

Observations and Inferences from Lyman- α Emitters

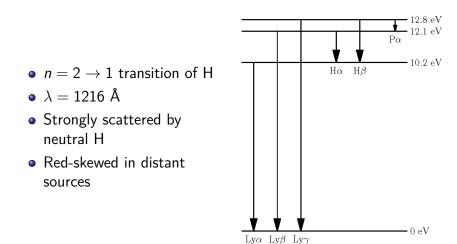
Christopher J. White

6 March 2013

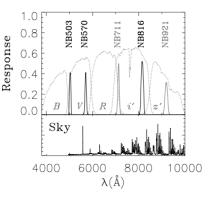
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

What Are Ly α Emitters?	How Are They Observed?	Results and Inferences	HSC	Conclusion	References
Outline					

2 How Are They Observed?



The $\mathrm{Ly}\alpha$ Line


▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

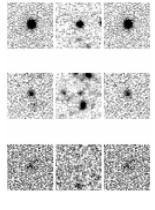
Relation to Early Galaxies

- Lyman Alpha Emitters (LAEs) observed
- Need hot stars \Rightarrow star forming
- Blocked by dust \Rightarrow low-metallicity
- Seen for $z \simeq 2-7$
- Primordial?

Narrowband Photometry

- Use narrowband filter
- Tune to Ly α at chosen z
- Contamination?
 - [0 II]
 - [O III]
 - $H\alpha$

Ouchi 2008


・ロト ・ 同ト ・ ヨト ・ ヨト

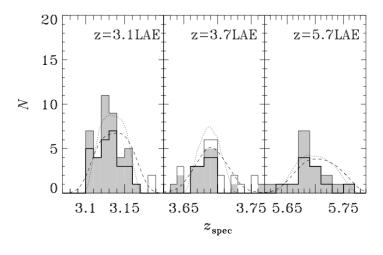
ж

References

Narrowband Photometry

- Use narrowband filter
- Tune to Ly α at chosen z
- Contamination?
 - [O II]
 - [O III]
 - $H\alpha$

Gronwall 2007


Conclusion

ヘロト 人間ト 人間ト 人間ト

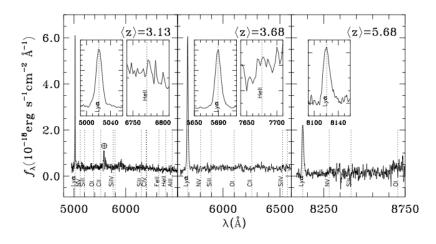
æ.

References

Spectroscopic Followup

Ouchi 2008

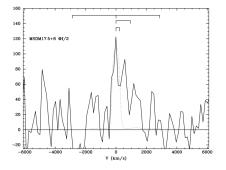
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ


References

Spectroscopic Followup

- AGN?: high-ionization lines
- $\bullet \lesssim 10\%$ AGN
- No He II: not primordial

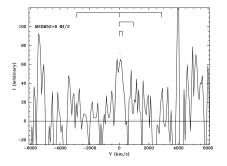
References


Spectroscopic Followup

Ouchi 2008

Blank-Field Spectroscopy

- Multiple slits on instrument
- Smaller samples
- Good for faint objects
- Faintness problem for followup/confirmation



Martin 2008

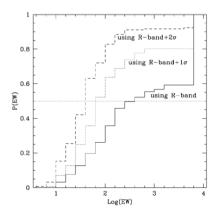
(日)

Blank-Field Spectroscopy

- Multiple slits on instrument
- Smaller samples
- Good for faint objects
- Faintness problem for followup/confirmation

Martin 2008

(日)

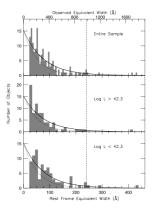

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The Data So Far

- 1–2 thousand observed
- Specific redshift windows, $2 \leq z \leq 7$
- Small studies: statistics
- Changing fraction of population
 - z = 5: outnumber LBGs 4 : 1
 - Disappearing by z = 2

What Are Ly α Emitters?	How Are They Observed?	Results and Inferences	HSC	Conclusion	References
LALA					

- Large Area Lyman Alpha survey
- 0.72 deg²
- 4.37 < *z* < 4.57
- Too many large EWs \Rightarrow
 - Zero metallicity?
 - Top-heavy IMF?
 - Episodic star formation?

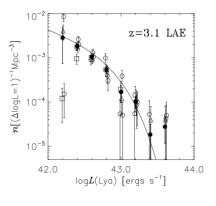

Malhotra 2002

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

ж

What Are Ly α Emitters?	How Are They Observed?	Results and Inferences	HSC	Conclusion	References
ECDF-S					

- Extended Chandra Deep Field
- 0.28 deg²
- *z* = 3.1
- EWs not too large
- Signs of dust

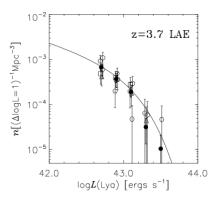


Gronwall 2007

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

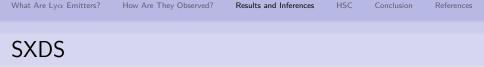
What Are Ly α Emitters?	How Are They Observed?	Results and Inferences	HSC	Conclusion	References
SXDS					
5/105					

- Subaru, XMM-Newton, etc.
- *z* = 3.1, 3.7, 5.7
- "Lyα LFs of LAEs do not evolve by more than a factor of 2–3 in either luminosity or number density"
- May co-evolve with IGM

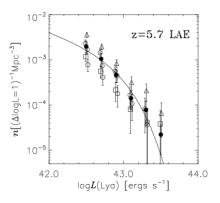


Ouchi 2008

A D > A P > A D > A D >


What Are Ly α Emitters?	How Are They Observed?	Results and Inferences	HSC	Conclusion	References
SXDS					

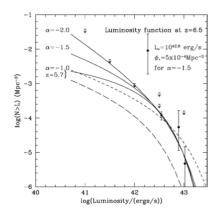
- Subaru, XMM-Newton, etc.
- *z* = 3.1, 3.7, 5.7
- "Lyα LFs of LAEs do not evolve by more than a factor of 2–3 in either luminosity or number density"
- May co-evolve with IGM



Ouchi 2008

イロト 不得 トイヨト イヨト

- Subaru, XMM-Newton, etc.
- *z* = 3.1, 3.7, 5.7
- "Lyα LFs of LAEs do not evolve by more than a factor of 2–3 in either luminosity or number density"
- May co-evolve with IGM



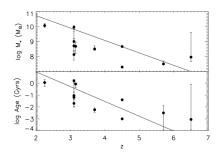
Ouchi 2008

A D > A P > A D > A D >

Probing Reionization

- Neutral IGM \Rightarrow attenuation of Ly α
- Gunn-Peterson trough in QSOs for z > 6
- No significant attenuation for LAEs

Malhotra 2004

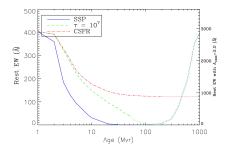

(日)

590

References

"Low" Redshift

- Study of z = 2.3 LAEs
- More massive
- Dusty
- Diverse
- Second burst of star formation


Nilsson 2011

ヘロト 人間ト 人間ト 人間ト

æ.

Clumpy Dust

- Suppose dust isolated in cold clumps
- Ly α not likely to penetrate clumps
- Enhance EW without destroying photons
- Explains 1 of 4 z = 4 LAEs

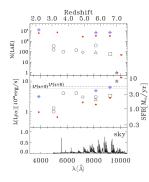
Finkelstein 2008

(日)

HSC

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

References


Going Further with HSC

- Large field of view (1.77 deg^2)
- Capable of seeing galaxies and "blobs"
- Multiple narrow-band filters

s HSC

onclusion References

Going Further with HSC

Table 12.1: Ly α Emitter Samples						
Narrow band	NB387	NB526	NB717	NB816	NB921	NB101
Redshift	2.2	3.3	4.9	5.7	6.6	7.3
$N_{ m Udeep}^{\dagger}$	6.2k	7.3k	2.8k	3.4k	3.3k	50
$N_{ m deep}^\dagger$	13k			6.8k	7.2k	
$L^{\ddagger}_{ m Udeep}$	1.0	0.7	2.0	1.7	2.8	13
$L_{ m deep}^{\ddagger}$	3.1			4.8	6.2	

<ロト <回ト < 注ト < 注ト

æ

What Are Ly α Emitters?	How Are They Observed?	Results and Inferences	HSC	Conclusion	References
Conclusions	;				

• LAEs common at large redshifts, but hard to observe

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Represent particular epoch of galaxy evolution
 - Not the same as today
 - Not the beginning of the story
- Narrowband photometry
- Better surveys to come

References I

Steven L. Finkelstein et al.

Effects of Dust Geometry in Ly α Galaxies at z = 4.4. The Astrophysical Journal, 678:655–668, May 2008.

Eric Gawiser et al.

The Physical Nature of Ly α -Emitting Galaxies at z = 3.1. The Astrophysical Journal, 642:L13–L16, May 2006.

Caryl Gronwall et al.

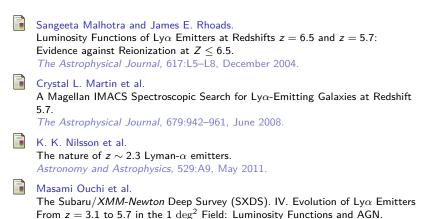
 ${\rm Ly}\alpha$ Emission-Line Galaxies at z=3.1 in the Extended Chandra Deep Field-South.

The Astrophysical Journal, 667:79-91, September 2007.

Takashi Hamana et al.

Properties of host haloes of Lyman-break galaxies and Lyman α emitters from their number densities and angular clustering.

Monthly Notices of the Royal Astronomical Society, 347:813-823, January 2004.



Sangeeta Malhotra and James E. Rhoads.

Large Equivalent Width Ly α Line Emission at z=4.5: Youg Galaxies in a Young Universe?

The Astrophysical Journal, 565:L71–L74, February 2002.

▲口 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

The Astrophysical Journal Supplement Series, 176:301–330, June 2008.