Surveys at $z\sim 1$

Petchara Pattarakijwanich 20 February 2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outline

- Context & Motivation.
- Basics of Galaxy Survey.
 - SDSS
 - COMBO-17
 - DEEP2
 - COSMOS
- Scientific Results and Implications.
 - Properties of $z \sim 1$ galaxies.

- Evolution of blue galaxies.
- Evolution of red galaxies.
- Future Surveys.
 - HSC
 - PFS
 - LSST

Motivation

- Munan and Alex talked about local galaxies last week.
- How about the evolution as a function of cosmic time?

Blanton & Moustakas 2009

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

How do we study evolution?

- Matching high-z progenitors to local products is non-trivial.
- Need flow diagram in various parameters to constrain models.
- ► To do this, need galaxy redshift surveys.

HSC White Paper

Galaxy Survey 101

- Photometric Dataset.
 - Brightness
 - Colors
 - Morphology
 - Photometric Redshift
 - Crude Stellar Population
- Target Selection.
 - Color
 - Morphology
- Spectroscopic Follow-up.
 - Spectroscopic Redshift
 - Emission & Absorption lines
 - Dynamics
 - Metallicity
 - Stellar Population & AGN

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

etc.

Sloan Digital Sky Survey (SDSS)

- Perfect example for redshift survey, but very non-ideal for z ~ 1 work.
- SDSS main galaxy sample is very uniform and ideal for studying galaxies but is too local (z ~ 0.2).
- BOSS galaxy sample (CMASS) are extremely biased (because it was targeted for BAO science).

<ロト <回ト < 注ト < 注ト

COMBO-17 & DEEP2

COMBO-17

- \blacktriangleright Image 1 \deg^2 with 17 broad & medium band filters.
- $\blacktriangleright~{\rm To}~{\rm R}_{\rm Vega}\sim 26$
- \blacktriangleright ~30,000 galaxies with good photometric redshift.
- ► DEEP2
 - $\blacktriangleright~\sim$ 100 nights survey with Keck DEIMOS.
 - 2.8 deg^2 area down to $R_{AB} = 24.1$.
 - Target ~50,000 galaxies at z > 0.7 with ~ 40,000 successful redshift.

COSMOS

- HST survey over 2 deg^2 .
- Largest HST survey ever taken by area.
- Augmented by data from various observatories from X-ray to Radio.
- Extreme multi-band dataset with HST optical resolution.

イロト イポト イヨト イヨト

www.spacetelescope.org

COSMOS

MULTIWAVELENGTH COSMOS DATA

Data	Bands/ λ /Res.	Number of Objects	Sensitivity ^a	Investigators	Time
HST ACS	814I		28.8	Scoville et al.	581 orbits
	475g		28.15	Scoville et al.	9 orbits
HST NIC3	160W		25.6 (6% area)	Scoville et al.	590 orbits
HST WFPC2	300W		25.4	Scoville et al.	590 orbits
Subaru SCam	B, V, r', i, z', g'		28-26	Taniguchi et al.	10 n
	10 IB filters		26	Taniguchi, Scoville	11 n
	NB816		25	Taniguchi et al.	8 n
CFHT Megacam	<i>u</i> *		27	Sanders et al.	24 hr
	u, i*		26	LeFevre et al.	12 hr
CFHT LS	u-z			Deep LS Survey	
NOAO CTIO	Ks		21	Mobasher et al.	18 n
CFHT UKIRT	J, H, K		24.5-23.5	Sanders et al.	12 n
UH-88	J		21	Sanders et al.	10 n
GALEX	FUV, NUV		26.1, 25.8	Schminovich et al.	200 ks
XMM-Newton EPIC	0.5-10 keV		10 ⁻¹⁵ cgs	Hasinger et al.	1.4 Ms
Chandra	0.5-7 keV			Elvis et al.	Future
VLT VIMOS sp	R = 200	3000	I < 23	Kneib et al.	20 hr
	R = 600	20000	$I < 22.5, 0.1 \le z \ge 1.2$	Lilly et al.	600 hr
	R = 200	10000	$B < 25, 1.4 \le z \ge 3.0$	Lilly et al.	600 hr
Mag. IMAX sp	R = 3000	2000		Impey, McCarthy, Elvis	12 n
Keck GEMINI sp	R = 5000	4000	I < 24	Team Members	
Spitzer MIPS	160, 70, 24 μm		17, 1, 0.15 mJy	Sanders et al.	392 hr
Spitzer IRAC	8, 6, 4.5, 3 μm		11,9,3,2 µJy	Sanders et al.	220 hr
IRAM MAMBO	1.2 mm		1 mJy (20 × 20')	Bertoldi et al.	90 hr
CSO Bolocam	1.1 mm		3 mJy	Aquirre et al.	40 n
JCMT Aztec	1.1 mm		0.9 mJy (1 σ)	Sanders et al.	5 n
VLA A	20 cm		7 μJy (1 σ)	Schinnerer et al.	60 hr
VLA A/C	20 cm		10 μJy (1 σ)	Schinnerer et al.	275 hr
SZA (full field)	9 mm		S–Z to $2 \times 10^{14} M_{\odot}$	Carlstrom et al.	2 mth

Scoville et al (2006)

Properties of $z \sim 1$ galaxies

Cooper et al (2006)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Properties of $z\sim 1$ galaxies

- Red galaxies are bulgy (n ~ 4), non star-forming and have large σ (pressure supported).
- Blue galaxies are disky (n ~ 1), star-forming and have small σ (rotation supported).
- ► All the correlation we see in local galaxy population also holds at z ~ 1.
- ► Whatever process made these correlations, took place before z ~ 1.

Bell et al (2012)

- Star formation rate in blue galaxies decrease with cosmic time in a narrow sequence.
- ► The Main Sequence of Star-Forming Galaxies.
- Narrow sequence supports steady star-formation that gradually declines, rather than bursty star-formation.

Noeske et al (2007)

Schechter Function

Functional form commonly used to fit luminosity function

•
$$\Phi(L) = \frac{\phi^*}{L^*} \left(\frac{L}{L^*}\right)^{\alpha} \exp(-\frac{L}{L^*})$$

• $\Phi(M) = \frac{\ln 10}{2.5} \phi^* 10^{0.4(\alpha+1)(M-M^*)} \exp(-10^{0.4(M-M^*)})$
• $L_{\text{total}} = \int_{0}^{\infty} L\phi(L) dL = \phi^* L^* \Gamma(\alpha+2)$

www.astro.virginia.edu/class/whittle/astr553

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ̄ _ _ のへ(

Faber et al (2007)

・ロト ・ 日 ・ ・ ヨ ・

- Number of red galaxies increased by ~ 2 between $z \sim 1 \rightarrow 0$.
- This increase must be due to blue galaxies at $z \sim 1$ turn red.
- Various possible scenarios:
 - Early quenching + Dry mergers (Left)
 - Late quenching + No dry mergers (Middle)
 - "Mixed" scenario (Right)
- Constrain using known properties of local ellipticals.

Faber et al (2007)

Early quenching + Dry mergers

- Predict vast amount of small red galaxies (not observed).
- Large amount of dry mergers destroys age-metallicity relation.
- Late quenching + No dry mergers
 - Can not turn disk into bulge without any major mergers.
 - No disk galaxy massive enough to make the most massive ellipticals.
- Likely the mixed scenario is correct.
- Moderate mass assembly in star-forming phase + Quenching + Moderate dry mergers.

Faber et al (2007)

Hyper Suprime Cam (HSC)

- Imaging survey in 5 bands (grizy).
- 300 Subaru nights.
- 3-layer wedding cake:
 - Wide 2000 \deg^2 to i = 26.
 - Deep 30 \deg^2 to i = 27
 - Ultradeep 2 deg² to i = 28.
- Commissioning observing run very recently. Data looks good.

・ロト ・ 一下・ ・ ヨト ・

Robert Lupton

Prime Focus Spectrograph (PFS)

- New multi-object fiber-fed spectrograph on Subaru.
- 3 Channels, taking spectrum simultaneously from 3000Å to 1.3μm.
- 2400 spectra per exposure.
- ▶ No more "redshift desert".
- Expected to start in 2018.

Prime Focus Spectrograph (PFS)

Sugai et al (2012)

Large Synoptic Survey Telescope (LSST)

- 8.4m custom-made telescope for wide-field imaging survey.
- The ultimate lensing+galaxy survey in foreseeable future.
- Expected to start by 2020.

4日 ● 4 回 ● 4 回 ● 4

Ivezic et al (2012)

Take-home Points

- ▶ Oth order: Galaxy population at z ~ 1 is qualitatively the same as local population.
 - Two distinct groups (red & blue) already in place.
 - Red galaxies are round and has little star-formation.
 - Blue galaxies are disky and star-forming.
- ▶ 1st order: Some evolution between then and now.
 - Star formation rate gradually decline. (Star-formation main sequence).
 - Number of red galaxies increases.
- Implications: Combination of wet/dry mergers and star formation quenching turns blue galaxies into red galaxies.

Look forward to: HSC, PFS and LSST

Reference

- Bell et al (2004) "Nearly 5000 Distant Early-Type Galaxies in COMBO-17: A Red Sequence and its Evolution Since z ~ 1", 2004ApJ...608..752B
- Faber et al (2007) "Galaxy Luminosity Functions to z ~ 1 from DEEP2 and COMBO-17: Implications for Red Galaxy Formation", 2007ApJ...665..265F
- Noeske et al (2007a) "Star Formation in AEGIS Field Galaxies since z = 1.1: The Dominance of Gradually Declining Star Formation, and the Main Sequence of Star-forming Galaxies", 2007ApJ...660L..43N
- Noeske et al (2007b) "Star Formation in AEGIS Field Galaxies since z=1.1: Staged Galaxy Formation and a Model of Mass-dependent Gas Exhaustion", 2007ApJ...660L..47N
- Cooper et al (2006) "The DEEP2 Galaxy Redshift Survey: the relationship between galaxy properties and environment at z ~ 1" 2006MNRAS.370..198C
- Bell et al (2012) "What Turns Galaxies Off? The Different Morphologies of Star-forming and Quiescent Galaxies since z ~ 2 from CANDELS" 2012ApJ...753..167B