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INTRODUCTION: 
SCALES



GALAXIES: 10kpc

• Milky Way: 
10kpc, 1012Mo



GALAXY GROUPS: 100kpc

• or «poor 
clusters»

• Local Group: 
~50gal, 3Mpc, 
1013Mo



GALAXY CLUSTERS: 1Mpc

• or «rich clusters»

• Virgo Cluster: 
~1000 gal, 2.2Mpc, 
1015Mo



GALAXY SUPERCLUSTERS: 10Mpc

• Superclusters: 
10-100clusters, 
10Mpc

• sheets, filaments, 
tracing the cosmic 
web of dark 
matter



GALAXY CLUSTERING

• Statistical properties of the distribution
of galaxies on various scales

• Tracers of DM     cosmology!

• Clues on galaxy evolution

What?

Why?



OUTLINE

• Methods to study galaxy clustering

• Cosmological contribution to the 
correlation function

• Clues on galaxy evolution



TOOLS AND METHODS



AVAILABLE SURVEYS

• 2DFGRS: 2°, 220kgal, z<0.22

• 6DFGRS: 6°, 130kgal, not as deep

• SDSS:1/4 sky, ~1Mgal, z<0.15, high resolution local 
survey

• DEEP2: 4 fields of 120‘x30’, 0.75<z<1.4, resolution 
comparable to SDSS

• COSMOS: 2sq deg, up to z~5, (photo-z)

• NMBS: up to z~3, (photo-z)



CORRELATION FUNCTION

• Usual tool to study noise

• Continuum definition:

δ(�x) := (n(�x)− n) /n

ξ(�r) := �δ(�x)δ(�x+�r)�

�n(�x)n(�x+�r)� = n2
�
1 + �δ(�x)δ(�x+�r)�

�
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CORRELATION FUNCTION

• Interpretation as extra probability on top 
of uniform Poisson sampling.

�n(�x)n(�x+�r)� = n2
�
1 + �δ(�x)δ(�x+�r)�

�

P(�x+�r|�x) = (nV )
�
1 + ξ(�r)

�

?�r



ESTIMATOR FOR CORRELATION FUNCTION

• Galaxy survey

• Mock map: Poisson sampling 
of a uniform galaxy number 
density

10 m Keck II telescope to survey optical galaxies at z ’ 1 in a
comoving volume of approximately 6 ; 106 h!3 Mpc3. The
completed survey will cover 3.5 deg2 of the sky over four
widely separated fields to limit the impact of cosmic variance.
The 1 hour survey (1HS) portion of the DEEP2 project will
use "1 hr exposure times to measure redshifts for "60,000
galaxies in the redshift range z " 0:7–1.5 to a limiting mag-
nitude of RAB ¼ 24:1 (all magnitudes in this paper are in the
AB system; Oke & Gunn 1983). Photometric data were taken
in the B, R, and I bands with the CFH12k camera on the 3.6 m
Canada-France-Hawaii telescope. Galaxies selected for spec-
troscopy must additionally meet a color selection given ap-
proximately by B! RP 2:35(R! I )! 0:45, R! I k1:15, or
B! RP 0:5. This simple color cut was designed to select
galaxies at z > 0:7 (details are in J. Newman et al. 2004, in
preparation) and has proven effective in doing so. As dis-
cussed in Davis et al. (2003), this color cut results in a sample
with "90% of the objects at z > 0:7, missing only "5% of
the z > 0:7 galaxies.

Each of the four DEEP2 1HS fields corresponds to a vol-
ume of comoving dimensions "20 ; 80 ; 1000 h!1 Mpc in a
!CDM model at a redshift of z ¼ 1. To convert measured
redshifts to comoving distances along the line of sight, we
assume a flat cosmology with "m ¼ 0:3 and "! ¼ 0:7.
Changing cosmological models within the range allowed
by recent Wilkinson Microwave Anisotropy Probe analysis
(Spergel et al. 2003) has only a modest influence on our
results. We use h ¼ H0=(100 km s!1), and we quote correla-
tion lengths, r0, in comoving dimensions of h!1 Mpc.

2.2. Observations and Data Reduction

This paper uses data from the first observing season of the
1HS portion of the DEEP2 survey, from 2002 August to
October. Three of the four DEEP2 fields were observed with a
total of 68 custom-made slit masks. Each mask has on the
order of "120 slitlets, with a median separation in the spatial
direction between targeted galaxies of "600 and a minimum of
300. Because of the high source density of objects, we are able
to obtain spectra for "67% of our targets. Three 20 minute
exposures were taken on the DEIMOS spectrograph with a
1200 line mm!1 grating for each slit mask, covering a spectral
range "6400–9100 8 at an effective resolution R" 5000. The
multiple exposures allow us to robustly reject cosmic rays
from the data. Many of the slitlets in each mask are tilted to
align with the major axis of the target galaxy to enable internal
kinematic studies, and as a result we do not dither the tele-
scope between exposures.

The data were reduced using a sophisticated IDL pipeline
developed at the University of California at Berkeley, adapted
from spectroscopic reduction programs developed for the
SDSS (S. Burles & D. Schlegel 2004, in preparation). To find
the redshift of each galaxy, a !2 minimization is used, in
which the code finds minima in !2 between the observed
spectrum and two templates; one is an artificial emission-line
spectrum convolved with a broadening function to mimic a 100

slit and 60 km s!1 internal dispersion. The other template is a
high signal-to-noise ratio absorption-dominated spectrum that
is the average of many thousands of SDSS galaxies covering a
rest wavelength range 2700–9000 8 (Eisenstein et al. 2003;
S. Burles & D. Schlegel 2004, in preparation). The five most
likely redshifts are saved and used in a final stage in which the
galaxy redshift is confirmed by human inspection. Our overall
redshift success rate is k70% and displays only minor varia-
tion with color and magnitude (<20%), with the exception of

the bluest galaxies (R! I < 0:4; B! R < 0:5) for which our
redshift success rate is "35%. These galaxies represent "25%
of our targeted sample and account for "55% of our redshift
failures.

The k3727 [O ii] doublet redshifts out of our spectral range
at z "1:44, and it is believed that all our bluest (R! I <
0:4; B! R < 0:5) targeted galaxies for which we do not
measure a redshift lie beyond this range. These galaxies have
colors and source densities similar to the population at z ’ 2
currently studied by C. Steidel and collaborators (2003, pri-
vate communication). If these galaxies were in our observable
redshift window, it would be almost certain that we would
have measured a redshift, given that these blue galaxies must
have recent star formation and therefore strong emission
lines.

Although the instrumental resolution and photon statistics
of our data would suggest that we could achieve a redshift
precision of "10 km s!1 in the rest frame of each galaxy, we
find using galaxies observed twice on overlapping slit masks
that differences in the position or alignment of a galaxy within
a slit and internal kinematics within a galaxy lead to an ef-
fective velocity uncertainty of "30 km s!1.

2.3. Data Sample

Here we present results from only the most nearly complete
field, centered at R.A. = 02h30m, decl. = 00$, for which we
have observed 32 slit masks covering "0B7 by "0B5 on the
sky. We use data only from masks that have a redshift success
rate of 60% and higher to avoid systematic effects that may
bias our results. Figures 1 and 2, respectively, show the spatial
distribution of galaxies on the plane of the sky and the win-
dow function for this field. The observed slit masks overlap
each other in two horizontal rows on the sky. Six of the masks
have not as yet been observed in this pointing, leading to
regions with lower completeness.

While we measure redshifts as high as z ¼ 1:48, for this
paper we include only galaxies with 0:7 < z < 1:35, a range in
which our selection function is currently well defined. Our
sample in this field and range contains 2219 galaxies, with a
median redshift of z ¼ 0:90. At this median redshift the typical
rest-frame wavelength coverage is "3400–4800 8. Figure 3
shows the overall redshift distribution of galaxies with
0:5 < z < 1:5 in all three of our observed fields. There is a rise
between redshifts z ¼ 0:7 and 0.8, the result of our probabi-
listic preselection of spectroscopic targets expected to have

Fig. 1.—Spatial distribution of the full DEEP2 sample of 2219 galaxies
projected onto the plane of the sky.
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density

• Window function

• Redshift selection function

redshifts k0.7. The flux limit of our sample results in the slow
decrease of the observed objects at higher redshifts; smaller
scale variations are due to galaxy clustering.

To compute galaxy correlation statistics, we must under-
stand our selection function !(z), defined as the relative
probability at each redshift that an object will be observed in
our sample. In general, the selection function can depend on
redshift, color, magnitude, and other properties of the galaxy
population and survey selection. Ideally, one would compute
!(z) from the luminosity function of galaxies in the survey.
For this initial study we estimate !(z) by smoothing the ob-
served redshift histogram of all the galaxies in our sample,
taking into account the change in volume with redshift. We
smoothed with a boxcar of width 450 h!1 Mpc and then used
an additional boxcar of width 150 h!1 Mpc to ensure that there
were no residual bumps due to large-scale structure. The
resulting !(z) is shown by the solid line in Figure 3. Also
shown in this figure are the normalized selection functions for
the emission-line and absorption-line samples discussed later
in the paper (see x 4.4). Note that the redshift distribution !(z)
is determined using galaxies in all three of our observed fields,
not only in the field for which we measure "(rp; #), which
reduces effects due to cosmic variance. Use of a preliminary
!(z) constructed from the luminosity function of our sample
does not change the results presented here. Using mock cat-
alogs to test the possible systematic effects due to our esti-
mation of !(z), we find that the resulting error on r0 is 5%,
signficantly less than that due to cosmic variance.

3. METHODS

3.1. Measuring the Two-Point Correlation Function

The two-point correlation function "(r) is a measure of the
excess probability above Poisson of finding a galaxy in a
volume element dV at a separation r from another randomly
chosen galaxy,

dP ¼ n 1þ "(r)½ %dV ; ð1Þ

where n is the mean number density of galaxies. To measure
"(r) one must first construct a catalog with a random spatial
distribution and uniform density of points with the same

selection criteria as the data to serve as an unclustered distri-
bution with which to compare the data. For each data sample
we initially create a random catalog with (40 times as many
objects with the same overall sky coverage as the data and
uniform redshift coverage. This is achieved by applying the
window function of our data, seen in Figure 2, to the random
catalog. Our redshift completeness is not entirely uniform
across the survey; some masks are observed under better
conditions than others and therefore yield a higher success rate.
This spatially varying redshift success completeness is taken
into account in the window function. We also mask the regions
of the random catalog where the photometric data had saturated
stars and CCD defects. Finally, we apply our selection func-
tion, !(z), so the random catalog has the same overall redshift
distribution as the data. This results in a final random catalog
that has (15 times as many points as the data.
We measure the two-point correlation function by using the

Landy & Szalay (1993) estimator,

" ¼ 1

RR
DD

nR
nD

! "2

! 2DR
nR
nD

! "
þ RR

" #
; ð2Þ

where DD, DR, and RR are pair counts of galaxies in the data-
data, data-random, and random-random catalogs, respectively,
and nD and nR are the mean number densities of galaxies in the
data and random catalogs, respectively. This estimator has
been shown to perform as well as the Hamilton estimator
(Hamilton 1993) but is preferred as it is relatively insensitive
to the size of the random catalog and handles edge corrections
well (Kerscher et al. 2000).
As we measure the redshift of each galaxy and not its dis-

tance, distortions in " are introduced parallel to the line of
sight because of peculiar velocities of galaxies. On small
scales, random motions in groups and clusters cause an elon-
gation in redshift-space maps along the lines of sight known as
‘‘fingers of God.’’ On large scales, coherent infall of galaxies
into forming structures causes an apparent contraction of
structure along the line of sight (Kaiser 1987). While these

Fig. 3.—Redshift distribution of )5000 galaxies observed in the first
season of the DEEP2 survey, covering three separate fields for a total of
0.72 deg2. The solid line is a smoothed fit that we use to estimate our selection
function, !(z), in the redshift range 0:7 < z < 1:35. The dotted and dashed
lines show the normalized selection functions for the emission-line and
absorption-line samples, respectively.

Fig. 2.—Window function of spectroscopic coverage in our most nearly
complete pointing to date. We include the 32 slit masks that have a redshift
completeness (60% in our analysis. The gray scale ranges from 0 (white) to
0.86 (black) and corresponds to the probability that a galaxy meeting our
selection criteria at that position in the sky was targeted for spectroscopy. The
total length of this field is 2*; only the first )0B7 have been covered thus far.
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decrease of the observed objects at higher redshifts; smaller
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redshifts k0.7. The flux limit of our sample results in the slow
decrease of the observed objects at higher redshifts; smaller
scale variations are due to galaxy clustering.
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For this initial study we estimate !(z) by smoothing the ob-
served redshift histogram of all the galaxies in our sample,
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redshifts k0.7. The flux limit of our sample results in the slow
decrease of the observed objects at higher redshifts; smaller
scale variations are due to galaxy clustering.

To compute galaxy correlation statistics, we must under-
stand our selection function !(z), defined as the relative
probability at each redshift that an object will be observed in
our sample. In general, the selection function can depend on
redshift, color, magnitude, and other properties of the galaxy
population and survey selection. Ideally, one would compute
!(z) from the luminosity function of galaxies in the survey.
For this initial study we estimate !(z) by smoothing the ob-
served redshift histogram of all the galaxies in our sample,
taking into account the change in volume with redshift. We
smoothed with a boxcar of width 450 h!1 Mpc and then used
an additional boxcar of width 150 h!1 Mpc to ensure that there
were no residual bumps due to large-scale structure. The
resulting !(z) is shown by the solid line in Figure 3. Also
shown in this figure are the normalized selection functions for
the emission-line and absorption-line samples discussed later
in the paper (see x 4.4). Note that the redshift distribution !(z)
is determined using galaxies in all three of our observed fields,
not only in the field for which we measure "(rp; #), which
reduces effects due to cosmic variance. Use of a preliminary
!(z) constructed from the luminosity function of our sample
does not change the results presented here. Using mock cat-
alogs to test the possible systematic effects due to our esti-
mation of !(z), we find that the resulting error on r0 is 5%,
signficantly less than that due to cosmic variance.

3. METHODS

3.1. Measuring the Two-Point Correlation Function

The two-point correlation function "(r) is a measure of the
excess probability above Poisson of finding a galaxy in a
volume element dV at a separation r from another randomly
chosen galaxy,

dP ¼ n 1þ "(r)½ %dV ; ð1Þ

where n is the mean number density of galaxies. To measure
"(r) one must first construct a catalog with a random spatial
distribution and uniform density of points with the same

selection criteria as the data to serve as an unclustered distri-
bution with which to compare the data. For each data sample
we initially create a random catalog with (40 times as many
objects with the same overall sky coverage as the data and
uniform redshift coverage. This is achieved by applying the
window function of our data, seen in Figure 2, to the random
catalog. Our redshift completeness is not entirely uniform
across the survey; some masks are observed under better
conditions than others and therefore yield a higher success rate.
This spatially varying redshift success completeness is taken
into account in the window function. We also mask the regions
of the random catalog where the photometric data had saturated
stars and CCD defects. Finally, we apply our selection func-
tion, !(z), so the random catalog has the same overall redshift
distribution as the data. This results in a final random catalog
that has (15 times as many points as the data.
We measure the two-point correlation function by using the

Landy & Szalay (1993) estimator,

" ¼ 1

RR
DD

nR
nD

! "2

! 2DR
nR
nD

! "
þ RR

" #
; ð2Þ

where DD, DR, and RR are pair counts of galaxies in the data-
data, data-random, and random-random catalogs, respectively,
and nD and nR are the mean number densities of galaxies in the
data and random catalogs, respectively. This estimator has
been shown to perform as well as the Hamilton estimator
(Hamilton 1993) but is preferred as it is relatively insensitive
to the size of the random catalog and handles edge corrections
well (Kerscher et al. 2000).
As we measure the redshift of each galaxy and not its dis-

tance, distortions in " are introduced parallel to the line of
sight because of peculiar velocities of galaxies. On small
scales, random motions in groups and clusters cause an elon-
gation in redshift-space maps along the lines of sight known as
‘‘fingers of God.’’ On large scales, coherent infall of galaxies
into forming structures causes an apparent contraction of
structure along the line of sight (Kaiser 1987). While these

Fig. 3.—Redshift distribution of )5000 galaxies observed in the first
season of the DEEP2 survey, covering three separate fields for a total of
0.72 deg2. The solid line is a smoothed fit that we use to estimate our selection
function, !(z), in the redshift range 0:7 < z < 1:35. The dotted and dashed
lines show the normalized selection functions for the emission-line and
absorption-line samples, respectively.

Fig. 2.—Window function of spectroscopic coverage in our most nearly
complete pointing to date. We include the 32 slit masks that have a redshift
completeness (60% in our analysis. The gray scale ranges from 0 (white) to
0.86 (black) and corresponds to the probability that a galaxy meeting our
selection criteria at that position in the sky was targeted for spectroscopy. The
total length of this field is 2*; only the first )0B7 have been covered thus far.
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REDSHIFT-SPACE DISTORTIONS

• Small scales: finger of god

• Large scales: density-
velocity correlation

SDSS data, 
Zehavi et al. 2010

6 Zehavi et al.

Fig. 2.— A slice through the SDSS main galaxy sample, with galaxies color-coded based on rest-frame g − r color. The slice shows
galaxies within ±4 degrees of the Celestial Equator, in the north Galactic cap. The redshift limit is smaller than in Figure 1 to better
reveal details of structure. The large structure cutting across the center of the map is the “Sloan Great Wall” (Gott et al. 2005) discussed
in §3.2.

notation of Fisher et al. (1994), for a pair of galaxies
with redshift positions v1 and v2, we define the redshift
separation vector s ≡ v1−v2 and the line-of-sight vector
l ≡ 1

2 (v1 + v2). The parallel and perpendicular separa-
tions are then

π ≡ |s · l|/|l| , rp
2 ≡ s · s− π2 . (1)

To estimate the pair counts expected for unclustered ob-
jects while accounting for the complex survey geometry,
we generate volume-limited random catalogs with the de-
tailed angular selection function of the samples. For the
different galaxy samples, we use random catalogs with
25-300 times as many galaxies, depending on the vary-
ing number density and size of the samples. We have
verified that increasing the number of random galaxies
or replacing the random catalog with another one makes
a negligible difference to the measurements. We estimate
ξ(rp, π) using the Landy & Szalay (1993) estimator

ξ(rp, π) =
DD − 2DR + RR

RR
, (2)

where DD, DR and RR are the suitably normalized num-
bers of weighted data-data, data-random and random-
random pairs in each separation bin. We weight the
galaxies (real and random) according to the angular se-
lection function; because we are using volume-limited
samples, we do not weight by a radial selection function.
We also tested the alternative ξ estimators of Hamilton
(1993) and Davis & Peebles (1983) and found only small

differences in the measurements. See Appendix B for
these and other tests of our standard analysis procedures.

To examine the real-space correlation function, we fol-
low standard practice and compute the projected corre-
lation function

wp(rp) = 2

∫ ∞

0
dπ ξ(rp, π). (3)

In practice, for most samples we integrate up to πmax =
60 h−1 Mpc, which is large enough to include most corre-
lated pairs and gives a stable result by suppressing noise
from distant, uncorrelated pairs. For samples with low
outer redshift limits we use πmax = 40 h−1 Mpc (see Ta-
bles 1 and 2). We use these πmax values consistently when
performing HOD modeling of the clustering results (not
including the small residual effects of redshift-space dis-
tortions). We use linearly spaced bins in π with widths
of 2 h−1 Mpc. Our bins in separation rp are logarith-
mically spaced with widths of 0.2 dex. We checked the
robustness to binning in rp and π and found our results
to be insensitive to either. The measurements are quoted
at the pair-weighted average separation in the bin. We
estimate that this separation varies by at most 1% from
the rp for which wp(rp) equals the pair-weighted aver-
age of wp in the bin. This corresponds to a change of the
same magnitude in wp, significantly smaller than the sta-
tistical errors on the measurements, and an up to 0.5%
shift in the best-fit correlation length.

The projected correlation function can be related to
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• Untangling cosmology and galaxy evolution:

• In practice:

ng = ng [1 + bgδmatter]

δg(m, color, ...) = bg(m, color, ...)δmatter

bg =
σg(color, ...)

σmatter
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Fig. 21. Projected two-point correlation function of galaxies with absolute mag-
nitude and redshift ranges indicated (left) and for different bins in color (right).
In panel on left, squares, circles and triangles show results for faint, intermediate
and luminous galaxies respectively. Although the more luminous galaxies are more
strongly clustered, the same power-law slope provides a reasonable fit at all lumi-
nosities. In constrast, the slope of the power-law is a strong function of color. Both
panels are from [298].

Within the context of the halo model, the gastrophysics determines how many
galaxies form within a halo, and how these galaxies are distributed around
the halo center. Thus, the halo model provides a simple framework for think-
ing about and modeling why galaxies cluster differently than dark matter
[137,244,212,236,253,240,11].

Suppose we assume that the number of dark matter particles in a halo follows
a Poisson distribution, with mean proportional to the halo mass such that
〈Ndm|m〉 ∝ m, and 〈Ndm(Ndm−1)|m〉 ∝ m2. Note that these proportionalities
are the origin of the weighting by m and m2 in equation (88) for P 2h

dm(k) and
P 1h

dm(k). To model the power spectrum of galaxies, we, therefore, simply modify
equation (88) to read

Pgal(k) = P 1h
gal(k) + P 2h

gal(k) , where

P 1h
gal(k) =

∫

dm n(m)
〈Ngal(Ngal − 1)|m〉

n̄2
gal

|ugal(k|m)|p ,

P 2h
gal(k)≈P lin(k)

[

∫

dm n(m) b1(m)
〈Ngal|m〉

n̄gal
ugal(k|m)

]2

. (128)

Here,

n̄gal =
∫

dm n(m) 〈Ngal|m〉 (129)
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Fig. 5.— The reconstructed matter power spectrum: the stars show the power spectrum from combining ACT and WMAP data (top
panel). The solid and dashed lines show the nonlinear and linear power spectra respectively from the best-fit ACT ΛCDM model with
spectral index of ns = 0.96 computed using CAMB and HALOFIT (Smith et al. 2003). The data points between 0.02 < k < 0.19 Mpc−1

show the SDSS DR7 LRG sample, and have been deconvolved from their window functions, with a bias factor of 1.18 applied to the data.
This has been rescaled from the Reid et al. (2010) value of 1.3, as we are explicitly using the Hubble constant measurement from Riess et al.
(2011) to make a change of units from h−1Mpc to Mpc. The constraints from CMB lensing (Das et al. 2011), from cluster measurements
from ACT (Sehgal et al. 2011), CCCP (Vikhlinin et al. 2009) and BCG halos (Tinker et al. 2011), and the power spectrum constraints
from measurements of the Lyman–α forest (McDonald et al. 2006) are indicated. The CCCP and BCG masses are converted to solar mass
units by multiplying them by the best-fit value of the Hubble constant, h = 0.738 from Riess et al. (2011). The bottom panel shows the
same data plotted on axes where we relate the power spectrum to a mass variance, ∆M/M, and illustrates how the range in wavenumber k
(measured in Mpc−1) corresponds to range in mass scale of over 10 orders of magnitude. Note that large masses correspond to large scales
and hence small values of k. This highlights the consistency of power spectrum measurements by an array of cosmological probes over a
large range of scales.

from Hlozek et al. 
2011 (ACT 

collaboration)

cluster sizelinear scale



LINK WITH MATTER 9

10−3 10−2 10−1 100

k [Mpc−1]

101

102

103

104

105

P(
k,

z=
0)

[M
pc

3 ]

SDSS DR7 (Reid et al. 2010)
LyA (McDonald et al. 2006)
ACT CMB Lensing (Das et al. 2011)
ACT Clusters (Sehgal et al. 2011)
CCCP II (Vikhlinin et al. 2009)
BCG Weak lensing
(Tinker et al. 2011)
ACT+WMAP spectrum (this work)

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

Mass scale M [Msolar]
10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

M
as

s
Va

ria
nc

e
∆ M

/M

SDSS DR7 (Reid et al. 2010)
LyA (McDonald et al. 2006)
ACT CMB Lensing (Das et al. 2011)
ACT Clusters (Sehgal et al. 2011)
CCCP II (Vikhlinin et al. 2009)
BCG Weak lensing (Tinker et al. 2011)
ACT+WMAP spectrum (this work)

Fig. 5.— The reconstructed matter power spectrum: the stars show the power spectrum from combining ACT and WMAP data (top
panel). The solid and dashed lines show the nonlinear and linear power spectra respectively from the best-fit ACT ΛCDM model with
spectral index of ns = 0.96 computed using CAMB and HALOFIT (Smith et al. 2003). The data points between 0.02 < k < 0.19 Mpc−1

show the SDSS DR7 LRG sample, and have been deconvolved from their window functions, with a bias factor of 1.18 applied to the data.
This has been rescaled from the Reid et al. (2010) value of 1.3, as we are explicitly using the Hubble constant measurement from Riess et al.
(2011) to make a change of units from h−1Mpc to Mpc. The constraints from CMB lensing (Das et al. 2011), from cluster measurements
from ACT (Sehgal et al. 2011), CCCP (Vikhlinin et al. 2009) and BCG halos (Tinker et al. 2011), and the power spectrum constraints
from measurements of the Lyman–α forest (McDonald et al. 2006) are indicated. The CCCP and BCG masses are converted to solar mass
units by multiplying them by the best-fit value of the Hubble constant, h = 0.738 from Riess et al. (2011). The bottom panel shows the
same data plotted on axes where we relate the power spectrum to a mass variance, ∆M/M, and illustrates how the range in wavenumber k
(measured in Mpc−1) corresponds to range in mass scale of over 10 orders of magnitude. Note that large masses correspond to large scales
and hence small values of k. This highlights the consistency of power spectrum measurements by an array of cosmological probes over a
large range of scales.
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HALO MODEL

Fig. 21. Projected two-point correlation function of galaxies with absolute mag-
nitude and redshift ranges indicated (left) and for different bins in color (right).
In panel on left, squares, circles and triangles show results for faint, intermediate
and luminous galaxies respectively. Although the more luminous galaxies are more
strongly clustered, the same power-law slope provides a reasonable fit at all lumi-
nosities. In constrast, the slope of the power-law is a strong function of color. Both
panels are from [298].

Within the context of the halo model, the gastrophysics determines how many
galaxies form within a halo, and how these galaxies are distributed around
the halo center. Thus, the halo model provides a simple framework for think-
ing about and modeling why galaxies cluster differently than dark matter
[137,244,212,236,253,240,11].

Suppose we assume that the number of dark matter particles in a halo follows
a Poisson distribution, with mean proportional to the halo mass such that
〈Ndm|m〉 ∝ m, and 〈Ndm(Ndm−1)|m〉 ∝ m2. Note that these proportionalities
are the origin of the weighting by m and m2 in equation (88) for P 2h

dm(k) and
P 1h

dm(k). To model the power spectrum of galaxies, we, therefore, simply modify
equation (88) to read

Pgal(k) = P 1h
gal(k) + P 2h

gal(k) , where

P 1h
gal(k) =

∫

dm n(m)
〈Ngal(Ngal − 1)|m〉

n̄2
gal

|ugal(k|m)|p ,

P 2h
gal(k)≈P lin(k)

[

∫

dm n(m) b1(m)
〈Ngal|m〉

n̄gal
ugal(k|m)

]2

. (128)

Here,

n̄gal =
∫

dm n(m) 〈Ngal|m〉 (129)
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Fig. 1. The complex distribution of dark matter (a) found in numerical simulations
can be easily replaced with a distribution of dark matter halos (b) with the mass
function following that found in simulations and with a profile for dark matter
within halos.

1 Introduction

This review presents astrophysical applications of an approach which has its
origins in papers by Jerzy Neyman & Elizabeth Scott and their collaborators
nearly fifty years ago. Neyman & Scott [199] were interested in describing
the spatial distribution of galaxies. They argued that it was useful to think
of the galaxy distribution as being made up of distinct clusters with a range
of sizes. Since galaxies are discrete objects, they described how to study sta-
tistical properties of a distribution of discrete points; the description required
knowledge of the distribution of cluster sizes, the distribution of points around
the cluster center, and a description of the clustering of the clusters [199]. At
that time, none of these ingredients were known, and so in subsequent work
[200,201], they focussed on inferring these parameters from data which was
just becoming useful for statistical studies.

Since that time, it has become clear that much of the mass in the Universe
is dark, and that this mass was initially rather smoothly distributed. There-
fore, the luminous galaxies we see today may be biased tracers of the dark
matter distribution. That is to say, the relation between the number of galax-
ies in a randomly placed cell and the amount of dark matter the same cell
contains, may be rather complicated. In addition, there is evidence that the
initial fluctuation field was very close to a Gaussian random field. Linear
and higher order perturbation theory descriptions of gravitational clustering
from Gaussian initial fluctuations have been developed (see Bernardeau et
al. [15] for a comprehensive review); these describe the evolution and mildly
non-linear clustering of the dark matter, but they break down when the clus-
tering is highly non-linear (typically, this happens on scales smaller than a few

4

from Cooray & Sheth 2002

distribution of halos (large scales)

distribution of galaxies
inside halos (small scales)
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Fig. 5.— The correlation function of all halos (hosts plus subha-
los) predicted by our Full subhalo model as a function of redshift,
for a single mass threshold sample log(Mmin/h−1M") = 12.3.
Each panel shows ξ(r) for a different redshift (solid curve), as well
as the one-halo (dashed curve) and two-halo (dotted curve) terms.
The figure shows that the one-halo term evolves strongly with red-
shift and only at z = 0 strikes the right balance with the two-halo
term to result in a power law.

Turning to the right panels, ξ(r) is shown at each red-
shift scaled by an r−1.7 power law in order to emphasize
features in the correlation function. Starting at z = 3
(long dashed curves), ξ(r) is very far from a power-law,
with a slope that is much steeper on small scales. At
z = 1 (short dashed curves) the break from a power
law is less pronounced, but it is still significant. These
results are qualitatively consistent with clustering mea-
surements at high redshifts (Coil et al. 2006; Ouchi et al.
2005; Lee et al. 2006). At z = 0 (solid curves), the cor-
relation function is approximately a power law, though
there is still a mild, discernible feature at the transition
scale between the one- and two-halo terms. In the future,
ξ(r) once again breaks from a power law. At z = −0.6
(dot-dashed curves), departures from a power-law shape
are about as strong as they were at z = 1. Three Hubble
times into the future, at z = −0.9 (dotted curves), the
departures from a power law are significant and repre-
sent a dramatic reduction in the relative contribution of
the one-halo term.
Figure 5 focuses on the log(Mmin/h−1M") = 12.3

threshold sample and shows the correlation function at
four different redshifts, while also showing the one-halo
and two-halo terms explicitly. Figure 5 clearly demon-
strates how a delicate balance is needed between the two
terms in order for ξ(r) to achieve a power-law shape. The
two-halo term exhibits modest variations from panel to
panel, with a range of about a factor of ∼ 3. The de-
creased large-scale clustering at z ! 0 is due to the linear
growth of perturbations with time, but this is always kept

modest because the increasing bias of halos of fixed mass
with redshift (see Zentner 2007) compensates for large-
scale structure growth. At z < 0, the slight decrease in
two-halo clustering is due to the decay of halo bias once
halo growth slows (Fry 1996).
The variation in the one-halo term is significantly

larger, as our earlier discussions suggest, and changes by
a factor of ∼ 45 − 150 (depending on scale), equivalent
to ∼ 15 − 50 times the variation in the two-halo term.
At high redshift, the relative rareness of host halos and
the large amount of substructure cause ξ(r) to be boosted
significantly in the one-halo regime as shown in the z = 3
panel of Figure 5. At z = 0, just the right amount of
substructure has been depleted to strike a near balance
between the one-halo and two-halo contributions. In the
future, the continual destruction of subhalos suppresses
the one-halo term, driving ξ(r) away from a power law
again. By z = −0.9, the depression in small-scale clus-
tering is striking.
Some of the evolution of ξ(r) on small-scales comes

from the fact that halos large enough to host luminous
galaxies become increasingly rare as redshift increases.
The characteristic collapsing mass is a rapidly decreas-
ing function of redshift and is only M∗ ≈ 109 h−1M"

at z = 3. In the relevant regime, the strength of the
one-halo term grows in approximate proportion to the
number of satellite galaxies and in inverse proportion to
the number of host halos of appropriate size (see § 2.1),
so the relative paucity of host halos at high redshift also
drives strong one-halo clustering because Fig. 5 describes
samples of fixed absolute mass threshold. However, it is
subhalo abundance that has the larger influence on the
redshift dependence of clustering. We have computed
the correlations of Figure 5 using samples in which Mmin
varies with redshift so as to maintain a constant number
density of halos. These samples are less subject to the
gross evolution of the halo mass function. We find all of
the same qualitative results for this case, though the two-
halo term varies by a factor of ∼ 4, while the variation
in the one-halo term is limited to a factor of ∼ 12 − 80
(again, depending on scale), resulting in a variation in the
one-halo term that is ∼ 3− 20 times larger than that of
the two-halo term. Moreover, we have re-computed cor-
relation functions using a combination of the predicted
low-redshift HODs alongside the high-redshift mass func-
tions in order to isolate the contribution due to the mass
function and HOD evolution. The majority the redshift
dependence of ξ(r) on small scales is due to the evo-
lution of subhalo abundance. To maintain a power-law
correlation function at high-redshift would require fewer
subhalos per host than at z = 0 in order to compensate
for the relative rareness of host halos at high-redshift.
In fact, hosts at high redshift have a larger number of
subhalos of any given mass so these effects reinforce one
another, leading to a strong deviation from a power-law
ξ(r) at high redshift.
We have already described the reasons that the one-

halo and two-halo terms behave so differently under
changes in the HOD. To reiterate, on large scales, ξ(r)
is essentially a weighted average of the clustering of host
halos, where 〈N〉M provides the weighting (see the in-
tegral in Eqs. [6] and [7], note that λ̃(k,M) ≈ 1 for
k < 1/Rvir). The possible variability in ξ(r) on large

from Watson et al. 2011
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z < 0.15
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Fig. 21. Projected two-point correlation function of galaxies with absolute mag-
nitude and redshift ranges indicated (left) and for different bins in color (right).
In panel on left, squares, circles and triangles show results for faint, intermediate
and luminous galaxies respectively. Although the more luminous galaxies are more
strongly clustered, the same power-law slope provides a reasonable fit at all lumi-
nosities. In constrast, the slope of the power-law is a strong function of color. Both
panels are from [298].

Within the context of the halo model, the gastrophysics determines how many
galaxies form within a halo, and how these galaxies are distributed around
the halo center. Thus, the halo model provides a simple framework for think-
ing about and modeling why galaxies cluster differently than dark matter
[137,244,212,236,253,240,11].

Suppose we assume that the number of dark matter particles in a halo follows
a Poisson distribution, with mean proportional to the halo mass such that
〈Ndm|m〉 ∝ m, and 〈Ndm(Ndm−1)|m〉 ∝ m2. Note that these proportionalities
are the origin of the weighting by m and m2 in equation (88) for P 2h

dm(k) and
P 1h

dm(k). To model the power spectrum of galaxies, we, therefore, simply modify
equation (88) to read

Pgal(k) = P 1h
gal(k) + P 2h

gal(k) , where

P 1h
gal(k) =

∫

dm n(m)
〈Ngal(Ngal − 1)|m〉

n̄2
gal

|ugal(k|m)|p ,

P 2h
gal(k)≈P lin(k)

[

∫

dm n(m) b1(m)
〈Ngal|m〉

n̄gal
ugal(k|m)

]2

. (128)

Here,

n̄gal =
∫

dm n(m) 〈Ngal|m〉 (129)
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from Zehavi et al. 2002, 2011
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Figure 6. Projected correlation functions for volume-limited samples corresponding to different luminosity-bin samples (left) and luminosity-threshold samples (right),
as labeled. Error covariance matrices are computed from jackknife resampling as described in the text. The error bars shown are the square root of the diagonal
elements of these matrices. For visual clarity, only a subset of the threshold samples is plotted.
(A color version of this figure is available in the online journal.)

Figure 7. Bias factors for the luminosity-bin samples (left) and the luminosity-threshold samples (right). Filled circles show bias factors defined by the ratio of the
measured wp(rp) to the dark matter wp(rp) predicted for our fiducial cosmological model over the range 4 h−1 Mpc ! rp ! 30 h−1 Mpc. Open triangles show
the bias factors defined by this ratio for the single radial bin centered at rp = 2.67 h−1 Mpc, as done previously by Z05. In addition to the luminosity-bin samples
shown in Figure 6, the left panel includes bg(L) points for the half-magnitude bins −21.5 < Mr < −21.0 and −22.0 < Mr < −21.5. Open circles show the bias
factors inferred from HOD modeling as described in Section 3.3; the statistical errors on these estimates are smaller than the points, and we omit them for visual
clarity. In the left panel, the dotted curve is a fit to projected correlation functions in the 2dFGRS, bg/b∗ = 0.85 + 0.15L/L∗ (Norberg et al. 2001), where we take
b∗ ≡ bg(L∗) = 1.14 to be the bias factor inferred from the dark-matter-ratio estimate in the −21 < Mr < −20 luminosity bin (L ≈ L∗, defined to correspond to
Mr = −20.5 here), and the dashed curve is a modified fit to SDSS power spectrum measurements, bg/b∗ = 0.85 + 0.15L/L∗ − 0.04(M − M∗) (Tegmark et al.
2004). The solid curve is the fit in Equation (10). In the right panel, the solid curve is the fit to the HOD model bias factors, Equation (9). The points locations on the
magnitude axis correspond to the bin center (left) and threshold magnitude (right). Small horizontal offsets have been added to points for clarity.

Mr = −22, we have also divided the −22 < Mr < −21 bin into
two half-magnitude bins and computed bias factors separately
for each. The open circles, discussed further in Section 3.3,
show large-scale bias factors derived from HOD model fits to
the full projected correlation functions (“HOD bias factors”;
computed at the mean redshift of each sample).

In agreement with previous studies (Norberg et al. 2001;
Tegmark et al. 2004; Z05), bg(L) is nearly flat for luminosi-
ties L ! L∗, then rises sharply at brighter luminosities.16

16 For the Blanton et al. (2003c) luminosity function, the characteristic
luminosity L∗ of the Schechter (1976) luminosity function fit corresponds to
Mr = −20.44.

Dotted and dashed curves in the left panel show the empiri-
cal fits to bg(L)/bg(L∗) proposed by Norberg et al. (2001) and
Tegmark et al. (2004), respectively, where we take as bg(L∗) the
“DM-ratio” bias factor estimated for the −21 < Mr < −20 lu-
minosity bin using the large-scale wp(rp) ratio. The Norberg
et al. (2001) form appears to fit our measurements better,
but the differences between the curves only become large for
the −18.0 < Mr < −19.0 sample, where the single-rp and
DM-ratio bias factors differ noticeably, and where the tests dis-
cussed in Section 3.2 below suggest that cosmic variance fluc-
tuations are still significant. The HOD bias factors are in good
agreement with the “DM-ratio” ones.
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4.5. Dependence of Clustering on Luminosity

We also split the full sample by absolute MB magnitude,
after applying K-corrections, to investigate the dependence of
galaxy clustering on luminosity. We divide our data set near
the median absolute magnitude, at MB ¼ "19:75þ 5 log h.
Figure 8 shows the selection function for each subsample.
Unlike the previous subsets, here the selection functions are

significantly different for each set of galaxies; !(z) for the
brighter objects is relatively flat, while !(z) for fainter
galaxies falls steeply with z. Figure 7 (bottom) shows wp(rp)
for each subsample. We fit wp(rp) as a power law on scales
rp ’ 0:15 4 h"1 Mpc and find that the more luminous gal-
axies have a larger correlation length. On larger scales both
samples show a decline in wp(rp), but the brighter sample
shows a steeper decline; fits are listed in Table 1.
In this early paper, using a sample roughly 7% of the size

we expect to have in the completed survey, we have restricted
ourselves to considering only two subsamples at a time. As a
result, in our luminosity subsamples we are mixing pop-
ulations of red, absorption-line galaxies, which have very
different mass-to-light ratios, as well as quite different selec-
tion functions, with the star-forming galaxies that dominate
the population at higher redshifts. However, the two lumi-
nosity subsamples in our current analysis contain comparable
ratios of emission-line to absorption-line galaxies, with $75%
of the galaxies in each sample having late-type spectra. In
future papers we will be able to investigate the luminosity
dependence of clustering in the star-forming and absorption-
line populations separately.

5. DISCUSSION

Having measured the clustering strength by using the real-
space two-point correlation function, "(r), for each of the
samples described above, we are now in a position to measure
the galaxy bias, both for the sample as a whole at z ’ 1 and
for subsamples defined by galaxy properties. We first calculate
the absolute bias for galaxies in our survey and then determine
the relative bias between various subsamples. Using these

Fig. 8.—Redshift histograms and the heavily smoothed curves used to
estimate the selection functions, !(z), for subsamples divided according to
absolute magnitude, MB, assuming h ¼ 1.

Fig. 7.—Top: Projected correlation function, wp(rp), measured for the red
(dashed line) and blue (solid line) subsamples, divided according to rest-frame
(B" R)0 color. The dotted lines show power-law fits used to estimate r0 and #
(see Table 1). Middle: Projected correlation function, wp(rp), measured for
emission-line ($ > "13; solid line) and absorption-dominated ($ < "13;
dashed line) subsamples classified using PCA. Bottom: Projected correlation
function, wp(rp), measured for subsamples divided according to absolute
magnitude, MB, assuming h ¼ 1.
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Star forming galaxies at z~2
because many of the z2SFG descendants are galaxies that are still
forming stars at z !1 and z ! 0.

3.2. z2SFG Evolution to z !1 and z ! 0

The identification of the halos likely containing z2SFGs is the
first step toward understanding the evolution of these galaxies
to z ! 1 and z ! 0, where there are well-defined samples such
as the Deep Extragalactic Evolutionary Probe 2 (DEEP2; Davis
et al. 2003), theVIMOSVLTDeep Survey (VVDS; Le Fèvre et al.
2005), the 2dF Galaxy Redshift Survey (2dFGRS; Colless et al.
2001), and the Sloan Digital Sky Survey (SDSS; Adelman-
McCarthy et al. 2006). The next step is to evolve these halos
forward in time using the halo merger trees from the Millennium
simulation. Note that the merger trees follow the evolution of
subhalos until they have been destroyed, i.e., until the halo finder
no longer identifies the subhalo as a bound clump of particles.

The primary ambiguity in this next step is howwe treat z2SFG
subhalos that, according to themerger trees, havemerged/disrupted
at some later time. These cases are ambiguous because the Mil-
lennium simulation may, like any simulation, artificially destroy
a subhalo, either because of resolution limits (e.g., Moore et al.
1999; Klypin et al. 1999) or because the simulation does not in-
clude the effects of baryon condensation, whichmaymake a sub-
halomore resilient to disruption in the real universe (although the
latter effect is expected to be small for the regimes of interest
here; see, e.g., Nagai & Kravtsov 2005; Weinberg et al. 2006).
We incorporate this uncertainty by computing results in this sec-
tion for two cases that should bracket the range of possibilities.
In the first case we assume that the simulation is correct and that
when a subhalo merges, so does the galaxy embedded within it.
In the second case we assume that none of the subhalos actually
merges. In this case, if a subhalo merges within a distinct halo
according to the merger tree, we place the satellite within the
distinct halo with a position specified by an NFW distribution
(Navarro et al. 1997) appropriate for the background darkmatter.13

These will be referred to as the merger and no-merger scenarios
below. For reference, the conclusions reached in Adelberger et al.
(2005), namely, that z2SFGs evolve into massive red galaxies by
z ! 0, were based on the no-merger scenario.

In what follows we focus on three constraints that will help
discriminate between possible evolutionary histories of z2SFGs;
these are the space density of galaxies, their large scale (1P r P
10 h"1 Mpc) clustering strength, and the fraction of galaxies that
are satellites. These three constraints, when combined, strongly
disfavor any scenario where z2SFGs evolve into a single class of
objects at lower redshift (i.e., red, blue, central, satellite). As we
discuss the evolution of z2SFGs to lower redshifts, it is worth
remembering that z2SFGs are defined according to a luminos-
ity limit in the rest-frame UV, while samples at lower redshifts
are defined according to increasingly redder rest-frame bands
(B-band at z ! 1 and r-band at z ! 0). At increasingly shorter
wavelengths, the light emitted by galaxies is increasingly dom-
inated by young stars and hence recent episodes of star forma-
tion, while longer wavelengths are dominated by older stars and
hence probe the total stellar mass of a galaxy. At first glance then,
connecting galaxies selected by star formation at z ! 2 to galax-
ies selected more closely by stellar mass at z ! 0 would seem to
be a daunting task. However, with the assignment of z2SFGs to

darkmatter halos, connecting these galaxies to their lower redshift
counterparts becomes simpler thanks to the halo merger trees,
which provide a clear connection between high and low redshift.

The space densities, large-scale clustering strengths, and satel-
lite fractions of z2SFG descendants and various observed sam-
ples are plotted in Figures 2 and 3. The uncertainties on r0 and fsat
for the z2SFG descendant halos reflect the uncertainty in Mmin

and the uncertain fate of satellites withinmerged subhalos. In con-
trast, the uncertainty in the number densities of z2SFG descendant
halos reflects the error in the observed z2SFG number density,
with the additional uncertainty due to mergers. In other words,
the observed z2SFG number density is multiplied by the fraction
of z2SFG halos that survive to z !1 and z ! 0 in order to deduce
the number density of z2SFG descendants at these epochs. The
uncertainty in the halo number density due to the uncertainty
in Mmin thus is not included in the uncertainty in the observed
z2SFG descendants. After discussing these constraints, we com-
pare the distribution of z2SFG descendant halo masses with the
halo masses of observed galaxies at lower redshifts, as inferred
from halo occupation modeling. The most basic observational

13 In fact, the galaxies associated with disrupted subhalos will likely be more
centrally concentrated than the dark matter (Sales et al. 2007). However, the
radial distribution of galaxies within the halo has a negligible effect on the large-
scale clustering strength and leaves the satellite fraction and number density of
the galaxies unchanged. This uncertainty thus does not impact our analysis.

Fig. 2.—Relationship between clustering strength (r0) and sample number
density (n) for observed galaxies and the descendants of the halos hosting
z2SFGs at z ! 1 (top panel) and z ! 0 (bottom panel). The data at z ! 1 are for
samples defined above various magnitude thresholds (from "19.5 to "20.5 in
half-magnitude steps for the overall sample, and from"19 to"21 for the color-
defined samples; Coil et al. 2006, 2007), while at z ! 0 they are defined for mag-
nitude bins (in 1 mag intervals from "19 to "22; Zehavi et al. 2005). We have
also included data from the ‘‘all’’ sample at z ! 0 for magnitude threshold sam-
ples (diamonds) in order to show the differences between binned and threshold
samples (see x 3.2.1 for details). For the halos, error bars encompass the uncer-
tainty due both to Mmin and the merger vs. no merger scenarios (see x 3.2 for
details). The location of the symbols for the halos indicates the values for the
merger scenario withMmin ¼ 1011:4 h"1 M$ (large open boxes). z2SFG descen-
dant halos with a satellite fraction lowered to match observations are also included
(large crossed boxes). [See the electronic edition of the Journal for a color version
of this figure.]
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thus make use of a 1503 h!3 Mpc3 region of the simulation. This
size is sufficient for our purposes; for example, making use of a
2503 h!3 Mpc3 region at z " 2 has a negligible effect on our
conclusions at that epoch.

In order to investigate the sensitivity of our results to cosmolog-
ical parameters, we performed two additionalN-body simulations.
One used the same cosmological parameters as theMillennium run,
and the other used cosmological parameters from the WMAP3
results (!m ¼ 0:239,!" ¼ 0:761,!b ¼ 0:04166, h ¼ 0:73, ns ¼
0:953, !8 ¼ 0:756; Spergel et al. 2007). Each simulation con-
tained 5123 particles in a box of length 141.3 h!1 Mpc, resulting
in a particle mass of 1:46 ; 109 h!1 M$ for the Millennium cos-
mology and 1:39 ; 109 h!1M$ for theWMAP3 cosmology. The
GADGET-2 N-body code (Springel et al. 2001b, 2005) with a
Plummer-equivalent softening length of 7.9 h!1 kpc was used
for both simulations.

In these additional simulations, we identified distinct halos
with a friends-of-friends algorithm11 using a linking length of
0.2 in units of the mean interparticle separation. The halos of
interest contained at least 70 particles. No subhalo detection was
performed on these simulations.We define halo mass as the mass
within a sphere centered on the minimum potential energy halo
particle (after removing unbound particles) and enclosing a den-
sity equal to 200 times the critical density. This definition closely
matches the definition ofMcrit;200 used in theMillennium simula-
tion (which first removed subhalo particles before identifying the
halo particle with minimum potential energy) and elsewhere in
this paper.

The descendant of a z " 2 halo was identified by finding the
halo at a later time that contained the plurality of the particles
comprising the z " 2 halo. However, the position of the descen-
dant was taken to be the later time center of mass of the particles
comprising the z " 2 halo.We explicitly verified that our simula-
tion with the Millennium cosmology produced consistent distinct
halo mass functions, clustering as a function of halo mass, and
halo descendant clustering as a function of halo mass as the Mil-
lennium simulation.

3. RESULTS

3.1. The z2SFG-Halo Connection

The clustering of halos extracted from the simulation at z " 2
is shown in Figure 1 for our best-fit Mmin threshold, along with
the observed z2SFG clustering. As discussed in x 2.3, here and
throughout ‘‘halos’’ refers to both distinct halos and subhalos.
The clustering of halos with Mmin % 0:2 dex from the best-fit
Mmin is included for comparison. It is clear from the figure that
Mmin ¼ 1011:4 h!1 M$ provides a good match to the observed
clustering of z2SFGs. The slope of the halo correlation function
on scales 1< r < 10 h!1 Mpc is!1.5, which is consistent at the
1 ! level with the slope inferred from observations (!1.6). This
figure also contains the clustering of the z " 2 halos evolved
to z "1 and z " 0, based on the Millennium simulation merger
trees. The space density of z " 2 halos with M & Mmin is 7:5 ;
10!3 h3 Mpc!3.

The uncertainties of the z2SFG clustering data translates into
an uncertainty onMmin of"%0.2 dex (as determined by eye; see
Fig. 1). This uncertainty affects both the inferred number densities
and the clustering strength of the corresponding host halos. For
Mmin ¼ 1011:2 h!1M$ the number density is 13 ; 10!3 h3Mpc!3

while for Mmin ¼ 1011:6h!1 M$ it is 4:3 ; 10!3 h3 Mpc!3. This

range brackets the observed number density of z2SFGs (11 ;
10!3 h3 Mpc!3) and indicates that, within the uncertainty, every
halo aboveMmin contains one z2SFG. The uncertainty inMmin is
explicitly incorporated into our uncertainty in the clustering of
z2SFG halos and their descendants in the following sections.

In reality the dark matter halo occupation function of z2SFGs
need not be a step function at Mmin (zero galaxies per halo/
subhalo below Mmin and one above it). For example, scatter be-
tween galaxy UV luminosity and halo mass at z " 2 will result in
a more gradual rise of the occupation function from zero to one
around Mmin. In order to understand the qualitative effect of
scatter on our inferred number density of halos thatmatch the clus-
tering of z2SFGs, we have run a series of halo occupationmodels
that were constrained to match the observed correlation function
(see, e.g., Tinker et al. 2006 for details). In these models both
Mmin and the amount of scatter between mass and light were left
as free parameters. The resulting number density of halos with
clustering matching the observed z2SFGs varies by"20% com-
pared to the number density of halos when setting the scatter to
zero (which is our default model herein). The effect of scatter is
thus insignificant for our purposes.

Using r0 to constrain the minimum dark matter halo mass of
high-redshift galaxies is not a new technique (e.g., Wechsler et al.
1998). Previously, Adelberger et al. (2005) used the GIF-"CDM
simulation (Kauffmann et al. 1999) to constrain the minimum
mass, finding that Mmin " 1011:8 h!1 M$ provided a good fit to
the z " 2 data (which is the same data used herein). The differ-
ence between this value and ours (1011:4 h!1 M$) is due to the
updated !m and more physically motivated transfer function in
the simulations we use.12 At first glance this may be worrisome,

11 The algorithm we use has been made freely available by the University of
Washington HPCC group: http://www-hpcc.astro.washington.edu/tools/fof.html.

12 The GIF simulations used an analytic fitting function for the power spectrum
transfer function (Bond&Efstathiou 1984), while theMillennium simulation uti-
lized the more accurate CMBFASTcode (Seljak&Zaldarriaga 1996) to generate it.

Fig. 1.—Correlation function for halos with M & 1011:4 h!1 M$ at z " 2
(solid line) that have clustering properties similar to observed z2SFGs (hatched
region; Adelberger et al. 2005). Also plotted are the correlation functions of those
halos evolved to z " 1 and z " 0. The correlation function increases toward lower
redshift both because of the increased clustering of halos and because of the
higher satellite fraction at later times, which increases the weight given to higher
mass (more clustered) halos. Halos with masses M & 1011:2 h!1 M$ and M &
1011:6 h!1M$ at z " 2 are included for comparison (lower and upper dotted lines,
respectively). [See the electronic edition of the Journal for a color version of this
figure.]
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Fig. 2.—The angular correlation function and the best-fitting HOD models.
The solid lines indicate the models, and the dotted lines indicate the contri-
butions from galaxy pairs within single halos and within separate halos. The
lower model provides the best fit over the range , with fitting′′ ′′2 ! v ! 500
parameters ( , , a) p ( , , 0.9). The upper12 13M M 1.3 # 10 M 1.3 # 10 Mmin 1 , ,

model provides the best fit over , with fitting parameters ( ,′′ ′′50 ! v ! 500 Mmin

, a) p ( , , 0.9). It is apparent that neither13 12M 1.8 # 10 M 1.3 # 10 M1 , ,

model adequately describes the data.

of Hamana et al. (2004) to estimate the linear bias directly from
, finding .w(v) b p 5.0 ! 0.4

5. THE HALO MODEL

Quadri et al. (2007a) found that DRGs significantly outnumber
the dark matter halos that are clustered strongly enough to host
them. Models of the halo occupation distribution (HOD) natu-
rally account for this type of discrepancy by allowing halos to
host multiple galaxies, but Quadri et al. (2007a) suggest that the
large numbers of galaxies that would be required to share halos
can be ruled out by the observed small-scale clustering. Given
that the DRG clustering results presented in this work are largely
consistent with those from previous works, it is expected that
the observations are still in conflict with the models. In this
section we use an HOD model to show this explicitly.

In the HOD framework, the galaxy correlation function is
understood to be the sum of two components. On large scales
the correlation function follows that of the host dark matter
halos. On small scales there is an additional contribution from
galaxy pairs within individual halos. We follow the modeling
procedures described by Lee et al. (2006) to which we refer
the reader for details. Briefly, we calculate the number density
and bias of halos using the prescriptions of Sheth & Tormen
(1999) and Sheth et al. 2001). The halo occupation number,
which describes the number of galaxies per halo, is parame-
terized as for halo mass andaN (M ) p (M /M ) M 1 Mocc h h 1 h min

otherwise. Thus there are three free parameters,N (M ) p 0occ h

, , and a. If the number density of galaxies is known,M M n1 min g

then one of these parameters can be fixed for assumed values
of the other two parameters. We obtain a rough estimate of

Mpc!3 using the effective volume probed!4 3n ≈ 6.5 # 10 hg

by our sample, which is determined using the redshift selection
function described in § 3. This density is in reasonable agree-
ment with an independent estimate of n ≈ (5.0 ! 0.9) #g

Mpc!3, which is based on the luminosity functions of!4 310 h
Marchesini et al. (2007a).

Figure 2 shows two models chosen according to fits. The2x
lower solid line shows a model that is fitted over ′′2 ! v !

. While this model provides an adequate fit on smaller′′500
angular scales, it systematically underpredicts the clustering on
larger scales. To better illustrate the nature of the disagreement,
it is useful to inspect the upper solid line, which shows a model
that is fitted only over . While this model pro-′′ ′′50 ! v ! 500
vides an adequate fit at larger scales, the small-scale fit is
unacceptable. As already noted, the fundamental reason that
no model can fit the data is that the strong clustering on large
scales implies that DRGs must occupy very massive halos. But
DRGs outnumber these halos by a factor of ∼20, which is only
possible if individual halos host a large number of DRGs. This
would mean that each DRG has a high probability of having
several neighbors in the immediate vicinity, leading to a very
prominent small-scale excess in .6 As can be seen, thew(v)
observed excess is much smaller than expected.

6. DISCUSSION

We have used the UKIDSS-UDS to perform the first precise
measurement of the clustering of red, K-selected galaxies at

. These DRGs show strong angular clustering that2 ! z ! 3phot

6 Specifically, the amplitude of the one-halo term depends on the second
factorial moment of , which we parameterize following Bullock et al.N (M )occ h

(2002). Note that this particular choice does not affect the main result of this
section because, for the high value found here, it is generically expectedAN Socc

that follows a Poisson distribution for a fixed (e.g., Zheng et al.N (M ) Mocc h h

2005); this fully specifies the moments.

is well described by a power law, but with an excess at small
scales. We use photometric redshifts to deproject the angular
clustering, finding the spatial correlation length r p 10.6 !0

Mpc. This value is comparable to that measured for!11.6 h
luminous red galaxies in the local universe (Zehavi et al. 2005);
however, DRGs are significantly more numerous. We show that
standard models of halo occupation statistics are unable to
simultaneously reproduce the observed clustering and number
density, because DRGs outnumber their inferred host dark mat-
ter halos by too large a margin.

The most obvious explanation is that we have used the in-
correct redshift distribution in deprojecting the angular corre-
lation function. A narrower distribution would reduce the cor-
relation length (while a moderate shift in the overall distribution
makes a relatively smaller difference). However, a narrower
redshift distribution would also decrease the effective volume
probed by our sample, thereby increasing . We illustrate theseng

effects in Figure 3, which shows the observed and com-r n0 g

pared to the range of values for a typical HOD model. It also
shows how estimating directly from the unperturbed pho-N(z)
tometric redshifts—which, as mentioned in § 3, represents the
extreme assumption of no random photometric redshift errors—
affects the results. It may still be the case that we are subject
to systematic redshift errors, but we also note that a significantly
narrower would adversely affect the reasonably goodN(z)
agreement between our estimate of and the luminosity func-ng

tions derived by Marchesini et al. (2007a). Finally, we have
verified that our basic results hold when using a different pho-
tometric redshift code (HYPERZ; Bolzonella et al. 2000) and
with a different template set (Bruzual & Charlot 2003).

Given the apparently high quality of our photometric red-
shifts, as well as the consistency with previous results for the
clustering of DRGs, it is worth considering alternative expla-
nations. One possibility is that current HOD models are too
simplistic and that massive red galaxies occupy halos in un-
expected ways. The fundamental assumption underlying these
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LYMAN ALPHA EMITTERS

to this subset of the available dark matter halos. However, the LAE
median halo mass must roughly follow the result log10Mmed ¼
10:9þ0:5

#0:9 M$ in order to explain the observed clustering bias.18

Explorations of complex halo occupation distribution (HOD)
models show that the assumption of one galaxy per halo made
in our determination of Mmed can cause additional uncertainties
of up to 0.2 dex at z ¼ 3:1 and b ¼ 1:7 (Lee et al. 2006; Zheng
et al. 2007).

4. SED MODELING

Lai et al. (2008) offer a detailed description of our IRAC
photometry along with single-component SED fitting of the de-
tected and undetected objects and a comparison of their contin-
uum properties with those of Lyman break galaxies. Seventy-six
of our LAEs fall within regions of the SIMPLE images (which in-
clude the GOODS IRAC images) where the lack of bright neigh-
bors enables IRAC photometry accurate to very low fluxes. Only
24 LAEs (30%) are detected by IRAC at fluxes above the 2 !
SIMPLE flux limit; these objects represent the high-mass end of
the LAE mass function and appear to have stellar masses >3 ;
109 M$. Only two of these LAEs are detected in our J and K im-
ages, which are 2 mag shallower than the IRAC 3.6, 4.5 "m im-
ages. The IRAC-detected LAEs are brighter in the rest-UV and
rest-optical continua, with mean R band and 3.6 "m fluxes cor-
responding to magnitudes 25.4 and 24.4, respectively, compared
with 26.7 and 26.6 for LAEs not detected by IRAC. In order to
investigate the full SED of typical LAEs, which are too dim to be
detected individually in our NIR and Spitzer images, wemeasured
average fluxes from stacked images of the 52LAEs (70%) lacking
IRAC detections. We show the resulting SED in Figure 4, where
the V-band flux has been corrected for the contribution of the Ly#
emission lines to this filter. Uncertainties in the stacked photom-
etry were determined using bootstrap resampling to account for
both sample variance and photometric errors.

Instead of modeling LAEs with a single stellar population,
we analyzed the extent to which the data allow the presence of
an underlying evolved population. We adapted the method of
Schawinski et al. (2008) to model the star formation histories
using a two-burst scenario, with the old component as an instan-
taneous burst and the young component as an exponentially
declining starburst with variable e-folding time. Maraston (2005)
population synthesis models were used with metallicity rang-
ing from 0.02 solar to solar, a Salpeter (1955) initial mass func-
tion and the Calzetti et al. (2000) dust law. The best-fit model
shown in Figure 4 corresponds to a stellar mass of 1:0þ0:6

#0:4 ;
109 M$, star formation rate of 2 % 1M$ yr#1, and dust extinction
AV ¼ 0:0þ0:1

#0:0 (only positive values of AV were considered).
Figure 5 shows the results for the age of the young popula-
tion versus themass fraction of the young population. The young
population has an age of 20þ30

#10 Myr with an e-folding time-
scale $ ¼ 750 % 250Myr, i.e., a nearly constant star formation
rate. Although we did not include our narrowband photometry
in the SED analysis, the median LAE rest-frame equivalent
width of 60 8 found by Gronwall et al. (2007) is consistent
with that expected for normal stellar populations in this age
range (Finkelstein et al. 2007). The age of the old population is
not well constrained, but has a best fit of 2 Gyr (the age of the
universe at z ¼ 3:1).

The mass fraction formed in the current starburst is not well
constrained, and models in which all of the stellar mass is pro-
duced in a current burst of star formation of age 60 to 350 Myr
are allowed. Indeed, Lai et al. (2008) performed a one-component
SED fit with Maraston (2005) models and found a best-fit age of
100 Myr, $ ¼ 250 Myr, E(B# V ) ¼ 0, and M& ¼ 3 ; 108 M$.
Our two-component best-fit is preferred to this, even accounting
for the 2 extra degrees of freedom, but a single ‘‘$-model’’ pop-
ulation is not ruled out at 95% confidence (see Fig. 5).

5. DISCUSSION

In CDM cosmology, galaxy formation is an ongoing process
caused bymerging of lower mass dark matter halos, whichmay al-
ready possess stars. Finding stellar population ages of <100Myr
is interesting. Our analysis of halo merger trees from the Milli-
Millenium simulation (Springel et al. 2005) found the median age
of dark matter halos with M > 1010:6 M$ at z ¼ 3:1 (defined as
the age since half of the dark matter mass was accumulated) to
be'600Myr, with only<10% of halos younger than 100Myr. If

18 The quantity that must be preserved is the mean halo bias. Themedian halo
mass is a simpler statistic that is also robust in typical HOD models, and the dif-
ference is far smaller than the reported uncertainties.

Fig. 4.—Data points show stacked flux densities (fk) of LAEs lacking indi-
vidual detections in the SIMPLE IRAC images, with 1 ! error bars. The thick solid
curve gives the best-fit model described in the text, which is a sum of a young
component (dashed curve) and an old component (thin solid curve). Squares
show fluxes predicted by the best-fit model, which has %2/d:o:f : ¼ 14:6/12. [See
the electronic edition of the Journal for a color version of this figure.]

Fig. 5.—Constraints on age of the young stellar population vs. its mass fraction.
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