥(t
′′) = ? . (X.5.6)

Using your answer, compute

⟨δr⊥(t)δrT⊥(t)⟩ =
∫ t

0

dt′
∫ t′

0

dt′′
∫ t

0

ds′
∫ s′

0

ds′′ G(t′; t′′) · ⟨a⊥(t
′′)aT

⊥(s
′′)⟩ ·GT(s′; s′′).

(X.5.7)

Because I don’t want to you spend a huge amount of time chugging through
the math, here’s a generous hint. Be very careful that your integration limits
ensure causality. This means that, at some point in the calculation, you’ll want
to interchange integrals so that the integral over t′′ in equation (X.5.7) runs from
0 to t (instead of from 0 to t′) and the accompanying integral over t′ then runs
from t′′ to t (instead of from 0 to t′). Ditto for the integrals over s′ and s′′. If you
take this bit of information for granted and use it, you should at least justify this
interchange via some illustrative drawing. After this, to perform the new t′ and
s′ integrals, you’ll want to switch to integration variables similar to those used at
the bottom of pg. 97 of the lecture notes: τ ≡ t′ − s′ and T ≡ (t′ + s′)/2. Again,
you should at least justify this change of variables via some illustrative drawing
(e.g., like the one at the top of pg. 98 of the notes).

Here’s the final answer:

⟨δr⊥(t)δrT⊥(t)⟩ =
ε

γ2 +Ω2

[
t+

1− e−2γt

2γ

− 2γ

γ2 +Ω2

(
1− e−γt cosΩt+

Ω

γ
e−γt sinΩt

)]
I⊥, (X.5.8)

where I⊥
.
= I − ẑẑ.

(d) Define the running diffusion tensor by

B(t)
.
=

d⟨δr(t) δrT(t)⟩
dt

. (X.5.9)

Use (X.5.8) to obtain an explicit, simple formula for B in the long-time limit.
(Don’t do more calculation than is necessary! My solution is just two lines.) It
should be of the form

vthλmfp

[
something ẑẑ + something else I⊥

]
, (X.5.10)

where v2th = ε/γ from the fluctuation-dissipation theorem and λmfp = vth/γ is

31You may be wondering. . . cross a tensor into a vector? How do I
do that?! I found the following website extremely useful on this topic:
https://en.wikiversity.org/wiki/Introduction_to_Elasticity/Tensors. It writes out a
lot of these tensor-tensor and tensor-vector combinations in component form. For example,
the ij-component of a tensor G crossed into a vector v is ϵkmjGikvm, where summation over
repeated indices is implied. So, (G × ẑ)ij = Gik ϵkzj .

https://en.wikiversity.org/wiki/Introduction_to_Elasticity/Tensors
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the mean free path. Is your answer compatible with the heuristic scalings you
predicted in the first part? If not, start over.

2. Vlasov Langevin equation in Hermite space (after Kanekar et al. 2015). It
is now time to revisit HW02 #2, named “Landau damping via Hermite polynomials”.
There you derived the following set of linear equations coupling various Hermite moments
m = 0, 1, 2, . . . of the perturbed distribution function g(t, z, v):

∂g0
∂t

+
∂

∂z

g1√
2
= 0, (X.5.11a)

∂g1
∂t

+
∂

∂z

(
g2 +

1√
2
g0

)
+

∂

∂z

φ(t, z)√
2

= 0, (X.5.11b)

∂gm
∂t

+
∂

∂z

(√
m+ 1

2
gm+1 +

√
m

2
gm−1

)
= −νmgm, m ⩾ 2. (X.5.11c)

To remind you of the physical content of these equations: (X.5.11a) is the continuity
equation, representing the transport of density fluctuations by momentum fluctuations;
(X.5.11b) is the momentum equation, showing that density fluctuations create potential
fluctuations (φ = αg0), which accelerate particles (the final term in (X.5.11b)) and thus
lead to Landau damping; then small-scale structure in velocity space is generated via
phase mixing, which manifests as a conservative cascade to higher m in Hermite space
(eqns X.5.11b,X.5.11c); eventually, small enough scales (i.e., large enough m) are pro-
duced that collisions become important (the right-hand side of (X.5.11c)). Irreversibility
occurs. During this velocity-space cascade of free energy from the low (“fluid”) moments
of g to the high (“kinetic”) moments, the following quadratic quantity is conserved for
each wavenumber k:

Wk =
1 + α

2
|g0,k|2 +

1

2

∞∑
m=1

|gm,k|2 (X.5.12)

(Recall that each k is independent of the others because the equations are linear.) Once
sufficiently small structure in velocity-space is produced, Wk decays due to collisions:

dWk

dt
= −ν

∞∑
m=2

m|gm,k|2. (X.5.13)

Hopefully you remembered all of that, because now we’re going to add a stochastic forcing
to the right-hand side of (X.5.11a) representing the injection of energy into density
fluctuations:

∂g0
∂t

+
∂

∂z

g1√
2
= χ(t, z) =

∑
k

χk(t) exp(ikz). (X.5.14)

In the spirit of Langevin, take the forcing to be Gaussian white noise, whose ensemble
average ⟨χk(t)χ∗

k(t
′)⟩ = εk δ(t − t′). Now that you know a few things about Langevin

equations, let’s have some fun.

(a) Integrate (X.5.14) over time to show that ⟨g0,k(t)χ∗
k(t)⟩ = εk/2. Use this to show

that, in the presence of this forcing, equation (X.5.13) is replaced by

dWk

dt
=

1 + α

2
εk − ν

∞∑
m=2

m⟨|gm,k|2⟩. (X.5.15)

(b) Equations (X.5.11a)–(X.5.11c) were obtained from Hermite-transforming the fol-
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lowing equations (now including the stochastic forcing of density fluctuations):

∂g

∂t
+ v

∂g

∂z
+ vF0

∂φ

∂z
= χ(t, z)F0 + C[g], (X.5.16a)

φ = α

∫ ∞

−∞
dv g, (X.5.16b)

where F0(v) = exp(−v2)/√π. Ignoring collisions and Fourier-transforming in space
and time, show that the steady-state mean-square fluctuation level in the plasma
is

⟨|φk|2⟩ = α2⟨|g0,k|2⟩ =
εk

2π|k|

∫ ∞

−∞
dζ

∣∣∣∣ Z(ζ)Dα(ζ)

∣∣∣∣2 , (X.5.17)

where ζ = ω/|k|, Z(ζ) =
∫∞
−∞ dv F0/(v− ζ) is the plasma dispersion function, and

Dα(ζ) = 1 +
1

α
+ ζZ(ζ) (X.5.18)

is the dielectric function. Equation (X.5.17) is the fluctuation-dissipation relation
for the kinetic system (X.5.16); given an amount of energy injection ε and a channel
of dissipation controlled by α, it predicts the long-time behavior of the electrostatic
fluctuations. Again, note that, because of the linearity of (X.5.16), there is no
coupling between different wavenumbers.

(c) Let α + 1 ≪ 1, so that the dispersion relation Dα(ζ) = 0 implies ζ ≪ 1. Expand
the Z function in its small argument to show that the mode is aperiodic, i.e., it is
a purely damped mode:

ω ≈ −iγL, where γL =
1 + α√

π
|k| (X.5.19)

is the rate of collisionless (Landau) damping. A physical example of damping in
this regime is the Barnes (1966) damping of compressive fluctuations in high-beta
plasmas, for which 1 + α ≈ 1/βi ≪ 1 (Schekochihin et al. 2009, their equation
(190); see also the discussion in the problem setup for HW02 #2). From this, use
(X.5.17) to show that

⟨|φk|2⟩ ≈
ε

2γL
. (X.5.20)

This should look quite familiar from the lectures on the standard Langevin equa-
tion, which (in the notation of this problem) reads ∂φ/∂t+ γφ = χ(t).

This is a brief educational aside about the opposite limit, α≫ 1, which corresponds physically
to Landau damping of ion acoustic waves (for βi ≪ 1 and Ti/Te ≪ 1, so that α ≃ Te/Ti) and of
long-wavelength Langmuir waves (for which α ≃ 2/k2λ2

D). In this case, one may expand the Z
function in its large argument to show that the mode is rapidly oscillating and weakly damped:

ω ≈ ±
√
α

2
|k| − iγL, where γL =

√
π
α2

4
e−α/2|k|. (X.5.21)

From this, one may use (X.5.17) to show that

⟨|φk|2⟩ ≈ α2εk
4γL

. (X.5.22)

This system being only weakly damped, the steady-state fluctuation level is larger than found
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in part (c). This is actually the same fluctuation-dissipation theorem as that of a Langevin
harmonic oscillator governed by the stochastic differential equation φ̈+ γφ̇+ ω2

0φ = χ̇(t). This
formed the basis for an Irreversibles question on 2023’s General Examination, in which this
Langevin harmonic oscillator was used as a model to determine the steady-state electrostatic
fluctuation level in a weakly coupled plasma in thermal equilibrium.

Here’s the fluctuation level versus 1 + α, obtained by performing the integral in (X.5.17)
numerically:

(d) My guess is that, up to this point, you haven’t actually derived an explicit solution
for gk(t). Now do so. You should be able to coax it into the following form:

gk(t) =

∫ ∞

−∞

dω

2π
gk(ω)e

−iωt =

∫ ∞

−∞

dω

2π
e−iωt iχkω

|k|

[
Z(ζ)− 1 + α

α

sgn k

v − ω/k

]
F0

Dα(ζ)
.

(X.5.23)
Hermite transform this equation to find

gm,k(t) = −
∫ ∞

−∞

dω

2π
e−iωt iχkω

|k|
1 + α

α

(−sgn k)m√
2mm!

Z(m)(ζ)

Dα(ζ)
, m ⩾ 1, (X.5.24)

where

Z(m)(ζ) ≡ dmZ

dζm
= (−1)m

∫
dv

Hm(v)F0(v)

v − ζ
. (X.5.25)

(You must be very careful about k vs. |k|.) Now, use (X.5.24) to show that the mean
square fluctuation level in the statistical steady state of each Hermite moment m
is given by

Cm,k ≡ ⟨|gm,k|2⟩ =
εk

2π|k|

(
1 + α

α

)2
1

2mm!

∫ ∞

−∞
dζ

∣∣∣∣Z(m)(ζ)

Dα(ζ)

∣∣∣∣2 , m ⩾ 1.

(X.5.26)
The Hermite spectrum (X.5.26) characterizes the distribution of free energy in
phase space. It is the m ⩾ 1 version of (X.5.17).

Equation (X.5.26) in its general form is difficult to parse. It’s clear that having
1 + α ≪ 1 results in a lower fluctuation level than does α ≫ 1. This makes sense
from (X.5.15), since sending α → −1 reduces the effective injection rate of free
energy into the plasma by the driving. But let’s see if we can’t clean (X.5.26) up to
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make it more physically instructive. For that, let us wade into the “inertial range”
of the velocity-space cascade, at m’s far enough away from both the driving scale
and the collisional scale. You will see below that this corresponds to 1 ≪ m ≪
(kλmfp)

2/3, where λmfp is the mean free path.

(e) This part (e) is optional! A quick glance online reveals that, for m≫ 1,

e−v
2/2Hm(v) ≈

(
2m

e

)m/2 √
2 cos

(
v
√
2m− πm/2

)
. (X.5.27)

In this limit, the Hermite transform is somewhat analogous to a Fourier transform
in velocity space with “frequency”

√
2m/vth (restoring velocity-space units).

Show that, assuming m≫ 1 and ζ ≪
√
2m,

Z(m)(ζ) ≈
√
2π im+1

(
2m

e

)m/2
exp(iζ

√
2m− ζ2/2) (X.5.28)

and, therefore, that

Cm,k ≈
[

ε√
2π |k|

(
1 + α

α

)2 ∫ ∞

−∞

dζ e−ζ
2

|Dα(ζ)|2

]
1√
m

=
ε(1 + α)√

2|k|
1√
m
. (X.5.29)

This requires use of Stirling’s formula and some manipulation of contours in the
complex plane. To evaluate the integral in (X.5.29), use can the same technique
as was used in class to calculate the electrostatic field fluctuation spectrum in
an equilibrium plasma; namely, exploit the fact that Dα(ζ) has no poles in the
upper-half plane and do a small clockwise loop above ζ = 0 and a large counter-
clockwise loop to close the contour. (This is equivalent to using the Kramers-Kronig
relations.)

(f) (This part is required!) Equation (X.5.29) reveals that the Hermite spectrum
of the free energy Cm,k ∝ 1/

√
m is shallow and, in particular, that the total free

energy diverges. This is an indication that it must be regulated via collisions, no
matter how small is ν. (Remember that larger m corresponds to finer structure in
velocity space.) To that end, it is possible to show (though you need not) that, for
m≫ 1, equation (X.5.11c) implies

∂Cm,k
∂t

+ |k| ∂
∂m

√
2mCm,k = −2νmCm,k. (X.5.30)

Thus, the Cm,k ∝ 1/
√
m spectrum represents a constant flux of free energy

in velocity space; this is directly analogous to the constant flux of energy in
wavenumber space that goes into the Kolmogorov turbulence spectrum ∝k−5/3.

By integrating (X.5.30) in steady state (∂/∂t = 0) and using the steady-state
relation

1 + α

2
εk = ν

∞∑
m=2

mCm,k (X.5.31)

obtained from (X.5.15), show that the steady-state Hermite spectrum in the range
m≫ 1 is given by

Cm,k =
εk(1 + α)√

2m|k|
exp

(
−2

√
2

3

ν

|k|m
3/2

)
. (X.5.32)

Thus, show that the cascade of free energy to small scales in velocity space is
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exponentially cut off at (restoring dimensions)

mc ∼ (|k|vth/ν)2/3 (X.5.33)

and, furthermore, that the free-energy dissipation rate ν
∫∞

dmmCm,k is finite, no
matter how small is the collision frequency(!) In other words, entropy is produced
at a rate that is independent of the collision frequency!

This is the velocity-space analogue of Kolmogorov turbulence: there is a power-law
spectrum in the inertial range (k−5/3); the accompanying cascade of free energy to
small scales in real space is exponentially cut off at the viscous scale; and entropy
is produced at a rate that is independent of the viscosity, no matter how small its
value.

(g) You can find some code named landau_langevin.f90 at

https://www.astro.princeton.edu/~kunz/Site/AST554

which is based on the code you played with in HW02. This one solves the same
set of implicit equations as the other one but with a white-noise forcing χk in the
equation for g0,k:

g
(n+1)
0,k − g

(n)
0,k

∆t
= −ik

g
(n+1)
1,k√

2
+ χ

(n)
k ,

g
(n+1)
1,k − g

(n)
1,k

∆t
= −ik

(
g
(n+1)
2,k +

1 + α√
2
g
(n+1)
0,k

)
,

g
(n+1)
m,k − g

(n)
m,k

∆t
= −ik

(√
m+ 1

2
g
(n+1)
m+1,k +

√
m

2
g
(n+1)
m−1,k

)
−
(
νm+ νhm

4
)
g
(n+1)
m,k , 2 ⩽ m ⩽ Nm

(The forcing scheme starts on line 192.) The default free parameters in this code
are as follows: Nm = 2048, α = 1, k = 2π, ν = 0, νh = 10−12, and g

(0)
0,k = 1

(which is arbitrary, because the equations are linear). I’ve also tried ν = 10−3 and
ν = 10−2, both with νh = 0. Compile the code using

gfortran -o landau_langevin landau_langevin.f90

and play with it a bit. Executing the python script given at the end of this problem
set produces the plots of |φk|2 vs time and Cm,k vs m shown on the next page.
For α = 1, the predicted ⟨|φk|2⟩ = εk/2γeff with γeff = 0.71|k|. In the code,
the default driving uses εk = 4, so that the predicted ⟨|φk|2⟩ ≃ 0.45 for k = 2π.
Examining the plot on the left, this seems about right! The plot on the right shows
the m−1/2 spectrum, with an exponential cutoff that seems to scale as ν−2/3, just
as predicted. Nice!

https://www.astro.princeton.edu/~kunz/Site/AST554
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νh = 10−12

ν = 10−3

ν = 10−2

import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np

font = 13 ; mpl.rc(’text’, usetex=True)
mpl.rcParams[’text.latex.preamble’]=r"\usepackage{amsmath}"
mpl.rc(’font’, family = ’serif’, size = font)

fname = ’landau langevin.phik2’
data = np.genfromtxt(fname,autostrip=True)
t= data[:,0] ; phik2 = data[:,1]

fig1=plt.figure(figsize=(4,4))
axes = fig1.add axes([0.18,0.13,0.79,0.84])
axes.semilogy(t,phik2,’k’)
axes.tick params(which=’both’,direction=’in’,top=True,right=True)
axes.tick params(which=’major’,length=5)
axes.tick params(which=’minor’,length=3)
plt.xlabel(r"$t$",fontsize=font)
plt.ylabel(r"$|\varphi k|ˆ2 $",fontsize=font)
plt.ylim(1e-3,1e1)
plt.show()

fname = ’landau langevin.gkm’
data = np.genfromtxt(fname,autostrip=True)
time = data[:,0] ; mlab = data[:,1]
gkmr = data[:,2] ; gkmi = data[:,3]

nm = 2048 ; nt = int(time.size/nm) ; spec = np.zeros((nm,nt))
mm = np.arange(1,nm+1) ; indx = np.arange(0,nt)*nm
for m in range(nm):

spec[m,:] = (gkmr[indx+m])**2 + (gkmi[indx+m])**2

fig2=plt.figure(figsize=(4,4))
ax = fig2.add axes([0.18,0.13,0.79,0.84])
ax.loglog(mm,np.mean(spec[:,100:nt-1],1),’k’,label=r’$\nu h=10ˆ{-12}$’)
ax.loglog(mm,mm**(-0.5),’--k’)
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ax.tick params(which=’both’,direction=’in’,top=True,right=True)
ax.tick params(which=’major’,length=5)
ax.tick params(which=’minor’,length=3)
plt.xlim(1,2048) ; plt.ylim(2e-5,2e0)
plt.text(40,0.22,’$\propto mˆ{-1/2}$’)
plt.xlabel(r"$m$",fontsize=font)
plt.ylabel(r"$C {m,k}$",fontsize=font)
plt.legend(frameon=False,loc=’lower left’,prop="size":12)
plt.show()
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X.6. Homework #6: Collisions & Transport

Generals prep. Make sure you can provide brief definitions of the following terms:
Krook operator, Lenard–Bernstein (or Dougherty) operator, Lorentz operator, Rosen-
bluth potentials, runaway electrons, and Dreicer field. Also know νee, νei : νii : νie = 1 :√
me/mi : me/mi.

1. Fast ions and neutral-beam heating. In this problem, you will explore an im-
portant and practical application of the Landau collision operator: the consequences of
injecting an energetic beam of neutrals into a hot, ionizing plasma. In many tokamak
experiments, such “neutral-beam injection” (NBI) is used to heat a magnetically confined
plasma to thermonuclear temperatures. The basic atomic processes that involve the
absorption of energetic neutrals by the plasma and the consequent production of fast
ions are:

charge exchange: H0 + H+ → H+ + H0

electron ionization: H0 + e− → H+ + 2e−

proton ionization: H0 + H+ → H+ + H+ + e−.

(The energetic particle is identified in red.) For an injection energy of ∼50 keV per
nucleon, these three processes are almost equally likely (cross section σ ∼ 10−16 cm2).
After the absorption of the injected energetic neutral by any of these processes, we are
left with a fast ion and an electron. The electron heats up rapidly to the bulk electron
thermal speed v ∼ vth,e due to its small mass. The fast ion joins other similarly produced
fast ions to form a hot ion component (subscript h) with vthi ≪ vh ≪ vth,e. This problem
guides you through a calculation of the properties of that hot ion distribution.

Assume the following: that the NBI is into a magnetic field that gyro-tropizes the
velocity-space distribution function fh of the hot ions (i.e., fh is independent of gy-
rophase); that the background cold ions and electrons are unshifted Maxwellians; and
that the density of hot ions nh is small compared with the density of the background
ions ni.32 In this case, the hot-ion distribution function satisfies the test-particle form of
the Fokker–Planck equation:

∂fh
∂t

= C[fh] + Sh, (X.6.1)

where C[fh] is the test-particle collision operator (to be determined by you below) and
Sh is a source term describing the production of hot ions through NBI. The latter is
modeled by

Sh
.
= ṅh δ(v − v0)H(t) =

ṅh
2πv20

δ(v − v0) δ(ξ − ξ0)H(t), (X.6.2)

where ṅh is the production rate of hot ions, ξ .
= cos θ is the (cosine of the) pitch angle,

and the Heaviside function H(t) indicates that the source is turned on at t = 0.

(a) Use the assumptions given above alongside vth,i ≪ vh ≪ vth,e to simplify terms in
the Landau collision operator and thus obtain

τs C[fh] ≈
mi

mh

v3c
v3

L(fh) +
1

v2
∂

∂v

(
v3c + v3

)
fh, (X.6.3)

32In truth, the hot ions impart both momentum and energy to the background plasma and thus
can give rise to net motion (e.g., toroidal rotation in a tokamak with tangential injection). But
let us neglect this here. The assumption that nh ≪ ni is a good one: few energetic particles are
required to produce the desired heating.
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where

τs
.
=
mi

mh

m2
hv

3
c

4πZ2
he

4ni lnλhi
and vc

.
= vth,e

(
3
√
π

4

me

mi

)1/3

. (X.6.4)

Explain your reasoning and all of your steps! What is the physical meaning of each
of the three terms on the right-hand side of (X.6.3)?

To help guide you, fill out the following table using the ordering vthi ≪ vh ≪ vth,e
in the formulae for the collision rates for test particles scattering off of a Maxwellian
background plasma (see pp. 122–123 of the lecture notes):

collision frequencies (with νhe0
.
= 4πneZ

2e4 lnλ/m2
hv

3
th,e) β = i β = e

slowing down (νhβs /νhe0 ) ??? ???
perpendicular diffusion (νhβ⊥ /νhe0 ) ??? ???
parallel diffusion (νhβ∥ /νhe0 ) ??? ???
energy loss (νhβε /νhe0 ) ??? ???

(b) Using (X.6.3) for the test-particle collision operator, solve (X.6.1) to show that

fh(v, ξ, t) =
ṅhτs

2π(v3 + v3c )

∞∑
ℓ=0

(
ℓ+

1

2

)
Pℓ(ξ)Pℓ(ξ0)

(
v3

v30

v30 + v3c
v3 + v3c

)(mi/6mh) ℓ(ℓ+1)

×H[t− τ(v)]H(v0 − v), (X.6.5)

where Pℓ(ξ) is the ℓth Legendre polynomial satisfying L[Pℓ] = −(ℓ/2)(ℓ + 1)Pℓ,
and

τ(v)
.
=
τs
3

ln

(
v30 + v3c
v3 + v3c

)
(X.6.6)

is the time taken for a hot ion to slow from speed v0 to 0 < v < v0. [Hint: Expand
fh in Legendre polynomials and use

δ(ξ − ξ0) =

∞∑
ℓ=0

(
ℓ+

1

2

)
Pℓ(ξ)Pℓ(ξ0)

to expand δ(ξ−ξ0) as well. You may further find it useful to define a new function
gh

.
= (v3 + v3c )fh and then refresh your memory on how to solve inhomogeneous

linear PDEs with non-constant coefficients using the method of characteristics.
You’re on the right track if you need to solve a separable ODE that looks like
dw/dt = −(v3c+w

3)/(τsw
2) and if you eventually must use something like δ(w(t)−

w(0)) = δ(t)/|w′(0)|. Please do not hesitate to ask the TA or me if you need any
further assistance!]

(c) Use (X.6.5) to show that the distribution function at late times for particles
satisfying v0 > v ≫ vc is given by

fh,eq(v) =
ṅhτs

2π(v3 + v3c )
H(v0 − v)δ(ξ − ξ0). (X.6.7)

This is called the “slowing-down distribution”. Sketch it for ξ = ξ0. In addition,
use (X.6.5) to show that, for particles satisfying v ≪ vc, the late-time distribution
is approximately isotropic (i.e., ℓ = 0 represents the largest contribution).
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(d) Take the energy moment mhv
2/2 of (X.6.1) to obtain the following equation

relating the power input by the hot ions Qh into the background electrons and
ions to the injection and evolution of the energy density of the hot ions:∫

dv
1

2
mhv

2 ∂fh
∂t

.
=

d

dt
nhεh = −Qhe −Qhi + ṅhεh0H(t), (X.6.8)

where εh0
.
= mhv

2
0/2 and

Qhe
.
= −

∫
dv

1

2
mhv

2 C[fh, fMe] = mhṅh

∫ v0

v(t)

dv v
v3

v3 + v3c
, (X.6.9a)

Qhi
.
= −

∫
dv

1

2
mhv

2 C[fh, fMi] = mhṅh

∫ v0

v(t)

dv v
v3c

v3 + v3c
. (X.6.9b)

(This includes proving the final equalities in (X.6.9).)

(e) The plasma in the Joint European Torus (JET) attains densities ∼1014 cm−3 and
temperatures ∼10 keV. Neutral beams on JET are at 110–140 keV. Estimate vc
for JET parameters. Using (X.6.9) as a guide, is the power flowing predominantly
into the background ions or into the electrons? Use (X.6.6) to compute the time
required for a hot ion to slow down from an initial velocity v0 to a final velocity
vf

.
=
√
3Ti/mi. Take Zh = 1, mh = mi = 3670me, and lnλ = 17.
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X.7. Example Generals Problem for Irreversible Processes

This problem concerns a particular Chapman–Enskog expansion of the ion kinetic equa-
tion for a magnetized, weakly collisional plasma. Mathematical formulae of possible utility
are provided at the end of the problem.

To answer all of the following questions, you will need the Vlasov–Landau kinetic equation
governing the time evolution the ion distribution function fi. Written in a frame co-
moving with the ions’ mean velocity ui = ui(t, r), that equation is

∂fi
∂t

+
(
ui +w

)
·∇fi +

(
∇pi
mini

+
∇·Πi

mini
−w ·∇ui +w×Ωib̂

)
· ∂fi
∂w

= Cii[fi] + Cie[fi] +
Rie

mini
· ∂fi
∂w

, (X.7.1)

where w ≡ v−ui is the “peculiar” velocity relative to the mean velocity, fi = fi(t, r,w),
and b̂ ≡ B/B is the unit vector in the direction of the magnetic field B = B(t, r).
The other symbols have their usual meanings: mi is the ion mass, ni is the ion number
density, pi = niTi is the (isotropic) ion thermal pressure with Ti ≡ miv

2
thi/2 being the

ion temperature and vthi being the ion thermal speed, Πi is the ion viscous stress tensor,
and Ωi ≡ ZeB/mic is the ion Larmor frequency with Ze being the ion charge. The
collision operator on the right-hand side of equation (X.7.1) takes into account both ion–
ion collisions (Cii) and ion–electron collisions (Cie), each occurring a rate proportional
to their respective (mass-dependent!) collision frequencies, νii and νie. The final term
on the right-hand side accounts for the friction force on the ion fluid due to collisions
with electrons, denoted Rie. To simplify the ensuing calculations, assume Maxwellian
electrons with mass me ≪ mi so that, to leading order in the mass ratio,

Cie[fi] +
Rie

mini
· ∂fi
∂w

= νie
∂

∂w
·
(
wfi +

Te
mi

∂fi
∂w

)
, (X.7.2)

where Te is the electron temperature. You are also given that Cii and Cie satisfy
Boltzmann’s H theorem and that, in field-aligned coordinates in which w = w∥b̂+w⊥,

∂

∂w
= b̂

∂

∂w∥
+

w⊥

w⊥

∂

∂w⊥
− w× b̂

w2
⊥

∂

∂ϑ
,

where ϑ is the gyrophase.

(a) [15 points] Order the dimensionless parameters that appear in equation (X.7.1)
as follows:

ui
vthi

∼
√
me

mi
∼
∣∣∣∣TeTi − 1

∣∣∣∣ ∼ ρi
L

∼ λii
L

≡ ϵ≪ 1, (X.7.3)

where ρi ≡ vthi/Ωi is the ion Larmor radius, λii ≡ vthi/νii is the ion–ion collisional
mean free path, and L is the characteristic scale of the macroscopic gradients in
the plasma. Expand the ion distribution function as fi = fi0 + ϵfi1 + ϵ2fi2 + . . .
and write down the lowest order in ϵ at which each term of equation (X.7.1) enters
relative to νiifi0 (e.g., Cii[fi] enters at O(1) relative to νiifi0). Clearly justify each
of your orderings.

(b) [5 points] Use your answer to (a) to write down an equation that is valid at O(1).
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Solve this equation to show that

fi0 = fM,i ≡
ni

π3/2v3thi
exp

(
− w2

v2thi

)
, where w = |v − ui| and v2thi ≡

2Ti
mi

.

(X.7.4)
What constraints must fi1 and fi2 satisfy so that the parameters ni, ui, and Ti
in equation (X.7.4) are the true time- and space-dependent number density, mean
velocity, and temperature of the ions?

If you could not do part (a), then provide physical arguments why fi0 ought to be
gyrotropic and Maxwellian, and answer the above question about constraints.

(c) [5 points] Use your answer to (a) to write down an equation that is valid at O(ϵ).
In what way(s) is your equation different from that obtained at O(ϵ) in Braginskii’s
expansion for the ions? Why?

If you could not do part (a), then explain how the ordering (X.7.2) differs from
Braginskii’s.

(d) [10 points] Solve your O(ϵ) equation for fi1. To keep things relatively simple, let
Cii[fi] = −νii(fi − fM,i) and adopt the subsidiary ordering

ρi
λii

∼ νii
Ωi

∼ L⊥

L∥
≪ 1, (X.7.5)

where L⊥ (L∥) is the characteristic scale of the macroscopic gradients oriented
across (along) the local magnetic-field direction.

Hint: Split fi1 into its gyro-averaged part, ⟨fi1⟩ϑ, and its gyrophase-dependent part,
f̃i1.

(e) [15 points] Use your answer to (d) to compute the leading-order expression for the
ion heat flux qi. Briefly explain what each component of qi represents physically.

If you could not do part (d), then state how you would compute qi given fi1, and
provide physical arguments that anticipate the form of qi.

Possibly useless information:

⟨w⟩ϑ = w∥b̂, ⟨ww⟩ϑ = w2
∥b̂b̂+

w2
⊥
2

(I − b̂b̂),
∂w⊥

∂ϑ
= −w× b̂,

∂(w× b̂)

∂ϑ
= w⊥,

(I × b̂) ·∇ = b̂×∇, where I is the unit dyadic.

∫ ∞

0

dxxk e−x
.
= Γ (k + 1)

(
= k! for integer k ⩾ 0

)
Γ

(
1

2

)
=

√
π, Γ

(
3

2

)
=

1

2

√
π, Γ

(
5

2

)
=

3

4

√
π, Γ

(
7

2

)
=

15

8

√
π, Γ

(
9

2

)
=

105

16

√
π
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