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Chapter 1

Special Relativity

Newtonian approximations are adequate for much of astrophysics, but special relativity is essential
to understand phenomena whose energy per unit mass is large. Presumably you have already studied
special relativity in physics courses, but you may not have encountered certain applications that are
particularly important to astrophysics, such as the Lorentz transformation of specific intensity or
the jump conditions for relativistic shocks. Such applications form the main subject matter of the
present chapter.

Appropriate supplementary reading for this lecture is chapter 4 of [53].

1.1 Superluminal motion

There is a difference between physics and astrophysics in the meaning of the word “observer.” In
traditional physics textbooks concerned with special relativity, “observer” usually refers to an entire
inertial reference frame, notionally consisting of an infinite array of clocks and meter sticks at rest
with respect to one another and extending throughout spacetime. In astronomy, “observer” normally
means an individual person and his or her telescope, receiving information about remote events by
means of photons rather than recording them with local rods and clocks. The astronomical observer’s
view of rapidly moving objects is therefore subject to distortions that are not often discussed in
physics textbooks. Among the most basic of these is the the illusion of motion faster than light.
Superluminal motion (as this is called) is frequently seen in radio sources, gamma-ray bursts, and
other situations where emitting material moves toward the observer at a speed close to (but of course
less than) c and at a small angle to the line of sight. Some would say that superluminal motion is
not really a relativistic effect at all, since no Lorentz transformations are involved.

Consider an emitting element with trajectory r(tem) in a reference frame where the observer is
at rest at the origin, robs = 0. Photons emitted at time tem are received by the observer at time

trec = tem + r(tem)/c, r ≡ |r|. (1.1)

It is important to understand that both tem and trec are defined in the same reference frame, namely
that of the observer. They differ only because of light-travel time. Sometimes tem is called “retarded
time.”

Differentiating both sides of eq. (1.1)

dtrec

dtem
= 1 + c−1n · dr

dtem
,

where n ≡ r/r is the unit vector along the line of sight from observer to emitter.1 The physical

1We shall try to use this convention consistently: −n is the direction of motion of a photon, so that the telescope
receiving it points along n.

7



8 CHAPTER 1. SPECIAL RELATIVITY

velocity of the emitter is

v =
dr

dtem
, v < c.

The apparent velocity as the observer sees it is

vapparent =
dr

dtrec
=

dr

dtem

dtem

dtrec
=

v

1 + n · v/c
. (1.2)

Since the denominator can be as small as 1− (v/c), it is possible to have vapparent > c if v > c/2.
In astronomy, radial velocities (= along the line of sight) are measured by doppler shifts. Doppler

shifts are always finite so the astronomically inferred radial velocity is always < c, in contrast to
n · vapparent as defined by (1.2). Velocities transverse to the line of sight are measured as angular
velocities (“proper motions”) multiplied by the distance from the observer to the source. Unlike the
doppler velocity, the transverse velocity measured this way can appear to be superluminal:

v⊥,apparent = − n× (n× v)

1 + n · v/c
.

For a source at redshift z, the motion appears to be reduced by (1 + z)−1—compared, that is to
say, to what would have been seen by an astronomer comoving with the microwave background at
redshift z.2 This is because of cosmological time dilation. In other words, if θ̇ is the observed proper
motion, then the apparent transverse velocity corrected for time dilation is v⊥,app = (1 + z)dAθ̇.
The distance dA is the angular-diameter distance, defined as the ratio of the transverse proper size
of an object to its angular size in the limit that the latter is small [46]. In a flat universe with matter
density parameter Ωm = 1− ΩΛ,

dA =
c

(1 + z)H0

z∫
0

dz′√
1 + Ωm[(1 + z′)3 − 1]

, (1.3a)

≈ 4300
z

(1 + z)(1 + 0.33z)
Mpc. (1.3b)

Unfortunately the integral (1.3a) cannot be done exactly in elementary functions, but for the cur-
rent best estimates of the cosmological parameters H0 = 70 km s−1 Mpc−1, Ωm = 0.28 [27], the
approximation (1.3b) has a relative error < 4% for z < 100.

1.2 Lorentz transformations and Lorentz invariance

An event is a point in spacetime. Events are labeled by sets of four coordinates, which should be
thought of as real-valued functions on spacetime. The functions are distinguished by letters, e.g.
txyz, or by Greek indices ranging from 0 to 3:

xµ : x0 ≡ t, x1 ≡ x, x2 ≡ y, x3 ≡ z.

Lower-case roman indices . . . ijk . . . will range from 1 to 3 (the spatial components). Upper-case
roman lettersABC . . . are particle labels rather than space-time indices. The locus of events occupied
by a particle is a curve in spacetime called its worldline. Worldlines can be described by giving the
coordinates of its events as functions of some parameter. For a massive particle, it is often convenient
to use the proper time as the parameter, xµ(τ).

2In a cosmological context, the “redshift” of a source refers to that of its host galaxy, which is assumed to be
approximately at rest with respect to the microwave background. It is rare for relativistically moving objects to
display spectral lines from which their radial velocities can be directly determined.
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In General Relativity, coordinates can be quite general functions, but in Special Relativity they
are inertial unless stated otherwise. An inertial system is one in which the worldlines of all unac-
celerated particles are described by linear relationships among the coordinates. Thus for example if
∆xµ ≡ xµ(Q)− xµ(P ) are the coordinate differences between any two events P,Q on an unacceler-
ated worldline, then the ratios ∆xi/∆x0 are independent of P,Q. Furthermore, the difference ∆xi

in spatial coordinates between two particles that have a common velocity should be independent of
x0. By this definition, spherical polar coordinates are not inertial.

The two postulates of Special Relativity (henceforth SR) are

I. The laws of physics are the same in all inertial reference frames.

II. The speed of light is a physical law, hence constant.

SR takes no account of gravitational effects.

It is often convenient to work in units such that the speed of light c = 1. The necessary factors of c
can always be restored by dimensional analysis. As a consequence of postulate II, if the unaccelerated
particle discussed above is a photon,

3∑
i=1

(∆xi)2 − (∆x0)2 = 0. (1.4)

To simplify the writing of such formulae, lower indices are defined by changing the sign of the 0th

component, i.e.

∆x0 ≡ −∆x0, ∆xi ≡ ∆xi,

and repeated indices are implicitly to be summed from 0 to 3. Thus (1.4) is written

∆xµ∆xµ = 0.

One of the summed indices should always appear “upstairs” and the other “downstairs.” Still
another way to write the above is ηµν∆xµ∆xν = 0, where the symbol

ηµν = ηµν =


−1 µ = ν = 0,

+1 µ = ν = i,

0 µ 6= ν,

(1.5)

is called the Minkowski metric. It is a sin to equate an upstairs index to a downstairs index (as in
ηµν = ηµν) because most such equations will not Lorentz transform properly. But ηµν and ηµν are
invariant, i.e. the same in all inertial reference frames. In preparation for General Relativity, please
regard ηµν as the components of a (diagonal) matrix η, and ηµν as the components of the inverse
matrix η−1—even though these two matrices are numerically the same.

As a consequence of postulates I&II and some plausible symmetry assumptions, it can be shown
that the interval

∆s2 ≡ ∆xµ∆xµ (1.6)

is invariant not only for photons but for all unaccelerated particles, including massive ones. Of
course the interval depends upon the events P,Q, but it doesn’t depend upon the reference frame.
I won’t give the proof, since you have surely seen it before. When ∆s2 = 0, the separation between
P and Q is null, and when ∆s2 < 0, it is timelike. If the separation between P and Q is timelike, it
is possible for these events to lie on the worldline of a physical particle object with nonzero mass. In
this case the time between the events as measured in the rest frame of the object is ∆τ ≡

√
−∆s2,
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which is called proper time.3 Spacelike separations are those for which ∆s2 > 0. These cannot be
traversed by physical particles.

Following [56], xµ̄ and xµ will denote coordinates in two inertial reference frames Ō and O,
respectively. No particular relationship holds between µ and µ̄ except that both range from 0 to 3.
Also, x0 and x0̄ are different functions of spacetime. Since unaccelerated trajectories appear linear
in both coordinate systems, they are related by a linear tranformation,

∆xµ̄ = Λµ̄µ∆xµ. (1.7)

The Lorentz transformation Λµ̄µ depends upon the relative motion and orientation of the systems

O and Ō but not upon the particular events P,Q. Invariance of ∆s2 implies that

ηµ̄ν̄Λµ̄µΛν̄ν = ηµν , or ΛTηΛ = η (1.8)

in matrix notation. Eq. (1.8) is the definining property of Lorentz transformations. Symmetric
matrices ΛT = Λ describe boosts, wherein O and Ō are in relative motion but their spatial axes
are aligned. A boost along the x1 axis at relative velocity β is

∆x0̄

∆x1̄

∆x2̄

∆x3̄

 =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1




∆x0

∆x1

∆x2

∆x3

 . (1.9)

As usual, the Lorentz factor

γ ≡ 1√
1− β2

.

The inverse Lorentz boost is obtained by interchanging ∆xµ ↔ ∆xµ̄ and changing the sign of
the relative velocity: β → −β. To remember which sign is needed, I find it helpful to note that
according to (1.9), a particle at rest in O has ∆xi = 0 so that ∆x1̄ = −γβ∆x0 = −β∆x0̄; thus
system O moves at −β with respect to Ō.

Spatial rotations are described by a subset of orthogonal transformations (Λ−1 = ΛT ) for which

Λ0̄
0 = 1 and Λ0̄

i = Λj̄0 = 0. For example, if O has been rotated by angle θ with respect to Ō around
a common x1x1̄ axis, 

∆x0̄

∆x1̄

∆x2̄

∆x3̄

 =


1 0 0 0
0 1 0 0
0 0 cos θ − sin θ
0 0 sin θ cos θ




∆x0

∆x1

∆x2

∆x3

 . (1.10)

An arbitrary Lorentz transformation can be decomposed into the product of a rotation and a boost.4

Lorentz transformations do not commute in general. Exceptions include boosts applied along the
same direction and rotations around the same axis.

It is well known that times expand and lengths contract by factors of γ and γ−1, respectively,
upon transformation out of the rest frame. This reciprocal behavior can cause confusion in view of
the symmetrical roles of x0 and x1 in the boost (1.9). But two very different kinds of measurement
are involved.

3The meaning of “proper” in this term has little to do with correctness. It has the somewhat old-fashioned meaning
“belonging/intrinsic to” or “own,” as in property and proprietor. Older British mathematics texts sometimes refer to
“proper values” rather than “eigenvalues” of a matrix.

4The Polar Decomposition Theorem of linear algebra states that every non-singular, real-valued square matrix
can be decomposed into the product of an orthogonal matrix and a positive-definite symmetric matrix: M = OP,
OOT = I, ST = S, S > 0. Proof: MTM > 0, hence ∃ P = (MTM)1/2 > 0. Let O = MP−1.
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Figure 1.1: Two parallel worldlines PQ and P ′P ′′Q′ as seen in the coordinates (x, t) of frame O. The
temporal separation between events P and Q on the first worldline is t(Q), which is plainly greater
than the proper time ∆τ =

√
t2(Q)− x2(Q). This is time dilation. The spatial separation between

the worldlines is measured on lines of simultaneity. In O this means PP ′ or any parallel line. In the
worldlines’ restframe Ō, however, lines of simultaneity are parallel to PP ′′, which is the reflection
of PQ in the invariant null line x = t, x̄ = t̄. Hence t̄(P ) = t̄(P ′′) > t̄(P ′). The invariant interval
∆s2(PP ′) is equal to x2(P ′) and also to x̄2(P ′)− t̄2(P ′). It follows that x2(P ′) < x̄2(P ′) = x̄2(P ′′).
In other words, the separation between parallel worldlines is largest in their rest frame. This is
Lorentz contraction.

Time dilation compares the separation in proper time ∆τPQ between events on the worldline of
a particle, where τ is the time elapsed in the particle’s rest frame, with the separation in coordinate
t between the same events P & Q in a second frame: ∆tPQ = γ∆τPQ, where γ is the Lorentz factor
of the particle.

Lorentz contraction compares the spacelike separation between two given particles in a common
rest frame with their separation in a frame where they move. (These particles could represent
opposite ends of a meter stick, for example.) The separation in Ō (the rest frame) is taken at
∆t̄ = 0, while the separation in O is taken at ∆t = 0. Thus different pairs of events are used, since
events simultaneous in one frame generally cannot be simultaneous in another. When the relative
velocity between frames is parallel to the separation, the measurements are related by ∆x = γ−1∆x̄.

In short, time dilation pertains to the temporal separation between two given points (events),
while Lorentz contraction pertains to the spatial separation between parallel (world)lines.

1.2.1 Invariance of four-volumes

The area of the parallelogram PP ′Q′Q in Figure 1.1 is [x(P ′)− x(P )]× [t(Q)− t(P )] = x(P ′)t(Q)
(base times height) in frame O. In the rest frame Ō, the same four events define a transformed
parallelogram with vertical sides and area t̄(Q)x̄(P ′). It is easy to see from the discussion in the
caption that these two areas are equal. The same result can be obtained more formally by noting
that det(Λ) = ±1 as a consequence of eq. (1.8)—in fact one usually insists on the positive sign
here—and therefore the jacobian of the transformation xµ → xµ̄ is unity. Therefore d4xµ = d4xµ̄.

1.3 Four-vectors and four-momentum

Any set of four quantities transforming according to the same rule (1.8) as ∆xµ is a 4-vector.
Indices of general 4-vectors are raised and lowered in the same way, viz by changing the sign of the
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0th component; or equivalently,

aµ = ηµνa
ν aµ = ηµνaν .

If aµ and bµ are any two 4-vectors, then

aµbµ = aµ̄bµ̄ ⇔ aµbµ is a Lorentz invariant.

By definition, a Lorentz invariant has the same value in all inertial reference frames. It is usually
more efficient and less confusing to calculate in terms of Lorentz invariants rather than Lorentz
transformations whenever this is possible.

A 3-vector ai is any triplet of quantities that preserves its length under rotations but not of
course under boosts. It may or may not correspond to the last 3 components of a 4-vector. I often
write 3-vectors in boldface, ai ⇔ a.

The 4-momentum of a particle consists of the particle’s energy p0 and the spatial components pi

of its momentum. If the particle has mass (not a photon) then there is a frame Ō in which it is at
rest, pµ̄ = (m, 0, 0, 0), where m is the rest mass. In a general frame O where its 3-velocity is

dxi

dt
= βi ⇔ dx

dt
= β,

its 4-momentum is
pµ = (γm, γβ1m, γβ2m, γβ3m) ≡ (γm, γβm).

As with any 4-vector, the square pµp
µ is Lorentz invariant. Evaluation in the rest frame shows that

pµp
µ = −m2.
Another important 4-vector is 4-velocity uµ ≡ m−1pµ. In the rest frame, uµ̄ = (1, 0, 0, 0), and

in any frame, uµuµ = −1. Massless particles such as photons do not have 4-velocities but they
do have 4-momenta. It is often convenient to parametrize trajectories of massive particles by the
proper time, τ . For an unaccelerated particle, τ is nothing but time measured in the particle’s rest

frame. But it can be generalized to accelerated worldlines5 by setting

dτ ≡ (−dxµdxµ)
1/2

=
√
−ds2, (1.11)

where dxµ is the infinitesimal coordinate separation between neighboring events along the worldlines.
With this definition, the 4-velocity, 4-momentum, and 4-acceleration are

uµ =
dxµ

dτ
, pµ = m

dxµ

dτ
, aµ =

duµ

dτ
=

d2xµ

dτ2
.

1.3.1 Conservation of 4-momentum

Total 4-momentum is conserved in a collision: that is,

N∑
A=1

pµA =

N ′∑
B=1

p′µB ≡ Pµ (1.12)

where the sums on the left and right run over the particles entering and leaving the collision,
respectively. The identities of the particles may be changed by the collision; even their number may

change. The invariant mass M ≡ (−PµPµ)
1/2

is, a fortiori, also conserved. Note the distinction
between conserved, meaning constant with time in a given reference frame, and invariant, meaning
independent of reference frame. M2 is both invariant and conserved, whereas Pµ is conserved but not
invariant; also the rest masses of individual particles are always invariant but not always conserved.

5Perhaps one should speak of worldcurves for accelerated particles, but few do.
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1.4 Transformation of electromagnetic fields

These are
Ē‖ = E‖ , Ē⊥ = γ(E⊥ + β ×B)
B̄‖ = B‖ , B̄⊥ = γ(B⊥ − β ×E)

(1.13)

the subscripts indicating components parallel and perpendicular to the motion β of frame Ō with
respect to O. In tensor and matrix form,

F µ̄ν̄ = Λµ̄µΛν̄νF
µν ⇔ F̄ = ΛFΛT , (1.14)

where the field-strength tensor (or “Maxwell tensor”) is

F 0i = −F i0 = Ei , F ij = −F ji = εijkBk , (1.15)

or

F =


0 Ex Ey Ez
−Ex 0 Bz −By
−Ey −Bz 0 Bx
−Ez By −Bx 0

 . (1.16)

It is clear from (1.14) that FµνFµν and det(F ) are invariant [for the latter, note eq. (1.8) implies
det(Λ) = ±1]. Since these evaluate to 2(B2 − E2) and (E ·B)2,

E2 −B2 and E ·B are Lorentz invariants. (1.17)

The equation of motion for a particle of mass m and charge q is

dpµ

dτ
=

q

m
Fµνpν . (1.18a)

The spatial components (µ ∈ 1, 2, 3) of this equation are equivalent to (since dτ = γ−1dt)

dp

dt
= q

(
E +

v

c
×B

)
(1.18b)

which is the good old Lorentz-force law. The temporal component (µ = 0) is equivalent to

dE

dt
= qE · v. (1.18c)

Eqs. (1.18b) & (1.18c) are Lorentz covariant, meaning that they take the same form in all inertial
frames. This is not obvious because they are written in terms of 3-vectors and other quantities that
transform messily. On the other hand, eq. (1.18a) is obviously covariant as a consequence of the
linear Lorentz transformations associated with the 4-indices and the invariance of q, m, and dτ .

1.5 Phase space

This section will prove that phase-space volumes are Lorentz invariant. The most important appli-
cation of this fact in astrophysics is to photons, where it leads to the transformation law for specific
intensity.

One might think that momentum space should be 4-dimensional in SR. But for particles of a
given rest mass (including m = 0), the four components of momentum are constrained by

pµpµ = −m2 ⇔ p0 = (pipi +m2)1/2. (1.19)
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Thus p0 = −pt = −p0 is a function of the 3-momentum p rather than an independent dynamical
coordinate. Hence single-particle momentum space is properly 3-dimensional. However, it is not a
flat 3-space, but rather a hyperbolic 3-surface (“mass shell”) embedded in a 4-dimensional Lorentzian
space, the surface being defined by the constraint (1.19). The metric in this 3-surface is non-
Euclidean, with volume element (1.20).

Imagine a group of particles whose spatial positions lie in a small coordinate volume d3x =
dxdydz (to avoid confusion between indices and exponents, t, x, y, z is sometimes used instead of
x0, x1, x2, x3), and whose 3-momenta lie in a small phase-space volume d3p = dpxdpydpz, as seen in
frame O. In other words, the x coordinates of all these particles lie in the range [x, x+ dx], and the
corresponding component of their momenta lie in [px, px + dpx]; and similarly for y, z. The phase
space volume they occupy is d3xd3p. In some other frame Ō, they occupy a different coordinate
volume d3x̄ and a different momentum-space volume d3p̄. Yet it turns out that d3x̄d3p̄ = d3x̄d3p.

There are many ways to prove phase-space invariance:
McGlynn’s Proof:6 The Uncertainty Principle is ∆px∆x = h, and statistical mechanics counts states

with h−3d3xd3p. Clearly Planck’s constant h is a law of nature, and therefore (by the first postulate
of Special Relativity) independent of inertial reference frame. The UP and the number of states
must be invariant. Hence d3xd3p must be invariant.

McGlynn’s “Proof” shows what is at stake physically, but it seems less than rigorous. Therefore
we offer a more mathematical proof, which gives the useful byproducts (1.20) and (1.21).

Since d3x and d3p are separately invariant under rotations, it is enough to consider their trans-
formations under a boost along the x1 axis,

p1̄ = γ(p1 − βp0)

p2̄ = p2

p3̄ = p3

which has the jacobian∣∣∣∣∣∣
∂p1̄/∂p1 ∂p1̄/∂p2 ∂p1̄/∂p3

∂p2̄/∂p1 ∂p2̄/∂p2 ∂p2̄/∂p3

∂p3̄/∂p1 ∂p3̄/∂p2 ∂p3̄/∂p3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
γ(1− β∂p0/∂p1) −γβ∂p0/∂p2 −γβ∂p0/∂p3

0 1 0
0 0 1

∣∣∣∣∣∣ .
From (1.19), ∂p0/∂pi = pi/p

0, so the jacobian is γ(p0 − βp1)/p0 = p0̄/p0, and

d3p̄ =
p0̄

p0
d3p ⇔ d3p

p0
is invariant. (1.20)

Next we transform d3x. Let A,B be two particles from the group that have parallel but distinct
trajectories, whose x̄ coordinates as a function of time are

x̄A(tA) = v̄ t̄A + x̄A(0),

x̄B(tB) = v̄ t̄B + x̄B(0).

Here v̄ ≡ p1̄/p0̄ is the x̄ component of their common velocity. The separation in Ō is measured at
t̄A = t̄B , hence ∆x̄ = x̄A(0)− x̄B(0). We may use the Lorentz transformations to eliminate t̄& x̄ in
favor of t&x:

γ(xA − βtA) = v̄ γ(tA − βxA) + x̄A(0),

hence xA(tA) =
β + v̄

1 + βv̄
tA +

x̄A(0)

γ(1 + βv̄)
.

6I first heard this argument in my youth from fellow graduate student Thomas McGlynn.



1.6. SPECIFIC INTENSITY 15

This presumes of course that O and Ō have a common origin of coordinates, i.e. a unique event
E such that xµ(E) = 0 = xµ̄(E)—otherwise there should be additional constant terms here. Note
the result for relativistic addition of velocities, v = (v̄ + β)/(1 + v̄β). Writing the corresponding
equation for B, setting tA = tB , and subtracting, we find the separation in frame O:

∆x =
∆x̄

γ(1 + βv̄)
.

This is not the usual formula for Lorentz contraction unless Ō is the rest frame so that v̄ = 0. Since
v̄ = p1̄/p0̄, however, γ(1 + βv̄) = p0/p0̄, whence ∆x̄ = (p0/p0̄)∆x, and therefore (since ∆ȳ = ∆y &
∆z̄ = ∆z),

d3x̄ =
p0

p0̄
d3x ⇔ p0 d3x is invariant. (1.21)

For particles with rest mass, results (1.20) and (1.21) are more easily derived by invoking a rest
frame, but we have been at pains to prove them for photons. Combining the two results, we have
the desired result

d3pd3x is invariant. (1.22)

1.6 Specific intensity

Specific intensity is defined so that [see 53, chap. 2]

Iν dν d cos θ dφ dA⊥ dt (1.23)

is the energy carried by photons of frequency in the range (ν, ν + dν), travelling along directions
within the solid angle sin θdθdφ, across an area dA⊥ normal to their direction, during time dt. The
subscript on Iν , the specific intensity, represents frequency, not a spacetime index—this notation is
conventional. Specific intensity is the same as surface brightness provided that the latter is evaluated
for a spectral filter of unit frequency width. Iν is measured in units such as erg cm−2 s−1 sr−1 Hz−1

[ sr ≡ sterradian] or Jy sr−1 [1 Jansky = 10−26 W m−2 Hz−1 = 10−23 erg cm−2 s−1 Hz−1].
If −n is a unit vector in the direction specified by the polar angles (θ, φ) (the sign follows the

convention that the telescope points along n) then the momentum of photons is

p = −hν
c
n , whence d3p =

(
h

c

)3

ν2 dν d cos θ dφ.

The spatial volume occupied by these photons is a cylinder of height cdt and base dA⊥, so d3x =
cdtdA⊥, and therefore

2
ν2

c2
dν d cos θ dφ dA⊥ dt = 2

d3pd3x

h3
. (1.24)

This is the number of quantum-mechanical states in phase-space volume d3pd3x; the factor of 2
accounts for both polarizations. Comparison with (1.23) shows that c2Iν/2ν

2 is the energy per
mode. (Traditionally, photon quantum states are called “modes”.) Each photon carries energy hν,
so the occupation number, or number of photons per quantum state, is

n =
c2 Iν
2hν3

. (1.25)

The result (1.22) means that the modes themselves are invariant. Since all observers will count the
same number of photons, n is invariant, and it follows that

Iν/ν
3 is Lorentz invariant. (1.26)
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The specific intensity of a blackbody is such an important special case that it has its own symbol
Bν(T ), where T is the temperature:

Bν(T ) =
2hν3

c2
1

exp(hν/kBT )− 1
. (1.27)

From (1.25), the corresponding occupation number is

nBB =
1

exp(hν/kBT )− 1
. (1.28)

Conversely, if a radiation field has occupation number (1.28), then it is a blackbody and (1.27) is its
specific intensity. The prefactor 2hν3/c2 is the energy per photon (hν) times the number of modes
per unit frequency per unit volume per unit solid angle (2ν2/c3). The full range of solid angles is
4π, so

8πν2

c3
= # modes per unit frequency per unit volume. (1.29)

One important astrophysical application is to the Cosmic Microwave Background (CMB). If we
ignore the very slight (< 10−4) fluctuations responsible for structure formation, there is a frame (the
CMB rest frame) in which ICMB

ν would appear as a perfect blackbody at TCMB ≈ 2.7 K. The Sun
moves with respect to the CMB rest frame at ∼ 10−3c, so the CMB does not appear quite isotropic.
Let O and Ō be the rest frames of the Sun and the CMB, respectively, and as usual, let β be the
velocity of Ō (the CMB) with respect to O (the Sun). A radio telescope looking at CMB radiation
in direction n sees the same occupation number that it would in the CMB frame,

nBB = [exp(hν̄/kBTCMB) − 1]
−1
, (1.30)

but ν̄ is related to the the frequency ν measured by a telescope looking in direction n by

ν̄ = γ(1 + n · β)ν. (1.31)

Let us pause to check the signs: if the telescope looks towards the direction of the Sun’s motion
through the CMB, −β, then ν > ν̄, i.e. the telescope sees a blueshift.

Let us define

T̂CMB(n) ≡ TCMB

γ(1 + n · β)
. (1.32)

Then eq. (1.30) can be rewritten as

nBB =
[
exp(hν/kBT̂CMB) − 1

]−1

. (1.33)

This means that the measured CMB spectrum (i.e., its dependence on measured frequency ν) is
exactly thermal but with a temperature (1.32) that depends upon direction. The CMB appears
hottest in the direction towards which the Sun moves (n ∝ −β). Since β � 1, the temperature
variation has a simple cos θ pattern across the sky (and an amplitude ∆T/T ∼ 10−3), so it is called
the “CMB dipole.” If the Earth were moving relativistically (γ � 1), the angular dependence would
be a little more complicated, but the spectrum would still be exactly thermal in any given direction.

Another very important property of occupation number is that it is constant along light rays in
vacuum, even in the presence of a gravitational field, and even in a transparent medium (one that
neither absorbs nor emits):

dn

dt
≡ ∂n

∂t
+
∂n

∂x
· dx

dt
+
∂n

∂p
· dp

dt
= 0. (1.34)
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Here n(t,x,p) is a function of phase space position and time, and [x(t),p(t)] is the trajectory of a
light ray through phase space. This is a relativistic form of Liouville’s theorem. It holds also for
massive particles, provided that they suffer no collisions or decays, etc. We may often replace n
with Iν in (1.34)—but not, for example, when ν changes along the trajectory due to a gravitational
redshift.

1.7 Relativistic beaming

Consider a uniformly bright emitting sphere of radius a, i.e. at the surface of the sphere, Iν is
independent of the direction in which the photons propagate as long as this makes an angle θ < 90◦

with respect to the outward normal to the sphere. A black body has this property, since the Planck
function (1.27) is independent of photon direction. The flux density through this surface is, in its
rest frame,

Fν(a) =

1∫
0

d cos θ

2π∫
0

dφ Iν cos θ = πIν . (1.35)

The extra factor of cos θ occurs because Iν is defined in terms of area d2A⊥ normal to the direction
of the ray, which is inclined with respect to the fixed surface of the sphere by angle θ.

In vacuum and ignoring gravitational fields, it follows from (1.34) that specific intensity is con-
stant along rays. Therefore at r > a, Iν has the same value within the solid angle subtended by the
emitting sphere, viz.

0 ≤ θ ≤ sin−1(a/r) ≡ θmax

and vanishes at larger angles. It follows that the flux at r is

Fν(r) = 2πIν

1∫
cos θmax

cos θ d cos θ = π
(
1− cos2 θmax

)
Iν =

πa2

r2
Iν ,

in agreement with the inverse-square law.
Now suppose there is a source of radiation with specific intensity Iν̄ in its own rest frame, Ō,

and that this frame moves at velocity β with respect to the telescope (frame O). The frequencies
transform according to eq. (1.31). Therefore, the telescope sees

Iν =
(ν
ν̄

)3

Iν̄ = [γ(1 + n · β)]
−3

Iν̄ . (1.36)

The term γ(1+n·β) is called Doppler factor in radio astronomy. To make this more concrete, suppose
the rest-frame specific intensity is isotropic and follows power law in frequency, Iν̄ = K ν̄−α, and
consider a source coming directly towards the observer (β = −|β|n) at a highly relativistic speed

|β| ≈ 1− 1

2γ2
+O(γ−4) γ � 1,

so that 1 + n · β ≈ 1/(2γ2), and therefore

Iν ≈ (2γ)
3+α

K ν−α

On the other hand, suppose the source moves at a small angle θ to the line of sight,

1 + β · n = 1− |β| cos θ ≈ 1

2

(
γ−2 + θ2

)
+ O(γ−2θ2, γ−4, θ4).
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Then
Iν(θ) ≈

(
1 + γ2θ2

)−3−α
Iν(0), (1.37)

where Iν(0) is the previous result for motion directly toward the observer. Hence the emission is
concentrated at angles θ . γ−1 from the direction of motion. This effect is called “beaming.” Notice
that the approximation (1.37) depends upon the assumption that the emission in the rest-frame is
isotropic, because if the radiation makes angle θ ∼ γ−1 with respect to β in the observer’s frame,
then the corresponding angle in the source frame is θ̄ ∼ π/2.

Symptoms of beaming are evident in radio jets of AGN. A typical spectral index is α ∼ 1.0.
Sometimes one sees two colinear jets, presumably ejected in opposite directions from the nucleus
and extending up to ∼ 1 Mpc from it. Usually one jet is much brighter (higher Iν) than the other.
Very often only one jet can be seen, yet the counterjet probably exists because one sees radio lobes on
both sides of the nucleus, where the jets collide with an intergalactic medium and the bulk velocity
becomes nonrelativistic.

1.8 Conservation laws and energy-momentum tensor

You are familiar with the differential form of charge conservation,

∂ρ

∂t
+∇·j = 0, (1.38)

in which ρ is the charge per unit volume and j is the current. Integrated over an arbitrary volume
V , eq. (1.38) says that

d

dt

∫
V

ρd3x = −
∮
∂V

j · d2A,

where ∂V is the boundary surface of V . Now jµ ≡ (ρ, j) is a 4-vector. To see this, note first that
ρd3x = ρ̄d3x̄ since charge is Lorentz invariant. Then it follows from eq. (1.21) that ρ̄/ρ = p0̄/p0, so
that ρ = j0 indeed transforms as the 0th component of a 4-vector. Also, j = ρv = j0vi, where v is
the drift velocity of the positive charges relative to the negative ones; since vi clearly transforms in
the same way as pi/p0, it follows that ji transforms as the spatial components of a 4-vector.

It can be shown that ∂µ ≡ ∂/∂xµ transforms in the same way as pµ, viz. pµ̄ = pµΛµµ̄, the inverse
of pµ = Λµµ̄p

µ̄. Therefore eq. (1.38) becomes

∂µj
µ = 0 ⇔ jµ, µ = 0. (1.39)

Note the use of commas to represent partial derivatives. Conservation laws for other Lorentz scalars
(“scalar” ≡ “invariant”) take the same form. For example, if N0 represents number of particles per
unit volume and N their flux (number/area/time), then

Nµ
, µ = 0 (1.40)

states that these particles are locally conserved: “locally” because particles do not disappear from
one spot and reappear at a distance, which would violate (1.40) even if total particle number were
constant in some frame.

In continuous systems, such as fluids or electromagnetic fields, it is often necessary to consider
energy or momentum per unit volume, energy or momentum flux, and so forth. Since energy and
momentum are not scalars, their local conservation law takes a more complicated form than (1.39)
and (1.40). The energy-momentum tensor Tµν is defined as follows [see 56, chap. 4]:

T 00 = energy density
T 0i = energy flux in ith direction
T i0 = density of pi

T ij = flux of pi in jth direction

(1.41)
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Here “X density” means “X per unit volume.” There is a standard argument from nonrelativistic
mechanics to show that T ij = T ji: otherwise a small cube would experience a torque proportional
to its volume times T ij − T ji, and the resulting angular acceleration would vary inversely with the
square of its linear size. In relativity, the full tensor is symmetric in c = 1 units, i.e.

Tµν = T νµ. (1.42)

In general units where c 6= 1, energy flux has units (mass)(time)−3, whereas momentum density has
units (mass)(length)−2(time)−1, so that T 0j = c2T j0.

The local conservation law for 4-momentum is

Tµν, ν = 0. (1.43)

The transformation law is just what the number and placement of the indices indicate, namely

Tµν = Λµµ̄Λνν̄T
µ̄ν̄ . (1.44)

The electromagnetic energy-momentum tensor, for example, is

Tµν = − 1

4π

(
FµαF ν

α +
1

4
ηµνFαβFαβ

)
. (1.45)

The energy-momentum tensor of a perfect fluid will be seen more often in this course. “Perfect”
means that viscosity and thermal conductivity are negligible. Assuming that the flow is slower than
light, one can define the fluid 4-velocity Uµ(A) at every event A within the fluid. The local rest
frame Ō(A) is defined by U µ̄(A) = (1, 0, 0, 0). Let ρ(A) be the local energy density measured in this
frame, and P (A) be the pressure. Then

T 0̄0̄ = ρ and T īj̄ = Pηīj̄ .

Do not confuse ρ with charge density or P with momentum. Note that we don’t put overbars on ρ
or P : in the context of relativistic fluids, it is implicit that thermodynamic quantities are defined in
the local rest frame of each fluid element, hence are Lorentz scalars by fiat.

To comprehend T ij , consider a small area element dĀ in the ȳz̄ plane of the local rest frame.
The force exerted by the fluid at x̄ < 0 is PdĀ in the +x̄ direction; in other words, momentum
dp1̄ = PdĀdt̄ crosses the element from left to right in time dt̄. Thus P represents a flux of x̄-
momentum in the +x̄-direction and therefore contributes to T 1̄1̄. The fluid at x̄ > 0 exerts an
opposing force but the momentum flux is the same, since both dp1̄ and the direction of transport
change sign. (So you might think T īj̄ = 2P , but that would count the momentum transfer twice.)
Since there is no shear viscosity, there is no transfer of ȳ or z̄ momentum across the element, hence
T 2̄1̄ = T 3̄1̄ = 0. Since the orientation of our element was arbitrary, we conclude that T īj̄ has the
form asserted above.

We can express the rest-frame energy-momentum tensor in a single formula:

T µ̄ν̄ = (ρ+ P )U µ̄U ν̄ + Pηµ̄ν̄ .

Note how P cancels out of T 0̄0̄. In view of eq. (1.44) and the fact that U µ̄ transforms as a four-vector,
it follows that

Tµν = (ρ+ P )UµUν + Pηµν (1.46)

in a general frame. Note that it is still the rest-frame ρ and P that appear. In particular, the energy
density of a moving but pressureless fluid is T 00 = ρU0U0 = γ2ρ.

The relativistic equations of motion for the fluid result from applying eq. (1.43) to (1.46). There
must also be an equation of state giving P as a function of ρ and perhaps also of a second thermo-
dynamic variable (temperature or entropy), but the equation of state depends upon the nature of
the fluid. The extreme cases—the most important for us—are
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(i) A “cold” fluid P = 0, meaning that the mean-square random velocities of the particles in the
local fluid rest frame are negligible compared to c2 (“dust”).

(ii) A relativistic fluid P = ρ/3, meaning that the random velocities in the local rest frame are
≈ c and isotropically distributed (“radiation”).

The canonical example of (ii) is a photon gas (ρ = aT 4), but it also holds for a plasma if kBT � mc2

and m is the rest mass of the heaviest particles: mp for a hydrogen plasma, me for an electron-
positron plasma.

In the rest frame of a shock front with local normal n,

Tµjnj is continuous across the shock, (1.47)

else eq. (1.43) would imply infinite Tµ0 at the shock. Note that the rest frame of the shock is not
the same as the rest frame of the fluid.

We apply these results to a strong relativistic shock advancing into an ordinary (nonrelativistic)
interstellar medium [ISM]. The shock moves along the x direction with velocity −β as seen in the
ISM rest frame, which has preshock ρ ≈ N̄Hmpc

2, where N̄H ≡ number of hydrogen atoms per unit
volume, and negligible pressure P � ρ. In the rest frame of the shock, the ISM approaches with
4-velocity Uµ = (γ, γβ, 0, 0). With primes marking postshock quantities, the jump conditions are 7

(ρ+ P )γ2β = (ρ′ + P ′)γ′ 2β′ [T 01 = T ′ 01],
(ρ+ P )γ2β2 + P = (ρ′ + P ′)γ′ 2β′ 2 + P ′ [T 11 = T ′ 11].

(1.48)

In gamma-ray-burst afterglows, pulsar winds, and probably radio jets, γ � 1 so that β ≈ 1. Also
P ≈ 0 and P ′ ≈ ρ′/3, i.e. the preshock flow is dust and the postshock flow is radiation. The
equations above reduce to

4

3
ρ′γ′ 2β′ ≈ ργ2 ≈ 4

3
ρ′γ′ 2β′ 2 +

1

3
ρ′.

These are two relations for the unknowns ρ′, β′ given prescribed values for ρ and γ. Eliminating ρ
and γ and putting γ′ 2 = (1− β′2)−1 yields

(3β′ − 1)(β′ − 1) ≈ 0.

Choosing the smaller root, we obtain
β′ ≈ 1/3 ,

ρ′ ≈ 2γ2ρ .
(1.49)

So the postshock bulk velocity is subrelativistic in the shock frame, almost all of the preshock
energy having been converted to random motions. These results are based solely on conservation
laws plus the assumption that the postshock pressure is isotropic. The mechanisms for randomizing
the particle velocities in relativistic shocks are a subject for research.

There are only two shock jump conditions (1.48), but you probably recall that there are three
(Rankine-Hugoniot) jump conditions for shocks in a nonrelativistic ideal gas. Shouldn’t there be
a third condition here too? The answer is yes, if there are conserved particles. In that case, the
integral form of (1.40) says that

N jnj is continuous across the shock ⇔ Nγβ = N ′γ′β′, (1.50)

where N (written without indices) is the number of conserved particles per unit volume in the rest
frame of the fluid. The “four-current” associated with these conserved particles can be written

7Note that (ρ, P ) and (ρ′, P ′) are measured in different frames (the pre- and postshock fluid rest frames, respec-
tively), whereas β and β′ are both measured in the shock frame.
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Nµ = NUµ if Uµ is the four-velocity of the local fluid rest frame, i.e. the frame in which the
3-velocities or 3-momenta of the local particles average to zero. The equation of state can then be
written P = P (ρ,N). HereN plays the role of density in the nonrelativistic case, and ρ = (mc2+ε̄)N ,
where m and ε̄ are the rest mass and internal energy per conserved particle. We did not need the
jump condition (1.50) earlier because P can be expressed in terms of ρ alone in the case of pure
“dust” or “radiation” equations of state.
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Figure 1.2: VLBI data for 3C 345 from [4]. Redshift of galaxy is z = 0.595. Left panel: Maps at
successive epochs. Right panel: Proper motion of C2 fit to 0.47 milliarcsec yr−1.

1.9 Problems for Chapter 1

1. VLBI measurements of the radio source 3C 345 show large proper motions. (a) Estimate
v⊥,apparent as described in the text, including the correction for relativistic time dilation; see
Figure 1.2 and caption above for parameters.) (b) What is the minimum angle Lorentz factor
γ of C2? (c) What are the minimum and maximum possible values for the angle θ between its
motion and the line of sight? (θ = 0 corresponds to motion directly toward us.)

2. A high-energy cosmic ray proton can produce a pion by collision with a cosmic-microwave-
background photon via the reaction p + γ → p + π0. Taking 1 GeV and 100 MeV for the
rest masses of of the proton and pion, respectively, and 10−3 eV for the energy of the photon,
estimate the minimum proton energy at which this reaction occurs. Hint: Evaluate the
invariant mass of a system consisting of a proton and pion at rest.

3. (*) (a) Verify by matrix multiplication that (1.14) is equivalent to (1.13), using the matrices in
(1.16) and (1.9) for F and Λ, respectively. (b) Express the components of the electromagnetic
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energy-momentum tensor (1.45) in terms of E and B

4. Suppose that 4-vector v is an eigenvector of a Lorentz matrix Λ, i.e. Λv = λv, where λ
is the eigenvalue. (a) Show that if λ is real and |λ| 6= 1, then v is a null vector: that is,
vTηv = 0 = vµvµ. (b) Show that every nontrivial boost has exactly two null eigenvectors.

5. (*) A spherical dust grain of radius r = 1µ and density 2 g cm−2 follows a circular orbit around
the Sun at semimajor axis a = 1 au. Assume that it perfectly absorbs all solar photons falling
upon it and re-radiates them isotropically in its rest frame. What is the nonradial component
of the force upon the grain due to this process, and at what rate does the orbit decay? H int:
Evaluate the specific intensity at the position of the grain in the solar rest frame, and transform
this into the instantaneous rest frame of the grain. You may approximate the Sun as a perfect
5800 K black body.

6. A mass M is fired at Lorentz factor Γ � 1 from a “cannon” directly toward the observer.
The muzzle flash reaches the observer at time t1 in her frame, O. The mass M later collides
perfectly inelastically (i.e., collides and “sticks”) with a second mass m that is initially at rest
in O. Radiation from this collision reaches the observer at time t2. (a) What is the distance
in frame O travelled by M between the cannon and m? (b) Express as a function of Γ the
mass ratio m/M at which half of the initial kinetic energy is dissipated by the collision. (This
isn’t a difficult problem, but first-rate high-energy astrophysicists were needed to point out its
implications for gamma-ray bursts: (author?) [52].)

7. An angularly resolved (e.g., with the VLA) radio jet is observed to have a typical synchrotron
spectrum Iν = Kν−0.6. The counterjet is not observed, with a 1% upper limit on its brightness
relative to the observed jet at the same observed frequency. Calculate the minimum Doppler
factor of the observed jet on the assumption that the counterjet has an equal speed but
oppositely directed velocity.

Problems marked (*) are extra credit
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Chapter 2

Synchrotron Radiation

Synchrotron radiation is emitted by relativistic charged particles (usually e±) in a magnetic field.
It is an efficient radiation mechanism when these ingredients are present, and it is observed in
diverse astronomical sources: stellar coronae, the interstellar medium, radio galaxies and radio jets,
and probably gamma-ray bursts. Synchrotron radiation is most often observed in the radio, but
sometimes in optical, X-ray, and even gamma-ray ranges.

2.1 Radiation from an accelerated charge

This is perhaps worth reviewing briefly, as it demonstrates the power of relativistic notation, in
which Maxwell’s equations become

Fµν, ν = 4πJµ Fµν,λ + Fλµ,ν + Fνλ,µ = 0. (2.1)

The second equation is satisfied automatically by introducing a vector potential,

Fµν = Aν,µ −Aµ,ν (2.2)

and the first becomes
Aν µ

,ν, −Aµ ν
, ,ν = 4πJµ . (2.3)

The physical fields Fµν (equivalently E,B) are unaffected by the gauge transformation Aµ → Aµ−
f,µ. By choosing the function f appropriately, one can arrange that Aµ,µ = 0 In this Lorentz gauge

�Aµ = −4πJµ where � ≡ ∂ν∂ν = − ∂2

∂t2
+∇2 . (2.4)

The solution of this wave equation is

Aµ(x) = 2

∫
δ [(x− x′)ν(x− x′)ν ]ret Jµ(x′) d4x′ =

∫
Jµ(x′, t− |x− x′|)

|x− x′|
d3x′ . (2.5)

Notice the elegance and manifest Lorentz-covariance of the first form of the solution. The argument
of the delta function vanishes at t′ = t + |x − x′| and at t′ = t − |x − x′|. The subscript “ret”
means that we discard the first root in favor of the second (the retarded time) when using the delta
function to perform the dt′ integration, which yields the denominator |x − x′| according to the
standard prescription ∫

δ[f(z)] dz =
∑

f(ζ)=0

δ(z − ζ)

|df/dz|

25
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Figure 2.1: The jet of Messier 87, the central galaxy of the Virgo cluster. The emission is probably
synchrotron radiation. Left panel: Optical view showing jet and host galaxy, via Hubble Space
Telescope [34]. Right panel: Composite view of jet only, at optical, radio, and X-ray wavelengths
[35].

The 4-current associated with a point charge q having worldline Xµ(τ) and 4-velocity Uµ = dXµ/dτ
is

Jµ(x′) = q

∫
Uµ(τ)δ4 [x′ −X(τ)] dτ = qUµ(t′)

δ3 [x′ −X(t′)]

U0(t′)
. (2.6)

Note that δ4(x) = δ(t)δ3(x) is the four-dimensional delta function, which is Lorentz-invariant.
Putting the first form of eq. (2.6) into the first form of eq. (2.5) gives the relativistic form of
Coulomb’s law:

Aµ(t,x) =

[
q

Uµ
Uν(X − x)ν

]
ret

=

[
q

R
· Uµ/U

0

1− n · v

]
ret

. (2.7)

Here vi ≡ U i/U0 = dXi/dtret is the 3-velocity, R ≡ |x − X| is the distance, tret = t − R, and
n ≡ (x−X)/R is a unit vector from the charge to the field point.1

Now Ei = ∂iA0 − ∂0Ai and Bi = εijk∂jAk. In the radiation zone (large R), R and n can be
treated as constants except in the argument of Uµ and v:

dv

dt
=

dv

dtret

dtret

dt
=

dv/dtret

1− n · v
.

Therefore, writing a ≡ dv/dtret for the 3-acceleration, one finds after some algebra that

E =

{
q

R

n× [(n− v)× a]

(1− n · v)3

}
ret

+O
( q

R2

)
,

B = n×E +O
( qv
R2

)
. (2.8)

For nonrelativistic motion, v � n and n · v � 1 so that the Poynting flux reduces to

c

4π
E ×B ≈ q2

4πc3R2
|n× a|2 n,

1Note this is the opposite of our usual sign convention for n!
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in which the factors of c have been restored. Integrating over all directions n gives the Larmor
formula for the total power radiated by the charge:

PL =
2q2

3c3
|a|2, (2.9)

2.2 Basic principles of synchrotron radiation

Typical Lorentz factors for radiating electrons are γ & 102, so the first one or two terms of the
expansion for the 3-velocity

v ≈ 1− 1

2γ2
+O(γ−4)

are therefore usually adequate.

2.2.1 Motion of charges in a magnetic field

Let B = Bez be a constant field. Assuming that E = 0,2 the equations of motion (1.18a) for a
point particle of charge q and mass m become

d

dτ


U0

U1

U2

U3

 =
qB

mc


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0




U0

U1

U2

U3

 .

It follows that U0 and U3 are constants of the motion, while U1 and U2 trace out a circle. The
complete solution (up to an arbitrary shift in the origin of τ) is

Uµ = (γ, γv⊥ cosωcτ, −γv⊥ sinωcτ, γv‖), (2.10)

in which γ = (1− v2)−1/2 =constant; α, called the pitch angle, is the angle between v and B and is
constant; and the components of v parallel and perpendicular to B are v‖ ≡ v cosα, v⊥ ≡ v sinα.
This is helical motion around a field line. The cyclotron frequency,

ωc ≡
qB

mc
≈ (2π)× 2.8

(
B

Gauss

)
MHz, (2.11)

in which the numerical value is for a positron. One writes νc ≡ ωc/2π for the frequency in cycles
rather than radians per unit time. Although the orbital frequency in the particle rest frame is always
ωc, the frequency in the “lab” frame where the four velocity is (2.10) is

γ−1ωc ≡ ωB, (2.12)

since dt = γdτ .

2.2.2 Total emitted power

Although nonrelativistic, the Larmor formula (2.9) is exact in the instantaneous rest frame of an
accelerated charge. In the rest frame Ō, U 0̄ ≡ 1, a0̄ = 0, and so a · a = aµa

µ. The latter is Lorentz
invariant, so we can evaluate it in the lab frame using (2.10):

aµ ≡ dUµ

dτ
= −γv⊥ωc(0, sinωcτ, cosωcτ, 0), (2.13)

aµaµ = γ2v2
⊥ω

2
c = ω2

c (γ2 − 1) sin2 α.

2Recall that if E · B = 0, then there is a frame in which E = 0. When E · B 6= 0, charges can be accelerated to
very large energies along field lines; such voltages tend to be “shorted out” if there is free charge.
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Hence the radiated power in Ō is(
dĒ

dτ

)
sync

=
2q2

3c
ω2

c (γ2 − 1) sin2 α. (2.14)

The dipole radiation carries no net momentum in Ō. Therefore, if ∆Ē is the change in energy in
the rest frame during a small interval of proper time ∆τ , the corresponding change in the lab frame
O is

∆E = γ(∆Ē + v ·∆p̄) = γ∆Ē = γ∆τ
dĒ

dτ
= ∆t

dĒ

dτ
Under these circumstances, the power is invariant:

dE

dt
=

dĒ

dτ
if

dp̄

dτ
= 0. (2.15)

Therefore, (2.14) is also the total radiated power in the lab frame.
For an isotropic velocity distribution, 〈sin2 α〉 = 2/3, so with q → e, m → me, and q2ω2

c →
r2
eB

2 = 3σTB
2/8π, the average synchrotron power per electron or positron is

〈Psync〉α =
4

3
(γ2 − 1) cσT

B2

8π
. (2.16)

2.2.3 Characteristic emission frequency

Although the lab-frame orbital frequency ωB = ωc/γ, we will see that the lab-frame emission spec-
trum peaks at ∼ γ2ωc, i.e. a factor γ3 larger than the orbital frequency.

Argument #1: The emitted radiation, although axisymmetric around a in the instantaneous rest
frame, is beamed into a cone of half-angle ∆θ ∼ γ−1 centered on the direction of motion as seen in
the lab. This beam sweeps over the observer in a time ∆tret ∼ ∆θ/ωB ∼ ω−1

c . However, because
the time t at which the radiation is received and the time tret at which it is emitted are related by

dt

dtret
= 1− n · v, (2.17)

where n is a unit vector from the source to the observer, and since beam is centered on n ‖ v, it
follows that

∆t ≈ (1− v)∆tret ≈
∆tret

2γ2
≈ 1

γ2ωc
.

Finally, the Fourier transform of the radiated electric field has a characteristic width ∆ω ∼ (∆t)−1 ∼
γ2ωc.

Argument #2: In its rest frame, the electron sees a constant magnetic field B̄ = γB, and an
electric field γv×B that is approximately equal to B̄ in magnitude but perpendicular in direction,
and rotating about ez at angular frequency Ω̄. Shaken by this electric field, the electron radiates
photons of the same rest-frame frequency Ω̄. Now one might suppose that Ω̄ = ωc, the rest-frame
orbital frequency. But in fact Ω̄ ∼ γωc because of the phenomenon of Thomas precession: that is,
a perfect gyroscope used by an accelerated observer to define a fixed spatial direction will precess
as seen by an inertial observer. In the restricted form needed here, this result can be derived by
projecting daµ/dτ onto a unit spacelike vector mµ in the direction of motion:

Ω̄ ≡ −mµ
daµ

dτ

/√
aνaν . (2.18)

For nonrelativistic motion, the spatial parts of mµ would be m = v/v, so that eq. (2.18) would
reduce to

−m · da

dt
|a|−1 = −v

v
· ωc a× ez

|a|
= ωc

ez · (a× v)

|a||v|
= ωc.
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In the relativistic case, we can evaluate the invariant expression (2.18) in the lab frame. The spatial
components of mµ should still be parallel to v, but mµU

µ = 0 so that m0̄ → 0 in the rest frame.
The unique 4-vector satisfying these conditions and the normalization mµm

µ = 1 has the lab-frame
components mµ = (γv, γv/v). From eq. (2.13),

√
aνaν = γωcv⊥ and

daµ

dτ
=
(
0, − γω2

cv⊥
)
.

Hence mµda
µ/dτ = γ2ω2

cv
2
⊥/v, and finally

Ω̄ = γωcv⊥/v = γωc sinα Q.E.D. (2.19)

Since for γ � 1, this is much larger than the orbital frequency ωc, the frequency of the emitted
radiation in the instantaneous rest frame is reasonably well-defined at Ω̄. The frequency of these
photons in the lab frame depends upon their direction of emission but is typically γΩ̄ = γ2ωc sinα,
as claimed above. Notice that the photons are elliptically polarized.

Although the derivation of Thomas precession is correct, argument #2, if pursued further, does
not lead to the exact lab-frame emission spectrum. So the physical reasoning cannot be entirely
correct. Perhaps the trouble is that there is no such thing as a well-defined instantaneous frequency
in an accelerated reference frame.

2.3 Synchrotron spectrum

The correct way to derive the spectrum is via retarded potentials in an inertial (lab) frame. The
spatial part of the vector potential (2.7) emitted by a single charge is (in this section β ≡ v/c
because we want to keep track of the factors of c):

A(t,x) =
q

R

[
β

1− n · β

]
ret

. (2.20)

Here (t,x) are the coordinates of the astronomer. The origin of coordinates is somewhere in the
radiating region, so that R ≈ |x| and n ≈ x/R can be treated as constants except in the argument
of β, which is tret = t−R. Consequently, spatial derivatives can be replaced by temporal ones:

∇A = − n ∂

∂t
A + O(R−2). (2.21)

Since the motion is periodic, A can be expanded as a Fourier series:

Ak(x) ≡ ωB

2π

π/ωB∫
−π/ωB

dtA(t,x) eikωBt , A(t,x) =

∞∑
k=−∞

Ak(x) e−ikωBt .

In view of (2.21), the corresponding expansion for the radiated magnetic field is

Bk(x) =∇×Ak(x) =
ikωB

c
n×Ak(x) . (2.22)

Using (2.17) & (2.20),

Bk(x) =
ikω2

B q

2πcR

π/ωB∫
−π/ωB

dtret n× β(tret) exp[ikωB t(tret)] . (2.23)
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Since the full treatment from this point is rather involved, let’s consider the special case that sinα = 1
(i.e. β‖ = 0), and furthermore, that the observer is in the plane of motion at a great distance along
the x axis. Then n→ ex. Putting φ ≡ ωBtret, we have 1− n · β → 1− β cosφ, and

t→ ω−1
B (φ− β sinφ) +

R

c
,

ignoring an unimportant constant of integration. Also, n×β → ez β sinφ, so that eq. (2.23) reduces
to

Bk(x) = ez
iqωBβ

cR
eikωBR/c k

π∫
−π

dφ

2π
sinφ exp [ik(φ− β sinφ)] (2.24)

=

(
−ez

qωBβ

cR
eikωBR/c

)
∂

∂β

π∫
−π

dφ

2π
exp [ik(φ− β sinφ)]

=

(
−ez

qωBβ

cR
eikωBR/c

)
kJ

′

k (kβ) . (2.25)

We have used the integral representation of Jk(z), the Bessel function of order k [1, §9], and J
′

k (z)
is its derivative.

Up to this point we have not made any mathematical approximations, so the result applies to
any value of β. Suppose β � 1. The function Jk(z) ≈ (z/2)k/k! when z � k, so

|B±1| ≈
qβωc

2cR
(β � 1),

and the higher harmonics are smaller by factors ∼ βk. This is cyclotron radiation: the radiated
fields are almost monochromatic at ω = ωc independently of particle energy.

In the ultrarelativistic limit β → 1, it turns out that the most important harmonics are k ∼ γ3.
The behaviour of kJ ′k(kβ) at large k is not immediately obvious, since k appears in three places.
Using asymptotic expansions from [1]3 and β ≈ 1− γ−2/2, it can be shown that

Bk ≈

(
−iez

√
3

π

qωc

cR
eikωBR/c

)
η K2/3(η), η ≡ k

3γ3
. (2.26)

where K2/3(z) is a modified Bessel function of the second kind:

η K2/3(η) ≈

{
Γ
(

2
3

)
(η/2)

1/3
η � 1

e−η (η π/2)
1/2

η � 1

This function is of order unity when η ∼ O(1). Thus most important harmonics are k ∼ γ3,
corresponding to frequecies ω ∼ γ2ωc ∼ γ3ωB.

In principle, η is a discrete variable because it is defined in terms of k by (2.26). However,
in a realistic case, the electrons will have a range of Lorentz factors and hence different spacings
∆η = (3γ3)−1 between their harmonics. The effect is to smear the individual harmonics into a
continuous spectrum.

The time-averaged energy flux received by this observer in the orbital plane of the radiating
charge is

c

4π

∞∑
k=−∞

|Bk|2 ≈ γ3 9

π2

(qωc

cR

)2
∫ ∞

0

η2K2
2/3(η) dη .

3op cit, §9.3.4 & §10.4.16
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Figure 2.2: Synchrotron functions F (x) (solid) and G(x) (dashed).

The summation over k has been approximated by an integration, and a factor 3γ3 has been inserted
for the Jacobian dk/dη. The final integral ≈ 0.4798. The flux above has one factor of γ more than
the total power per electron (2.16), because it applies to observers who lie within the solid angle
swept out by the emitted beam. Observers more than ∆θ ≈ γ−1 above or below the xy plane receive
negligible flux from this charge. So the power integrated over solid angle is ∝ γ2 in agreement with
(2.16).

In the general case that the pitch angle α 6= π/2 and the observer lies in some direction θ 6= α,
the calculation proceeds along similar lines, but there are a few changes and complications:

• The minimum value of dt/dtret → cos(θ − α)/2γ2.

• There are two linear polarizations of generally comparable strength: the perpendicular polar-
ization (as in the special case above) where the radiated electric field lies along n×B0), and
the parallel polarization, where it lies along n× (n×B0).

• The definition of η changes to ω/(3γ3ωB sinα).

The power per unit frequency in these two polarizations, after integration over solid angle, can be
shown to be

P⊥(ω) =

√
3q2ωc sinα

2c
[F (x) +G(x)] , (2.27)

P‖(ω) =

√
3q2ωc sinα

2c
[F (x)−G(x)] , (2.28)

where

x ≡ 2ω

3γ2ωc sinα
(= 2η), (2.29)

F (x) ≡ x

∫ ∞
x

K5/3(x′) dx′ (2.30)

G(x) ≡ xK2/3(x). (2.31)
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These formulae (and somewhat more detail on their derivation) can be found in [53]. But when
integrating over frequency, we always associate a factor (2π)−1 with dω, so that

dω

2π
= dν (since ν ≡ ω/2π),

and therefore our formulae (2.27)-(2.28) are larger than theirs by ×2π. The function F (x), which
determines the total power summed over polarizations, has the asymptotic forms

F (x) ≈

{
4.225x1/3 x� 1,

1.253x1/2e−x x� 1,
(2.32)

and its maximum is F (0.2858) ≈ 0.9180.

Relativistic particles are often accelerated to a power-law distribution of energies, so that the
number of electrons plus positrons with energies in the range (E,E + dE) per unit volume is

N (γ)dγ = K γ−pdγ γmin ≤ γ ≤ γmax . (2.33)

Typically, p ≈ 2 for either of two reasons:

1. First-order Fermi acceleration4 at collisionless shock fronts is probably one of the main ways
that relativistic particles are produced, and simple models of the process predict p ≈ 2.

2. If by any means electrons are injected at a constant rate at some high energy E1 and cor-

responding Lorentz factor γ1 = E1/mec
2, and if thereafter they lose energy mainly by syn-

chrotron and/or inverse Compton emission without further acceleration, then a p = 2 distri-
bution results.

p = 2 implies equal energy densities in equal intervals of logE. The total synchrotron emissivity
(power per unit volume per unit frequency) due to the distribution (2.33) is

ε(ν) =

√
3Kq2ωc

c

Γ
(
p+5

4

)2
Γ
(

3p−1
12

)
Γ
(

3p+19
12

)
(p+ 1)Γ

(
p+5

2

) (
ν

3νc

)(1−p)/2

, (2.34)

which we have chosen to write in terms of ν ≡ ω/2π and νc ≡ ωc/2π, and we have assumed an
isotropic distribution of pitch angles. This spectrum applies when

γ2
minωc . 2πν . γ2

maxωc. (2.35)

The degree of linear polarization is measured by

Π ≡
P⊥ − P‖
P⊥ + P‖

=
G

F
. (2.36)

For a power-law electron distribution (2.33), it can be shown that Π → (p + 1)/(p + 7
3 ) [53]. The

observed polarization is usually smaller, because B varies in direction along the line of sight through
the source. Nevertheless, high linear polarization is a telltale sign of synchrotron emission.

4Briefly, energetic particles repeatedly cross the shock front, deflected and scattered by magnetic fields carried in
the plasma; the average increase in energy per crossing is ∆E/E ∼ |βs|/(1 − β2

s ), where cβs is the shock velocity
relative to the pre-shock plasma [8].
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2.3.1 Cooling break

Sometimes it is appropriate to describe the energy distribution of the electrons as they are injected—
i.e., immediately after they are accelerated to their relativistic velocities—rather than as they are
found later, possibly after having suffered energy losses. Thus let Ṅ (γ)dγ be the number of electrons
accelerated to Lorentz factors in the interval (γ, γ+dγ) per unit volume per unit time. To the extent
that subsequent energy losses can be neglected, the energy distribution N (γ) is simply the integral
of the injection spectrum Ṅ (γ) over time, so that if the latter is a power-law ∝ γ−p, then so is the
former, and the emissivity εν ∝ ν(1−p)/ν as we have seen.

At sufficiently large Lorentz factor, however, the energy losses due to synchrotron emission it-
self cannot be ignored. One can define a cooling time as a function of γ and B by |d ln γ/dt|−1 ≡
γmec

2/Psync(γ), in which Psync(γ) is the radiated power per electron [eq. (2.16)]. Thus |d ln γ/dt|−1 ≈
γ−1(6πmec

2/cσTB
2). Above some value γb, the cooling time is less than age of the source, i.e. the

effective duration over which the injection process has been acting. We may regard the electron dis-
tribution as being in steady state for γ � γb, meaning that ∂N/∂t = 0, whereas N is still growing
with time at γ � γb. In particular, if the injection spectrum is itself steady, then

N (γ)

∣∣∣∣dγdt
∣∣∣∣ =

∞∫
γ

Ṅ (γ̄) dγ̄ if γ � γb , (2.37)

because all the electrons injected above γ have had time to cool past γ to still lower Lorentz factors.
Consequently, if Ṅ ∝ γ−p, then

N (γ) ∝

{
γ−p γ � γb ,

γ−p−1 γ � γb ,

and therefore

εν ∝

{
ν(1−p)/2 ν � νb ,

ν−p/2 ν � νb ,
(2.38)

where νb ≈ γ2
b νc is the synchrotron frequency corresponding to γb. The frequency νb is called the

cooling break, because the spectrum (2.38) is a broken power law. When νb can be identified in the
observed spectrum, it constrains a combination of the the magnetic field and source age.

2.4 Synchrotron self-absorption

One normally assumes that the emission is incoherent, meaning that the relative phase of the waves
emitted by different electrons is randomly determined. In such a case, the power emitted by N
electrons is just N times the power emitted by one, and their spectra simply add. In an artificial
source such as a radio antenna, and in some natural sources (e.g. pulsars), electrons accelerate in
phase, so that their emitted amplitudes add coherently and the total power is N2 times that of a
single charge.

Emission by a thermal distribution is incoherent almost by definition. Imagine a perfectly con-
ducting box filled with relativistic but thermally-distributed electrons and positrons and magnetic
field. Suppose that emission processes other than synchrotron can be neglected. We still expect that
the radiation field should eventually reach thermal equilibrium with the charges. But equilibrium is
impossible under emission alone; there must be an accompanying absorption related to the inverse
of the emission process.

For a general (not necessarily thermal) incoherent distribution of electrons and photons, let
Γ(p,k) represent the transition rate for the emission of a synchrotron photon of momentum ~k by
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an isolated electron of initial momentum p and final momentum p′ = p− ~k. In the presence of a
pre-existing radiation field, the actual rate of this process is

Γ(p,k)ne(p) [1 + nph(k)] ,

where ne and nph are mode occupation numbers, and the presence of the latter reflects boson
statistics—or equivalently, stimulated emission. We assume that the electrons are completely non-
degenerate (meaning that ne(p)� 1), else the above should be multiplied by [1− ne(p′)] since the
electrons obey Fermi statistics. The rate of the inverse process—absorption of a photon—is

Γ(p,k)ne(p
′)nph(k).

The transition rate Γ has the same value as before because of microscopic time-reversibility. There
is no final-state factor because there is no photon in the final state. The net rate of change of nph(k)
is therefore

dnph

dt
(k) =

∑
p

Γ(p,k) {ne(p) [1 + nph(k)] − ne(p− ~k)nph(k)}

=
∑
p

Γ(p,k)ne(p)︸ ︷︷ ︸
classical emission rate

−

{∑
p

Γ(p,k) [ne(p− ~k)− ne(p)]

}
nph(k)︸ ︷︷ ︸

classical absorption rate

.

Notice that the classical absorption rate, the sum of all terms ∝ nph(k), is the difference between true
quantum-mechanical absorption and stimulated emission. The term in curly braces is the absorption
coefficient per unit time. One normally deals with the absorption rate per unit length, αν . For an
isotropic distribution, ne can be considered a function of energy rather than momentum:

αν = c−1
∑
p

Γ(p,k) [ne(E − hν)− ne(E)] , E ≡
√
p2 +m2

e, ν ≡ c|k|/2π. (2.39)

The synchrotron power per electron is related to Γ(p,k) by the number of states available to the
photon:

P (ν,E) = hν ×
∫

dΩk V
2ν2

c3︸ ︷︷ ︸
d(#states)/dν

Γ(p,k) .

where V is the total volume of the system, which will cancel out later. So∫
dΩk αν =

c2

2hν3V

∑
p

P (ν,E) [ne(E − hν)− ne(E)]

Because of isotropy, αν does not depend on the direction of k, so the integration simply multiplies
αν by 4π. Next, we approximate the sum over electron states by an integral:

∑
p

≈ V

∫
d3p

h3
→ 4πV

(hc)3

∫
E2dE (E � mec

2) ,

in which isotropy has been invoked once again, and |p| ≈ E/c. So

4παν =
c2

2hν3

∫
dE

4πE2

(hc)3
[ne(E − hν)− ne(E)]P (ν,E);
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V has cancelled out, as promised. Introducing the number density of electrons per unit energy,

N (E) =
4πE2

(hc)3
ne(E) ,

we have

αν =
c2

8πhν3

∫
dE E2

[
N (E − hν)

(E − hν)2
− N (E)

E2

]
P (ν,E) .

Recall that we are generally dealing with ultrarelativistic electrons and radio photons, so that hν �
E. It makes sense to expand the contents of [...] to first order in hν, yielding

αν = − c2

8πν2

∫
dE P (ν,E)E2 d

dE

[
N (E)

E2

]
. (2.40)

Notice that Planck’s constant has disappeared from this final form, which indicates that the result
could have been obtained classically.

Let us evaluate (2.40) for a power-law distribution of electrons (2.33). First, taking a single pitch
angle (absorption coefficients due to multiple pitch angles simply add),

P (ν,E) = P0 F

(
2ν

γ2να

)
,

P0 ≡
√

3q2ωc sinα

c
, να =

3ωc sinα

2π
.

Here P (ν,E) = P⊥(ω) + P‖(ω) as given by (2.27) & (2.28) with ω = ν/2π and E = γmc2. Then,
making use of the integral

∞∫
0

xa F (x)dx =
2a+1

a+ 2
Γ

(
a

2
+

7

3

)
Γ

(
a

2
+

2

3

)
, (2.41)

one can show that

αν =
P0

4πmν2
α

K Γ

(
3p+ 2

12

)
Γ

(
3p+ 22

12

)(
ν

να

)−(p+4)/2

,

presuming once again that ν lies in the range (2.35). For an isotropic distribution of pitch angles,
one can average this over sinα to obtain (recall re ≡ e2/mc2 and νc = eB/2πmc)

αν = C(p)
cre
νc
K

(
ν

νc

)−(p+4)/2

C(p) =
3(p+1)/2π1/2

8

Γ[(p+ 4)/4]Γ[(3p+ 2)/12]Γ[(3p+ 22)/12]

Γ[(p+ 6)/4]
. (2.42)

Note C(2) ≈ 1.645 and C(3) ≈ 2.411.
The important point about this formula, aside from its proportionality to the density of electrons

(via K), is the rapid increase towards lower frequencies: αν ∝ ν−3 if p = 2. At sufficiently low
frequency, the emitting region becomes optically thick. Deep inside an optically thick region, the
specific intensity at each frequency must saturate at a value Sν , the source function, satisfying

ανSν =
ε(ν)

4πc
:
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the righthand side is the increment to the intensity per unit length, the factor (4π)−1 being necessary
because the emissivity ε includes all solid angles, while the lefthand is corresponding decrement by
absorption. Since the synchrotron emissivity (2.34) scales as ν(1−p)/2, it follows that

S(sync)
ν ∝ ν5/2 , (2.43)

with a coefficient easily derived from (2.34) and (2.42). This of course is steeper than a Rayleigh-
Jeans law

S(RJ)
ν =

2kBTb
c2

ν2 , (2.44)

where Tb is the brightness temperature: this is equal to the actual temperature of the emitting
particles if the source is thermal and optically thick, but otherwise Tb is defined by this relation.
The emission at a given frequency ν is dominated by electrons (or positrons) whose synchrotron
frequency νcγ

2 ∼ ν; if one considers these electrons to have a “temperature” proportional to their
energy, then that temperature is related to the frequency by

kBT (ν) =

(
ν

νc

)1/2

mec
2.

The synchrotron source function can then be said to follow the Rayleigh-Jeans law (2.44), but with
a frequency-dependent brightness temperature T (ν) ∝ ν1/2.

The specific intensity at the surface of an optically thick emission region will be Iν ≈ S
(sync)
ν ∝

ν5/2 at low frequencies, and at high frequencies, Iν ≈ Lε(ν)/4π ∝ ν(1−p)/2, where L is geometric
depth of the source, and ε is the depth-averaged emissivity. The frequency at which these two
powerlaws match is the self-absorption frequency.

2.5 Equipartition energy and brightness temperature

We now enter the realm of order-of-magnitude estimates. In the following, Fν denotes flux density,
the energy per unit frequency per unit area per unit time received by a radio telescope. It is usually
measured in Janskys:

1 Jy ≡ 10−23 erg cm−2 s−1 Hz−1 = 10−26 W m−2 s−1 Hz−1. (2.45)

The angular diameter of the source ≡ θ, its distance ≡ D, and its linear diameter ≡ d = Dθ. We
will also use Lν ≡ 4πD2Fν for the luminosity per unit frequency. For simplicity, all factors of (1+z)
are ignored—but these factors can be important because radio sources are detected out to redshifts
of a few.

If observed near its peak, νLν is an estimate of the total luminosity of the source. Taking the
emission region to be roughly homogeneous, we have from eq. (2.16) that

νLν ≈
4

3
γ2cσTUBNeV ,

where V ∼ d3 is the volume of the source, and UB ≡ B2/8π is the energy density of the magnetic
field. Since the energy per unit volume in the electrons (plus positrons) is

Ue = γmc2Ne,

it follows that νLν ≈ γ
4σT
3mc
UBUeV .

But the radiation at frequency ν is produced by electrons with Lorentz factor

γ ≈
√
ν

νc
≈
(
mν2

reUB

)1/4

,
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where re ≡ e2/mc2 =
√

3σT /8π is the classical radius of the electron. Putting this together,

νLν ≈
32π

9

(π
2

)1/4
(
r7
eν

2

m3c4

)1/4

U3/4
B UeV. (2.46)

Again, the lefthand side is evaluated at its maximum (with respect to ν). On the other hand, the
total energy in particles and fields is at least (since the following ignores energy in nuclei, etc.)

E = (Ue + UB)V (2.47)

It is a simple matter to show that the minimum energy at fixed values of the observables ν, Lν , and
V (the latter two require an estimate of the distance of course) is achieved at

UB =
3

4
Ue (2.48)

Emin ≈
(
2273−12π5

)−1/7
(
f−4/7 +

4

3
f3/7

)(
m3c4

r7
e

)1/7

ν2/7L4/7
ν V 3/7 (2.49)

Beq ≈ 2.56f−2/7

(
m3c4

r7
e

)1/14

ν1/7L2/7
ν V −2/7, (2.50)

where f ≡ 3Ue/4UB , so that f = 1 for the minimum energy.

Maximum Brightness Temperature

Let us now switch gears and estimate the maximum expected brightness temperature. For a given
source, Tb peaks at ν = νa where the source is marginally self-absorbed. Thus

ε(νa) d ≈ 8πν2
a

c2
kBTb .

On the other hand,

νaε(νa) ≈ 4

3
γ2NecσTUB =

4

3
γ
σT
mc
UeUB ≡ γ

σT
mc

fU2
B ,

Now
3kTb ≈ γmc2 (2.51)

if γ is also the Lorentz factor of the electrons whose synchrotron frequency ≈ νa, with which the
radiation field is in approximate equilibrium. Eliminating Tb from the three equations above, we
find after some algebra that

3

π2
ν3
a ≈ f

d

c
ν4

c .

On the other hand,

νa ≈ γ2νc ≈
(

3kBTb
mc2

)2

νc.

Eliminating νc between these last two yields(
3kBTb
mc2

)8

≈ π2

3
f
d

c
νa. (2.52)

But the flux density and specific intensity are related by the angular size of the source:

Fν ≈
π

4
θ2Iν =

π

2
θ2 ν

2
a

c2
kBTb
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Solving for νa from this last equation and substituting into eq. (2.52) yields (with d = Dθ)

kBTb
mc2

≈ 1

3

(
π2

6

)1/17

f2/17

(
4πD2Fν
mc2

)1/17

,

Tb,eq ≈ 4× 1011D
2/17
Gpc F

1/17
ν,Jy f

2/17 K . (2.53)

This is [51]’s equipartition brightness temperature (except that we have not included the 1 + z
factors). It represents an approximate upper limit for a source that is not Doppler boosted (by
bulk motion of the emitting blob). Of course it depends on the uncertain dimensionless parameter
f , but only weakly, so that the source would have to be very far from equipartition in order to
exceed this limit substantially. Another numerically similiar limit on Tb can be derived by requiring
that inverse-Compton losses against the synchrotron radiation be less important for the relativistic
electrons than synchrotron losses [28].

From the brightness temperature we can also derive the equipartion angular size:

θ ≈
(

6

π

)1/2(
3

2π3

)1/34

f−1/17

(
c

νaD

)1/17(
Fν
mν2

a

)8/17

≈ 1.5 f−1/17D
−1/17
Gpc F

8/17
ν,Jy ν

−1
GHz milliarcsec. (2.54)

Since f has been included, this is valid even if equipartition doesn’t hold (i.e. f 6= 1), but obviously
the dependence on f is extremely weak.
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2.6 Problems for Chapter 2

1. Cyclotron radiation. Calculate, for a nonrelativistic electron (v � c) in a uniform magnetic
field, the power emitted in each linear and circular polarization. You may assume pitch angle
α = π/2.

2. Estimate the constraints on γ and B such that for an electron,
(a) the energy loss per period 2π/ωB is small compared to the energy itself;
(b) the angular momentum is large compared to Planck’s constant.

3. An electron in a uniform field B is released at t = 0 with Lorentz factor γ(0) and pitch angle
α(0).
(a) Calculate the evolution of γ(t) and α(t), assuming that γ � 1 at all times of interest.
(b) Show that the time-integrated energy emitted per unit frequency

dE

dν
∝ ν−1/2

at frequencies νc � ν � γ2(0)νc (νc ≡ ωc/2π), and estimate the coefficient of this power law.
You may take α = π/2.

4. VLBI observations of compact radio components of 3C273 (redshift z = 0.158) at 10.7 GHz
find flux density Fν ≈ 10 Jy and angular size θ∗ . 4 m.a.s. ( m.a.s. ≡ milliarcsecond)[11].
Assume synchrotron emission.
(a) Estimate the equipartion angular size and compare with θ∗. Comment.
(b) Estimate the minimum energy of these components.
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Chapter 3

Gamma-Ray Bursts and
Afterglows

3.1 Observed properties of GRBs

Gamma-ray bursts [GRBs] were discovered serendipitously in the late 1960s by the VELA satellites,
which were put in orbit to monitor atmospheric nuclear tests. The abstract of the first unclassified
paper on GRBs still serves well to define them [29]:

Sixteen short bursts of photons in the energy range 0.2−1.5 MeV have been observed be-
tween 1969 July and 1972 July using widely separated spacecraft. Burst durations ranged
from less than 0.1 s to ∼ 30 s, and time-integrated flux densities from ∼ 10−5 erg cm−2 to
∼ 2× 10−4 erg cm−2 in the energy range given. Significant time structure within bursts
was observed. Directional information eliminates the Earth and Sun as sources.

The nature of GRB sources was, and still is, mysterious. For decades, the general opinion held
that GRBs had something to do with neutron stars in the Galaxy. But a minority argued for
cosmological distances refs. Two principal observations supported the latter view:

1. The events are isotropically distributed.

2. The number of events N(> S) brighter than threshold S does not scale as expected for a
uniform population of sources in euclidean space.

Regarding the second point, suppose for the moment that all sources had the same intrinsic lumi-
nosity. By the inverse square law, the observed flux scales with distance as F ∝ D−2, so that the
volume of space within which a GRB could be seen with F > S scales as S−3/2 ∝ D3

max. Therefore,
if the sources were uniformly distributed, N(> S) ∝ S−3/2. It can be shown that the same scaling
applies to sources having a distribution of luminosities provided only that the distribution is inde-
pendent of distance. But in fact the observed GRB counts rise more slowly at the faint end, i.e.
d logN/d logS > −3/2. This might indicate that the sources are not distributed inhomogenously,
for example if they belonged to the Galactic halo and were concentrated towards the center of the
Galaxy, or not isotropically, for example if they belonged to the Galactic disk. In both examples
one would expect some anisotropy in the distribution of bursts on the sky, since the Sun is some
8 kpc from the Galactic center. On the other hand, cosmologically distant sources would naturally
satisfy both properties, since the inverse-square law is not satisfied on scales comparable to the
horizon—and also since it is natural to suppose that the burst population may evolve with cosmic
time.

41
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Figure 3.1: Left panel: Angular distribution of GRBs detected by BATSE, color-coded by fluence,
in an equal-area projection[22]. Right panel: Cumulative number versus peak flux in 64-msec time
bins, with alternative corrections for trigger efficiency at faint end[40].

However, the actual situation before 1991 was murkier than the discussion above suggests. For
one thing, since scintillators have very little angular discrimination, directions could be obtained
only for bursts detected by more than one spacecraft, using time of arrival; these tended to be the
brightest ones, which presumably occur nearer to us and might be expected to be more isotropically
distributed (if less distant than the thickness of the disk, for example). Furthermore, the roll-off
in N(> S) at the faint end was caused in part by variable detector thresholds; this was made
worse in some discussions by defining S as the fluence—the time integral of burst flux—whereas the
detectors usually triggered on peak flux itself. Resistance to the cosmological interpretation was due
in part perhaps to the enormous energies it implied: & 1053 erg for an isotropically emitting source
at z ∼ 1. There were also more technical arguments against large distances. And then there were
red herrings. Notably, there is a small class of repeating sources, now called Soft Gamma Repeaters
(SGRs), with a clear concentration to the Galactic Center. A spectacularly bright event on March
5, 1979, was angularly coincident with a supernova remnant in the Large Magellanic Cloud, and
its “light curve” showed an eight-second oscillation, perhaps indicative of a slowly rotating neutron
star. On 27 Dec. 2004, the previously known Galactic source SGR 1806-20 erupted in an even more
energetic hard gamma-ray flare—> 1046 erg, equivalent to about a third of the rest mass of the moon
[44]. After a short (∼ 0.5 s) hard (& 0.5 MeV) pulse, it too displayed an oscillating “tail” consistent
with the known periodicity of SGR 1806-20. It is believed that SGRs are indeed neutron stars, but
with extraordinary magnetic fields ∼ 1015 G rather than the 108 − 1013 G deduced for pulsars. The
hard initial pulse seen in these two SGR events resembles that of the short & hard population of
GRBs except in received flux, suggesting that the latter objects may be extragalactic cousins of the
former. At present, it is difficult to reconcile this hypothesis with the apparent isotropy of the short
GRBs, since even the 27 December flare would not have been detected beyond ∼ 40 Mpc. Perhaps
SGRs are capable of even brighter outbursts visible to greater distances—but that is also difficult to
understand if they are indeed magnetars, whose total magnetic energy is only ∼ 1047(B/1015 G)2 erg.

Some of the confusion was dispelled after a large homogeneous dataset was gathered by the
Burst and Transient Source Experiment (BATSE) on board the Compton Gamma-Ray Observatory
(CGRO), which launched in 1991 and de-orbited in 2000. BATSE consisted of a set of NaI scin-
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tillators “pointing” in different directions from the corners of the spacecraft; directions (with ∼ 4◦

precision) were found for all detected bursts by comparing the signal strengths among scintillators.
As shown by Figure 3.1, BATSE data established both the isotropy and the non-euclidean N(> S)
distribution of GRBs. This convinced most astrophysicists that the sources are cosmological. But
“proof” was found only with the detection of GRB afterglows, as will be discussed later.

As shown in Figure 3.2, GRB light curves show great variety. Some are quite smooth apart
from counting statistics; others fluctuate wildly on the smallest measureable timescales. It is not
clear whether this diversity is intrinsic or a function of aspect angle, since it is now believed on other
grounds that GRBs are jets of some sort rather than isotropic emitters. Still, we may be dealing with
multiple populations of sources. Evidence for at least two classes of GRB—”short” and “long”—is
seen in the distribution of burst durations, as seen in Figure 3.3. The short bursts tend to have
harder spectra, and none has yet been associated with an afterglow.

In a plot of fluence per logarithmic interval of photon energy (νFν), the spectrum of the typical
BATSE burst appears to peak at ∼ 100 keV, but the spectrum is often rather broad, and there is a
wide variation in the peak energy, so that composite spectra are rather flat (Fig. 3.4). In some cases,
hard tails are seen extending up to & 1 GeV. Such tails may be more common than they appear to
be in the database, because limited photon statistics would make them difficult to detect in most
bursts.

3.2 Basic theoretical considerations for GRBs

For the purpose of rough estimates, we can use euclidean geometry even though the typical burst
source probably lies at z & 1. We write d28 for the distance in units of 1028 cm ≈ 3.2 Gpc ∼ cH−1

0 .
One of the first important conclusions is that the source must have highly relativistic bulk

velocities. Let Γ be the characteristic bulk Lorentz factor (γ is reserved for other purposes). The
duration of burst events covers a broad range: 10−1 . ∆t . 103 (Fig. 3.3), but even long bursts
often fluctuate violently on much shorter timescales δt . 10−2 s (Fig. 3.2). If Γ ∼ 1, we would
expect that the size of the source (R) should be . δt/c, else different parts of the source would
not be in causal contact over the time δt and would fluctuate independently; this would lead to an
overall amplitude of variability ∼ (cδt/R)1/2 � 1, in conflict with the observations. If the source
moves relativistically towards the observer, however, then the observed timescales are smaller than
the intrinsic ones by a factor 1− β ∼ Γ−2 (see §1.1), whence the limit becomes

R . Γ2cδt ∼ 3000Γ2δt−2 km, (3.1)

where δt−2 ≡ δt/(10−2 s). If the source emits isotropically and produces a fluence J ≡ 10−5J−5 erg s−1

at Earth, its luminosity is

L ∼ 4πd2J

∆t
≈ 1051 d2

28J−5∆t1, (3.2)

where ∆t1 ≡ ∆t/(10 s). Often, much of this luminosity emerges in photons with energies above
the pair-creation threshold, hν > mec

2 = 511 keV. Let us estimate the optical depth of the source
to pair creation via the reaction γγ → e+e−, assuming for the moment that the source is not
relativistic (Γ ∼ 1). The number of photons within the source at any one time is N ∼ Lδt/mec

2.
The pair-creation threshold per photon is ∼ σT, so the total optical depth is

τp ∼
NσT

πR2
∼ σTL

mec4δt
∼ 4σTd

2J

mec4δt∆t
∼ 4× 1013d2

28J−5 (δt−2∆t1)
−1
. (3.3)

One would therefore expect that the source should be extremely optically thick to its own pairs, and
hence the emitted spectrum should be thermal. But it is not. Indeed, essentially this argument was
used in pre-BATSE days to “prove” that GRBs could be no more distant than ∼ 1 kpc since τp ∝ d2

[55].
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Figure 3.2: A sample of GRB lightcurves determined by BATSE [22].
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Figure 3.3: Left: Histogram of durations of BATSE bursts defined as the time within which 90%
of the fluence was collected (T90).[40]. Right: Distribution of GRBs in a plane of T90 and spectral
hardness [16].

Figure 3.4: Left: Composite spectrum of 19 bright bursts[54]. Right: A burst with a very hard tail
[22].
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If the source moves relativistically toward the observer, τp is reduced for at least three reasons:

1. The source size can be larger by a factor ∼ Γ2 [(3.1)].

2. The luminosity in the rest frame of the source is smaller by ∼ Γ−2.1

3. The photon energies in the rest frame are smaller by ∼ Γ−1, hence fewer are above threshold.

For a source whose high-energy spectrum is a power-law Fν ∝ ν−β , these three effects in combination
reduce the optical depth by ∼ Γ−4−β . Thus for β ∼ 1 (as seen for example in the burst of Fig. 3.4),
the rest-frame optical depth for the parameters of (3.3) would be . 1 if Γ & (4×1013)1/(4+β) ∼ 170.

A separate argument for relativistic motions is that the source is likely to be explosive. The
radiative force on an electron at at distance R from the source is

fe ∼
σTL

4πR2c
∼ σTJd

2

c∆tR2
.

If the source were confined by gravity, then this would have to be balanced by the gravitational force
on a proton (even a slight charge separation would be resisted by strong electric fields),

fp ∼ −
GM mp

R2
,

where M is the mass of the source. The net force on the two particles is positive (outward) unless

M &
σTL

4πGmpc
. (3.4)

This is called the Eddington limit. Note that it is independent of the distance R. If pairs are
present, the limit must be increased by the total number of e± per proton. Substituting for L from
(3.2) implies M & 1013d2

28J−5∆t1M�. On the other hand, the source cannot vary faster than the
light-travel time across its Schwarzschild radius (RS = 2GM/c2), whence

M . Γ2 c
3δt

G
∼ 103δt−2M�.

Thus gravity fails to confine the source by at least ten orders of magnitude. While the source
might be held together nongravitationally, scenarios along these lines tend to be very exotic: for
example, emission from a neutron star composed of strange matter (if such exists), so that the
emitting material is bound to the star’s surface by strong nuclear forces refs; and even in this
probably fails, since the emission would probably be thermal.

Early models for GRBs at cosmological distances invoked a relativistic wind [41] or “fireball”
[20] consisting purely of pairs and photons. In both cases, the source would in fact be extremely
optically thick to pairs, but with an energy density so high that the mean energy per photon
〈hν〉 ∼ mec

2. Absent any admixture of baryons, 〈hν〉 would be approximately conserved: as the
optically thick plasma adiabatically cools, the pairs annihilate, returning their energy to the photon
gas, whose random motions are increasingly converted to radial streaming. However, even a small
baryon loading—a fraction η ∼ 10−4 of the energy in baryonic rest mass—prolongs the optically
thick phase in a smoothly expanding wind until most of the energy has been converted to kinetic
energy of the baryons. Even when η � 10−4, simple fireball models produce spectra that are too
nearly thermal [20].

1Luminosity is equivalent to emitted power, which is invariant when no net momentum is emitted in the rest frame
[§2.2.2 & eq. (2.15)]. However, since the time over which the energy is received and the time over which it is emitted
are related by ∆trec = (1−β)∆tem—even though both times are measured in the astronomer’s frame—the luminosity
(3.2) overestimates the emitted power by the corresponding factor.
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Figure 3.5: Left: Internal shock model: partially collimated pulses/shells with widely differing
Lorentz factors [49]. Right: Cartoon of internal shock and afterglow phases, with nominal dimensions
[22].

The currently most popular theory of GRB emission is the internal shock model. A stationary
source of unspecified nature and size . cδ emits a relativistic wind or jet with variable Γ, 〈Γ〉 &
102 − 103. Faster shells overtake the slower, leading to optically thin shocks at distances R ∼
〈Γ〉2cδt ∼ 1014 cm, which emit synchrotron and perhaps inverse-compton radiation. This model is
able to explain the rapid variability and non-thermal spectra of GRBs. It has difficulty explaining
why a large fraction of the outflow energy is converted to radiation. This difficulty is in two parts.

The first difficulty is purely kinematic. Consider two shells of Lorentz factors Γ1, Γ2 (Γ2 > Γ1 �
1) and rest masses M1, M2. We assume that before collision, the shells are “cold” in their individual
rest frames, so that M1 and M2 are essentially their baryonic masses. The invariant mass of the two
is given by

M2
COM = −ηµν(p1 + p2)µ(p1 + p2)ν ≈ (M1 +M2)2 +

(Γ2 − Γ1)2

Γ1Γ2
M1M2. (3.5)

and ∆Mc2 ≡ (MCOM −M1 −M2) is the energy available to be dissipated in the center-of-mass
frame. Clearly one wants Γ2 � Γ1 to make this as large as possible, yet one also wants a large value
for

ΓCOM =
M1Γ1 +M2Γ2

MCOM
,

since the radiated energy that the astronomer sees is Erad . ΓCOMMCOMc
2. It is certainly possible

to design a variable wind that satisfies these constraints.
The second difficulty is to radiate ∆Mc2 efficiently [31, 23]. The primary radiative process

is probably synchrotron emission. In order to radiate efficiently, the shocked plasma must have
comparable energy densities in relativistic protons, electrons (or positrons), and magnetic field.
In a simple first-principles collisionless shock model, the electrons would receive only a fraction
me/mp = 1/1836 of the energy. Flux freezing implies that a perpendicular field would increase over
its pre-shock value by the shock compression ratio γ

√
8 in the relativistic limit [(1.50)], hence the

magnetic energy density would increase by . 8γ2, whereas the energy density in particles increases
by 2γ2 [(1.49)] over its initial rest-mass energy density:(

UB
Ub

)
postshock

∼
(
UB
Ub

)
postshock

∼
(

B2

8πρc2

)
ISM

� 1

where the last inequality follows because in the interstellar medium, one observes that magnetic and
thermal (not rest-mass) energy densities are comparable: B2/8π ∼ (ρ/mp)kBT � ρc2. “Anoma-
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Figure 3.6: Light curves of GRB 970228. Left: Early observations in all available bands, from
[67]. Symbols with downward arrows are upper limits. BV R and IJK are optical and near-IR
wavelength bands, respectively. Right: R magnitudes only from ground (open symbols) and HST
(solid symbols), from [17]. Solid line is a powerlaw fit to HST points, brightness ∝ (t−tburst)

−1.1±0.1

lous” processes are required to transfer energy from the protons to the leptons and to the field, and
these processes are not understood. This “equipartition” problem—which is really two problems,
one for the leptons and another for the field—is not unique to the internal-shock model of GRBs,
although it is especially severe in that context. It arises for many other collisionless astrophysical
shocks, such as supernova remnants.

3.3 Afterglow observations

While the resolution of BATSE and—for especially bright bursts—the Interplanetary Network [IPN]2

was sufficiently accurate to establish the isotropy of GRB sources, but not sufficiently accurate for
follow-up at other wavelengths. A typical optical research telescope, for example, has a field of view
measured in arc minutes rather than degrees. Nor was notification very timely, and as we now know,
the afterglows fades with time as t−1 − t−2 at X-ray through optical wavelengths.

The laurels for first detection of GRB afterglows belong to the Italian-Dutch X-ray satellite
BeppoSAX. GRB science was a minor consideration in its design, but BeppoSAX carried two in-
struments of critical importance: the Gamma Ray Burst Monitor, and the two [X-ray] Wide-Field
Cameras [WFC1,2]. The large field of view (20◦ each) of these cameras offered a reasonable prob-
ability of monitoring a GRB in X-rays (1.8 − 28 keV) simultaneously with the γ-rays event itself,
while the angular resolution (5 arc minutes) was sufficient for optical followup. The satellite was
in operation for many months, however, before procedures were established to localize and report

2Many interplanetary probes, such as the Pioneer, Venera, and Ulysses spacecraft, carried small scintillators capable
of detecting very strong bursts. By comparing the times of arrival at different spacecraft, burst directions could be
determined by triangulation.
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Figure 3.7: Optical afterglow of GRB 970508. Left: Initial brightening seen at Palomar 200-inch (S.
G. Djorgovski, unpublished). Right: Optical light curve [47]. The optical source brightened initially
but was consistent with flux ∝ t−1 after May 10.

the X-ray detections promptly. (Reducing their “reaction time” has been a continuing challenge for
GRB astronomers.) The first success was the burst of 28 February 1997 (GRBs are often referred
to by their date of detection, hence this one is named GRB 970228). A rapidly fading X-ray coun-
terpart to the GRB was seen by the WFC1 and was still visible to other X-ray instruments (with
narrower fields but better sensitivity) when they slewed to the source hours later [12]. The X-ray
errorbox was small enough to allow detection of a fading optical transient 20 hours later [63], which
was followed for days thereafter as it faded and reddened into the IR (Fig. 3.6).

The remarkable afterglow of GRB 970508 (Fig. 3.7) gave direct proof of its cosmological origin
with the detection of absorption lines at z = 0.835 [38]. In fact, a number of afterglows now have
measured redshifts, either through the detection of absorption lines in the optical transient itself, or
by later observations of the host galaxy—that is, the galaxy (usually very faint and blue) in which the
source is believed to reside on the basis of angular coincidence. A fascinating and useful compilation
of data, images, and references on all GRB afterglows is http://www.mpe.mpg.de/∼jcg/grbgen.html.
As of April 2005, the redshifts of & 40 afterglows have been measured, ranging from z ∼ 0.4 to
z = 4.5. The number of redshifts will likely increase rapidly with the advent of the SWIFT satellite
(launched Nov. 2004) and its precise X-ray positions.

GRB 970508 received intense observational coverage and was observed at wavelengths ranging
from γ-rays to the radio. Longer wavelengths brightened at later times, a trend that can be seen
even within the radio spectrum (Fig. 3.8, left panel). The spiky behavior behavior at early times
may be caused by interstellar scintillation [21].3

Beyond confirming the cosmological distance scale, afterglows have revealed a number of impor-
tant properties of GRBs:4

3 The refractive index of the interstellar medium [ISM] varies with electron density (ne) and frequency ν as

c

λν
= [1− (nee

2/πmeν
2)2]1/2;

inhomogeneities of ne lead to the radio equivalent of the twinkling of starlight in the Earth’s atmosphere. The
interstellar effect is negligible at optical or higher frequencies because of the ν−2 dependence above.

4All of these inferences presume, of course, that the burst and the afterglow have a common ultimate source

http://www.mpe.mpg.de/~jcg/grbgen.html
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Figure 3.8: Left: Radio lightcurves of 970508 [65]. Right: The X-ray to radio spectrum of 970508
12 days after the burst [18].

1. The sources appear to reside in distant galaxies (“hosts”).

2. In view of the blue colors of the hosts, GRBs are probably associated with young stars or recent
remnants thereof. Furthermore, in a handful of cases, spectra of peculiar Type Ic supernovae
have been detected late in the afterglow [36].

3. The afterglow is produced by synchrotron emission from a relativistic shock driven into the
interstellar medium near the central engine.

4. The outflow responsible for the burst and the afterglow is probably jet-like rather than spher-
ical, and is directed towards the observer. (The latter is obviously a selection effect.)

The first two are fairly direct astronomical inferences from observation. The last two involve some
theoretical modeling and additional physical assumptions, but there are a number of cross checks
that strengthen our confidence in the conclusions. Some of these will be discussed in the sequel.

It is important to remember, however, that only a small minority of GRB burst are associated
with detectable afterglows, so that the inferences above may not apply to the “silent” majority. In
particular, no afterglows have yet been associated with short bursts (see §3.1 & 3.3).

3.4 Basic theoretical considerations for afterglows

Afterglows were in effect predicted. [52] showed that a “baryon-loaded” fireball would eventually
shock against the interstellar medium [ISM] and convert its relativistic bulk velocity into random
particle velocities in the shock rest frame. If a significant fraction of the energy could be converted to
magnetic field (as appears to occur in many extragalactic radio sources, for example) then observable
synchrotron emission would be produced. However, in the original 1992 paper, the distinction
between the afterglow and the GRB itself was not very clear. A definite prediction that GRBs
should be followed by radio emission due to an ISM shock was made by [42].

(“central engine”). This seems probable on direct observational grounds, as well as indirect theoretical ones.
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3.4.1 Relativistic shock dynamics

Consider a relativistic spherical shock expanding into a uniform external medium of mass density
ρ̄ = N̄ mpc

2 and negligible pressure (i.e. dust). For simplicity, we assume that the total energy E
of the explosion is conserved, i.e. we neglect the loss of energy to radiation, and we use ideal-fluid
approximations. These appear to be reasonable approximations for afterglow shocks. When the
shock radius rs becomes much larger than the initial region of energy input, it can be expected
to evolve self-similarly. Exact results have been obtained under these assumptions by [7], but this
discussion will be limited to approximate scaling laws.

Using results from §1.8, the shock jump conditions imply

γ = Γ, β ≈ 1, T 00 ≈ Γ2ρ̄, N0 ≈ ΓN̄ ,

β′ ≈ 1/3 γ′ ≈ 3/
√

8, ρ̄′ ≈ 2Γ2ρ̄, N̄ ′ ≈
√

8ΓN̄ , (3.6)

where Γ � 1 is the shock Lorentz factor and the primes denote postshock quantities. We are
assuming that no baryon are created in the shock, so that the baryon current Nµ is conserved, i.e.
Nµ

,µ = 0. It follows that the mean energy per baryon in the restframe of the postshock fluid is

ε̄′ =
ρ̄′

N̄ ′
=

Γmpc
2

√
2

.

Henceforth, in the interests of speed, we will generally ignore dimensionless factors of order unity.
Thus for example, ε̄ ∼ Γmpc

2. Since the postshock bulk velocity (not the individual particle speeds!)
is nonrelativistic in the shock frame, it follows that the mean energy per baryon in the rest frame of
the pre-shock ISM (“lab frame”) is ε′ ∼ Γ2mpc

2. Thus the energy carried by the swept-up ISM is

∆EISM ∼ Γ2 4π

3
r3
sN̄ mpc

2.

Initially, Γ ∼ Γ0 =constant, but since energy conservation demands ∆EISM ≤ E = Γ0M0c
2, where

M0 is the initial mass of the ejecta, the shock must begin to decelerate at a radius

rs,0 ∼
(

3E

4πN̄ mpc2Γ2
0

)1/3

∼ 1017E
1/3
53 N̄

−1/3
0 Γ

−2/3
0,2 cm, (3.7)

where E53 ≡ E/(1053 erg), N̄0 ≡ N̄/(1 proton cm−3), and Γ0,2 ≡ Γ0/100. The coordinate time
in the lab frame at which the shock reaches this radius is ≈ rs,0/c ∼ 1 month, but the time as
observed by astronomers is compressed by a factor (1 − βshock) ≈ 1/2Γ2

0, so that (we will use t for
the astronomer’s time)

t0 ≈ 200E
1/3
53 N̄

−1/3
0 Γ

−8/3
0,2 s. (3.8)

Thereafter,

Γ ≈
(

3E

4πN̄ mpc2r3
s

)1/2

≈ 10.

(
E53

N̄0

)1/8(
t

1 day

)−3/8

. (3.9)

and

t(rs) ≈
rs∫

0

dr′s
2Γ2(r′s)c

≈ t0
(
rs
rs,0

)4

.

Inverting this,

rs ≈ rs,0

(
t

t0

)1/4

Γ ≈ Γ0

(
t

t0

)−3/8

, (3.10)
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but note from (3.9) that Γ depends on E/N̄ rather than Γ0 when t > t0.
The shock becomes nonrelativistic at

t1 ≈ 1E
1/3
53 N̄

−1/3
0 yr. (3.11)

Thus, the later radio observations shown in the first panel of Fig. (3.8) were probably in the nonrel-
ativistic regime.

This discussion has assumed a spherical outflow and shock. More likely, the initial outflow is a
jet of opening angle θj � 1 and solid angle Ωj ≈ πθ2

j . At the same energy per unit solid angle, the
total energy is then smaller than we have assumed by a factor Ωj . However, at early times when
Γ � θ−1

j , the shock evolves as if it were spherical because there has not been enough time in the
shock rest frame for signals to have been transmitted from one side of the jet to the other. Although
we have neglected radiation, it will be shown below that the flux density observed from the shock
is predicted to decline as a powerlaw with time during this early phase, as observed, if constant
fractions of the postshock energy go into electrons and magnetic field. We may expect a change in
the slope of this powerlaw when Γ drops to θ−1

j , which happens at a time

tj ∼ 1. E
1/3
iso,53N̄

−1/3
0 (10θj)

8/3 days, (3.12)

after the GRB, the jet angle being measured in radians. Here and henceforth, Eiso is the “equivalent
isotropic energy:” that is, the energy of a spherical shock with the same energy per sterradian as
the jet. The actual energy is

E = Eiso ×
Ωj
4π

. (3.13)

3.4.2 Afterglow emission

All of this is purely hypothetical unless the shock is observable, which requires an emission mech-
anism. It is likely that this is synchrotron radiation. If it is anything like that of the Galaxy, the
pre-shock ISM contains magnetic field as well as hydrogen. In the Galactic ISM, the energy density
in the field is comparable to the thermal pressure of the plasma:

B ∼ 3µG
B2

8π
∼ 0.2 eV cm−3 ; p = N̄kBT ∼ 0.3 eV cm−3. (3.14)

5 There is also a comparable energy density in cosmic rays. All of these are much less than the
energy density in rest mass, N̄ mpc

2 ∼ 1 GeV cm−3. A shock will compress the particles and fields,
causing a great enhancement in the synchrotron emissivity since this scales as ∝ 〈γe〉UBUe, where UB
and Ue are the energy densities in field and e±, and 〈γe〉 is the mean Lorentz factor of the electrons
measured in the local rest frame of the plasma.

To estimate the field that results from shock compression, it is useful to divideB into components
parallel and perpendicular to the shock plane: B‖, B⊥. (The present convention for “parallel” and
“perpendicular” is opposite to that used for the Lorentz transformations of E & B in (1.13).) B⊥
is unaffected by the shock, but conservation of magnetic field lines implies6 that B‖ is increased by
the same factor as the baryon number density,

B̄′‖

B̄‖
=
N̄ ′

N̄
≈
√

8 Γ, (3.15)

5Actually, if N̄ represents the number of nucleons per unit volume, then the pressure is more like 1.7N̄kBT when
the ISM is fully ionized, allowing for the electrons and for the fact that ∼ 30% of the gas by weight is in helium and
other elements heavier than hydrogen. It is found that p itself is more nearly constant than N̄ or T separately.

6 Actually a second assumption is involved here: that the field lines comove with the plasma (“flux freezing”).
This is a very good approximation since the plasma is a good conductor.
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where as usual overbars denote quantities measured in the local rest frame of the fluid, and primes
distinguish postshock from preshock values. So if B‖ ∼ B⊥ ahead of the shock, then B′‖ � B′⊥
behind it. Expressed as a fraction of the total energy density, that of the field is

f ′B ≈
(B′‖)

2

8πρ′c2
=

8Γ2B2
‖

16πΓ2N̄ mpc2
∼ 10−9.

Thus f ′B is independent of the shock Lorentz factor, but it is very small simply because UB �
N̄ mpc

2 in the preshock ISM. Now in fact, if f ′B were really so small as this, then synchrotron
radiation from the shock would be unobservable. Models fit to afterglow data suggest that typically
f ′B ∼ 10−4 − 10−1 [45]. This requires amplification of the field far beyond what is achieved by
compression alone. The amplification mechanism may be a microscopic plasma instability near the
shock front [37], or perhaps macroscopic turbulence in the postshock flow. Hence

B′ ∼ (16πf ′BΓ2N̄ mpc
2)1/2 ∼ 0.3 Γ f̄

′ 1/2
B N̄

1/2
0 G. (3.16)

Collisionless shocks tend to produce power-law spectra of relativistic ions and electrons. The ions
scarcely radiate directly, so we concentrate on the electrons. Their spectrum is of the form (2.33) in
the rest frame of the postshock fluid, presumably matching onto a roughly Maxwellian distribution
at low energies. Studies of particle acceleration by relativistic shocks indicate that p ≈ 2.2 − 2.3.
We shall assume that p > 2. Then most of the energy is at the low end of the spectrum:

Ue = mec
2

γ̄max∫
γ̄min

γ̄ mec
2Kγ̄−pdγ̄ ≈ (p− 2)−1Kmec

2
(
γ̄2−p

min − γ̄
2−p
max

)
≈ (p− 2)−1Kmec

2γ̄2−p
min

The characteristic emission frequency at γ̄min is

ν̄min = γ̄2
min

eB̄′

2πmec
. (3.17)

What is γ̄min? If the shock simply randomizes the direction of motion of most particles, then
γ̄min ∼ Γ. If energy equipartition between the ions and electrons is achieved, then

γ̄min = f ′e
mp

me
Γ, (3.18)

with f ′e ≈ 1. It is usually assumed (or found by model fitting, see [45]) that f ′e & 10−2 despite
the fact that two-body collisions are far too slow to establish equipartition, so that some collective
process or instability is required. The characteristic emission frequency in the observer’s frame is
νmin = Γν̄min, or

νmin ∼ 3× 1012f ′ 2e f
′ 1/2
B Γ4N̄

1/2
0 Hz

∼ 3× 1011 (102f ′e)
2(102f ′B)1/2(Eiso,53/N̄0)1/2 t

−3/2
d Hz, (3.19)

where td = t/(1 day). The observed spectrum should peak at νmin, and scale as ν1/3 below this
frequency and as ν(1−p)/2 above it.

Sufficiently energetic electrons cool (i.e. radiate most of their energy) in a time than the age of
the shock. The condition for this is γ̄ & γ̄cool, where

γ̄2
coolcσT

B′ 2

8π
Γt = γ̄coolmec

2.
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Note that the age of the shock in its rest frame is ∼ rs/Γc ∼ Γt, where t (as usual) is the observed
time after the burst. The corresponding frequency in the observer’s frame is

νcool ≈ Γγ̄2
cool

(
eB̄′

2πmec

)
=

32πmece

σ2
TB̄
′ 3Γt2

.

Combinining this with (3.9) & (3.16) yields

νcool ∼ 2× 1015E
−1/2
iso,53N̄

−1
0 (102f ′B)−3/2 t

−1/2
day Hz. (3.20)

The spectrum is predicted to steepen above νcool, i.e. ν−p instead of ν(1−p)/2. If the spectral break
at νcool can be identified in the data, it gives a useful constraint on the uncertain parameter f ′B .

Gaze now at the second panel of Fig. 3.8, showing the spectrum of GRB 970508 at t = 12 day.
The authors [18] have identified three spectral breaks, defining four spectral regions—perhaps a
bold interpretation of only ten data points, but then these points span nine orders of magnitude in
frequency. The lowest-frequency break is identified with the self-absorption frequency, which we have
not discussed. Evidently, νmin and νcool (labeled νm, νc in the figure) are approximately where one
might expect to find them, following (3.19) & (3.20), but probably with f ′e ∼ 10−1 instead of ∼ 10−2.
[45] find the following best-fit parameters for this burst: f ′e ≈ 0.11, f ′B ≈ 0.045, N̄ ≈ 0.75 cm−3,
p = 2.18, θj ≈ 0.32 rad, and Eiso ≈ 2× 1053 erg.

It remains to determine the normalization of the spectrum. Following the discussion of §2.5, the
total synchrotron power radiated in a logarithmic interval of frequency centered around νmin is(

dP̄

d ln ν̄

)
νmin

≈ σT

mec
γ′minŪ ′eŪ ′BV̄ ′.

where V̄ ′ is the volume of the emission region. This has been expressed in the postshock rest frame,
but the emitted power is Lorentz invariant [see §2.15], and so is the power per ln ν since ln ν and
ln ν differ by an additive constant. The received power is larger than the emitted power by a factor
(1− β)−1, however, because the emitted energy is received over a time dtrec = (1− β)dtemit. Thus(

dP

d ln ν

)
νmin,rec

≈ Γ2

(
dP̄

d ln ν̄

)
νmin

≈ Γ2 σT

mec
γ′minŪ ′eŪ ′BV̄ ′. (3.21)

(Note: the factor dtemit/dtrec ≈ Γ2 not 2Γ2 because the postshock flow has Lorentz factor Γ/
√

2.)
Now

V̄ ′N̄ ′ ≈ 4πr3
s

3
N̄ ⇒ V̄ ′ =

4πr3
s

3
√

8Γ
≈ E

Γ3N̄ mpc2
,

using (3.6) & (3.9). Using this relation and (3.18), (3.17), & the first line of (3.16) to eliminate V̄ ′,
γ̄, and ν̄ from (3.21) yields (

dP

d ln ν

)
νmin,rec

≈
√

2f̄ ′B(f̄ ′e)
2
cσTm

2
p

m2
e

N̄EΓ4. (3.22)

Notice that the frequency (3.19) is also ∝ Γ4. Dividing (3.22) by 4πd2νmin gives an estimate for the
flux density at the peak of the spectrum:

Fνmin
∼ 0.03 (102f ′B)1/2N̄

−1/2
0 Eiso,53d

−2
28 Jy. (3.23)

Thus, a simple and convenient prediction of the synchrotron blastwave model of afterglows is that
the flux density at the peak of the spectrum is independent of time—presuming, of course, that the
external density (N̄) and equipartition factor f ′B are constant. Another caveat is that the equivalent
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isotropic shock energy Eiso will decrease both because of actual radiative losses, and perhaps more
importantly, because the energy per solid angle declines after the time (3.12) as the jet opens up
(this is ∼ 20 day if θj ≈ 0.3 rad as found for GRB 970508).

In view of the number of simplifying assumptions that have been made, it is very reassuring that
the predictions Fνmin

≈constant and νmin ∝ t−3/2 are indeed satisfied, at least at early times (before
the break attributed to the jet). Another prediction that one can make is that the exponent p of
the electron spectrum controls both the slope of the spectrum at a fixed time (Fν ∝ ν(1−p)/2 for
νmin < ν < νcool) the decline of Fν with time at a fixed frequency:

Fν ≈ Fνmin

(
ν

νmin

)(1−p)/2

∝ ν(p−1)/2
min ∝ t−3(p−1)/4, (3.24)

as long as t < tj and νcool > ν > νmin. Thus if the observations are fit to a double powerlaw of
the form Fν ∝ t−αν−β , then one expects α = 3β/2. Indeed, for p ≈ 2.3 as predicted by models of
particle acceleration at shocks, (3.24) predicts Fν ∝ ν−0.7t−1., approximately as observed.

This discussion has largely avoided the complications arising after tj when the jet-like nature of
the outflow becomes important. But qualitatively, perhaps the best evidence for jets is from those
afterglows that have been observed at late times in the radio. In this phase, at t ∼ 1 yr, even a
spherical blastwave should be marginally nonrelativistic, so that beaming effects are not dominant
and the entire outflow should contribute to the light curve. The fact that the radio flux at late times
is substantially less than the predictions of a spherical model, as shown in Fig. 3.8, indicates that
the initial outflow was not spherically symmetric (Ωj � 4π and that the total energy is � 1053 erg.
In fact, the inferred total energy E = (θ2

j/4)Eiso seems to show less variation than Eiso and θj
separately: E ≈ 1050.7±1.0 [45].
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3.5 Problems for Chapter 3

1. (a) Suppose that the preshock medium is not uniform but has a power-law dependence on
distance from the source,

N̄(r) = K r−w , K,w constant; w < 3.

Evaluate for the afterglow phase the powerlaw indices x1, . . . , x8 in the following relations:
Γ ∝ tx1 , tj ∝ θx2

j , νmin ∝ tx3 , Fνmin ∝ t−x4 , and

Fν ∝

{
νx5tx6 ν < νmin

νx7tx8 ν > νmin

You may assume t < tj except when calculating x2.

(b) Evaluate the constants K and w assuming that the progenitor of the GRB was a massive
star that emitted a steady spherically symmetric wind with constant mass-loss rate Ṁ =
10−4M� yr−1 and constant outflow speed v = 103 km s−1. At what radius does the number
density of the wind fall to 1 cm−3?



Chapter 4

Black-hole Basics

4.1 General-Relativistic kinematics

This chapter and the next discuss parts of General Relativity that are most relevant to present-day
astrophysics. They are no substitute for a full course in GR1 but are meant to be self-contained. The
equations of motion of a test particle in a prescribed metric are derived from the principle of least
action (which is enough to understand orbits around black holes) eschewing covariant derivatives. In
the next chapter, the orbital results will be used to explain some basic properties of accretion onto
black holes, such as the maximum efficiency of conversion of mass to energy in a thin disk, spin-up of
black holes, and irreducible mass. The field equations are not discussed, except in Chapter 8 where
we treat gravitational waves; that chapter gives a self-contained derivation of the linearized form of
the field equations directly from Lorentz and gauge invariance.

4.1.1 The Principle of Equivalence

Newton wrote that bodies free of external forces move uniformly in straight lines. Einstein’s revision
says that bodies free of external nongravitational forces move on spacetime geodesics, a term orig-
inally from cartography meaning the straightest/shortest paths possible on a curved surface. GR
views gravitational forces as fictitious, just as newtonian mechanics views centrifugal and Coriolis
forces as artifacts of an accelerated frame of reference. Nevertheless tidal fields, which are felt as
relative accelerations between freely-falling particles (geodesics), are physically real. Tidal fields are
a manifestation of curvature. The source of curvature is mass.

The elimination of gravitational forces is possible because of the Principle of Equivalence (PE),
which began with Galileo’s observation that all bodies accelerate equally in a gravitational field
regardless of mass or composition. Newton tested this experimentally at a level ≈ 10−3 using
pendulums. Another formulation of the PE is that external gravitational effects can be removed
by adopting a freely-falling frame of reference, at least to the extent that the gravitational field
is uniform and constant; this formulation appears explicitly in the Principia. The PE is essential
to a geometric description of gravity. It would not make sense to say that free-particle motion
follows the shape of spacetime if different materials or fundamental particles accelerated differently
in gravitational fields.

Still another formulation of the PE is that no local measurement can distinguish between a
gravitational field and an acceleration. This is really a statement about limits and is best clarified
by examples, since otherwise it would seem to deny the reality of tidal fields. The critical word is
“local”: a longer time interval and/or a greater spatial separation is needed to measure a tide than
an acceleration, so tides are less local.

1An excellent introductory text is that of Schutz [56].
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An important and experimentally tested application of the PE is gravitational redshift. Consider
an observer in a rocket ship undergoing constant accleration g in flat space (i.e., no gravity). Inertial
observer O comoves with the rocket at t = 0 and sees the rocket to have velocity gt at time t (gt� c).
At t = 0, a photon of frequency ν is released from the back of the rocket cabin, and it is absorbed
at the front of the cabin after time t ≈ h/c, where h is the height of the cabin (not Planck’s
constant). The frequency is constant according to O, but because the rocket velocity has increased
by v ≈ gt ≈ gh/c, the receiver accelerating with the cabin measures a frequency shift

∆ν

ν
≈ −v

c
≈ −gh

c2
.

The PE implies that two stationary observers separated vertically by h in the gravitational field g of
the earth should see the same shift. This has actually been measured [50]; note that ∆ν/ν ≈ 10−15

over h = 10 m. The generalization is

ν2 − ν1

ν
≈ −Φ2 − Φ1

c2
(4.1)

for observers stationary in a newtonian gravitational potential Φ. This formula is approximate but
accurate as long as ∆ν/ν � 1.

One is forced to conclude that that time flows more slowly in deeper gravitational potentials. To
see why, imagine that the two observers keep time with atomic clocks, which essentially count cycles
of a 9.2 GHz cesium hyperfine transition, and send one another microwaves at the frequencies that
their clocks produce. Observer 2 will see the light sent by observer 1 to be redshifted. Yet both
observers agree that the separation between them is constant, because for example the roundtrip
travel time of light signals does not change. The redshift therefore cannot be ascribed to a steady
increase in this travel time, i.e. it is not a first-order Doppler shift. So observer 2 will conclude that
observer 1’s clock runs slow by the amount (4.1).

4.1.2 Metric in general coordinates

As in special relativity [SR], events are labeled by four coordinates, but these coordinates may not
be inertial—in fact cannot be inertial where there is curvature. In GR, the choice of coordinates is
arbitrary,2 although some choices are usually more convenient than others. But there is no univer-
sally most convenient system or class of systems—it depends upon the problem at hand, especially
any symmetries that the spacetime may have. Therefore, the central concepts and equations of GR
are designed to hold true in arbitrary coordinates.

Local properties of curved spacetime are described by the metric gµν (and its derivatives), which
determines the interval associated with infinitesimal coordinate separations dxµ:

ds2 = gµνdxµdxν . (4.2)

Antisymmetric parts gµν−gνµ would have no effect on ds2, so gµν = gνµ. In D dimensions, the metric
has D2 components but only D(D + 1)/2 independent ones. The metric components are functions
of the coordinates, which are arbitrary. Consider two coordinate systems {xµ} and {xµ̄} valid in
overlapping regions of spacetime. The metrics in the two systems are related by the invariance of
the interval, so that

gµνdxµdxν = ds2 = gµ̄ν̄dxµ̄dxν̄ ,

from which it follows that the metric transforms according to

gµν = gµ̄ν̄
∂xµ̄

∂xµ
∂xν̄

∂xν
. (4.3)

2except that the coordinates should be independent: If P and Q are distinct events, then xµ(P ) − xµ(Q) should
be nonzero for at least one of the four values {0, 1, 2, 3} of the index µ. There are also some technical restrictions on
the smoothness of the coordinates when viewed as differentiable functions on spacetime.
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Note carefully how the upstairs and downstairs indices balance. Here ∂x1̄/∂x2 means the partial
derivative of the function x1̄ with respect to x2 at constant x0, x1, x3. We could write this as x1̄

, 2 but
the comma notation for partial derivatives is rarely applied to the coordinate functions themselves.
All functions appearing in eq. (4.3) [and similar transformation laws for other tensors] are evaluated
at the same event.

Although a proof will not be given, the following very important fact is a consequence of the PE:

Near any nonsingular event E, coordinates xµ̂ can be found such that

gµ̂ν̂(E) = ηµ̂ν̂ and gµ̂ν̂,λ̂(E) = 0. (4.4)

Such coordinates constitute a freely-falling reference frame [henceforth FFRF] at E. FFRF coor-
dinates will be marked by hats on the indices. Although the freely-falling coordinates extend to at
least a small neighborhood of E, the relations (4.4) are not guaranteed except at E; in general, each
event has its own FFRF. If the properties (4.4) can be extended to a finite region using a single
coordinate system, then the spacetime in that neighborhood is flat. Whether or not the region is
flat, geodesics passing through E satisfy

d2xµ̂

dτ2
(E) = 0, (4.5)

just as one would expect for an unaccelerated trajectory written in inertial coordinates in Special
Relativity [SR]. We will prove this shortly. Thus an FFRF is as close as one can come to an inertial
reference frame in a general curved spacetime. Before trying to interpret a local quantity in GR, it
is often a good idea to transform it into an FFRF so that one can appeal to physical laws as they are
formulated in SR. Even at a given event E, FFRFs are not unique, since any Lorentz transformation

xµ̂
′
≡ Λµ̂

′

µ̂x
µ̂

yields another FFRF at E as long as the coefficients Λµ̂
′

µ̂ are constant. We are also free to add

constant offsets aµ
′

to the righthand side above, making it a local Poincaré rather than Lorentz
transformation.

It can be shown that a necessary and sufficient condition for flatness is the vanishing—in any
coordinates—of a certain set of D2(D2 − 1)/12 algebraic combinations of the metric and its first
(gµν,κ) and second (gµν,κλ) partial derivatives throughout the region in question. Gauss proved this
for D = 2, where just one combination is involved, the intrinsic curvature. (Gauss also invented
the idea of metric). In spacetime (D = 4) there are 20 relevant combinations, which are the
independent components of the Riemann curvature tensor Rµνκλ. In an FFRF, R0̂î0̂ĵ = R0̂ĵ0̂î is the

ijth component of the tidal field experienced by particles that are nearly at rest in that FFRF.

Problem 4.1. Two neighboring and nearly comoving observers fall freely and nonrelativistically
in a newtonian gravitational field. Express their relative 3-acceleration in terms of their spatial
separation and derivatives of the newtonian potential.

4.1.3 Geodesics

A path is a connected one-dimensional sequence of events. A curve is a path plus a choice of
parametrization xµ(σ), where σ is the pararameter. If σ = σ(θ) then xµ(θ) ≡ xµ[σ(θ)] is a new
curve on the same path. The tangent to xµ(σ) is dxµ/dσ, so

dxµ

dθ
=

dxµ

dσ

dσ

dθ
.
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The direction of the tangent depends only on the path, but its length depends on the curve. In
spacetime, paths are classified as timelike, spacelike, or null according as

gµν
dxµ

dσ

dxν

dσ
(4.6)

is < 0, > 0, or = 0, respectively. The classification is independent of parameter as long as dσ/dθ 6= 0.
A timelike path can always be parametrized by proper time

gµν
dxµ

dτ

dxν

dτ
= −1 .

We reserve the symbol τ for proper time. Then the tangent

uµ ≡ dxµ

dτ
, uµuµ = −1 (4.7)

is the 4-velocity. 4-acceleration is more complicated than d2xµ/dτ2 except in a FFRF.
The length of a timelike path between events A and B is

L =

b∫
a

dσ

√
−gµν

dxµ

dσ

dxν

dσ
: xµ(a) = xµ(A) , xµ(b) = xµ(B). (4.8)

Note length is independent of parametrization.
Every child knows that a straight line gives the shortest distance between two points—in euclidean

geometry. In general, a path is extremal if δL = 0, meaning that the length is unchanged to first
order in δxµ by the variation

xµ(σ) 7→ xµ(σ) + δxµ(σ) δxµ(a) = δxµ(b) = 0.

I write “extremal” rather than “shortest” because, as a consequence of the minus sign in the metric,
the favored paths are actually longest.

Problem 4.2. Show that if events A and B are connected by a timelike path, then there exists a
path of zero length between them.

Instead of δL = 0, consider the variational problem δS = 0, where

S ≡ 1

2

b∫
a

dσ gµν
dxµ

dσ

dxν

dσ
: xµ(a) = xµ(A) , xµ(b) = xµ(B). (4.9)

Lacking the square root, S does depend upon parametrization, unlike L. It looks a lot like the
action of classical mechanics, with σ playing the role of time. The extremal curve for (4.9) solves
the Euler-Lagrange equations

d

dσ

(
∂L
∂ẋα

)
− ∂L

∂xα
= 0,

where ẋµ ≡ dxµ/dσ and the “lagrangian” is3

L(xα, ẋα) =
1

2
gµν(xα)ẋµẋν , (4.10)

3The notation gµν(xα) means that the metric depends on the whole set (x0, x1, x2, x3); the α is not a free index
when inside the arguments of functions.
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so that
1

2

d

dσ

(
gαν

dxν

dσ
+ gµα

dxµ

dσ

)
− 1

2
gµν , α

dxµ

dσ

dxν

dσ
= 0.

Dummy indices such as µ and ν above can be renamed at will, and the metric is symmetric, so the
two terms in parentheses can be combined:

d

dσ

(
gαν

dxν

dσ

)
− 1

2
gµν , α

dxµ

dσ

dxν

dσ
= 0. (4.11)

The extremal curve for the action (4.9) has a path of extremal length (4.8), and therefore (4.11)
is actually the general equation for geodesics. To see this, note first of all that since L does not
depend explicitly on σ, the “hamiltonian”

H = ẋα
∂L
∂ẋα

− L =
1

2
gµν(xα)ẋµẋν

is conserved, i.e. dH/dσ = 0 along extremal curves, as can be checked using eq. (4.11). So one may
as well restrict the search for solutions of δS = 0 to curves of constant H, hence constant squared
tangent (4.6). For any such curve, whether or not extremal, L = (b − a)

√
−2H and S = (b − a)H,

whence S = −L2/2(b− a). It follows that

δS = − LδL

b− a
.

So a curve that is extremal for S has a path that is extremal for L. This argument fails for null
paths, where L = 0. It can be shown by other means that (4.11) is in fact the correct equation even
for null geodesics.

For timelike geodesics, σ differs from τ only by a constant factor and constant offset. A rela-
tionship of the form Y = mX + b between variables X,Y is called “affine” (“linear” only if b = 0)
therefore σ is an affine parameter. Clearly σ can be replaced by τ in eq. (4.11) if the geodesic is
timelike. In view of eq. (4.4), the geodesic equation indeed reduces to eq. (4.5) in a FFRF.

4.1.4 Momentum

According to classical mechanics, the momentum canonically conjugate to coordinate xα is

p̃α ≡
∂L
∂ẋα

.

For L given by eq. (4.10),

p̃α = gαν
dxν

dσ
.

In a FFRF this reduces to p̃α̂ = ηα̂µ̂dxµ̂/dσ, which differs by a constant factor from the physical
4-momentum pα̂ = mηα̂µ̂dxµ̂/dτ for a particle of mass m. It is therefore usual to define the 4-
momentum in general coordinates by

pα ≡ mgαν
dxν

dτ
, (4.12)

provided m > 0. For massless particles, the affine parameter is usually scaled so that

pα ≡ gαν
dxν

dσ
(4.13)

becomes the physical momentum pα̂ in a FFRF.
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4.1.5 Constants of motion

In a symmetrical spacetime, such as a stationary black hole, it can be arranged that the metric is
independent of at least one of the coordinates (by suitable choice of coordinates). If the metric is
independent of x3, for example, then it follows from eq. (4.11) that p3 is constant on a geodesic. This
fact is a great help in finding solutions to the geodesic equation. Even without special symmetry,
gµν ẋ

µẋν is constant and provides a first integral of the four geodesic equations (4.11).

Problem 4.3. The metric of flat spacetime in cylindrical polar coordinates xµ ∈ (t, R, φ, z) is defined
by

ds2 = −dt2 + dR2 +R2dφ2 + dz2.

Find and interpret p0, p2, and p3.

4.2 Non-rotating black holes

The Schwarzschild metric describes a spherically symmetric, static, vacuum spacetime: in particular,
the spacetime of a nonrotating black hole. The metric has just one free parameter—the mass M .
It was the first nontrivial exact solution of Einstein’s equations discovered (in 1916). It is perhaps
the most important, in part because of Birkhoff’s Theorem, which states that “any spherically
symmetric vacuum solution is static,” and therefore described by the Schwarzschild metric for some
M . Birkhoff’s Theorem is the analog in GR of Newton’s statement that the external gravitational
field of a sphere depends only on its mass, not on its radius. For example, if small corrections due to
the planets, the solar wind, and the sun’s rotation are neglected, then the Sun’s gravitational field
obeys the the Schwarzschild solution. The Sun lacks an event horizon because the Schwarzschild
solution applies only to the vacuum region outside the Sun, and the Sun is much larger than its own
Schwarzschild radius.

Another important application of Birkhoff’s Theorem is to cosmology. Of course GR is required to
describe the metric on scales comparable to the horizon, but one often uses newtonian gravitational
physics on scales . 300h−1 Mpc (z . 0.1). The justification for this is that if one imagines
evacuating a comoving sphere from such a universe, then Birkhoff’s Theorem says that the interior
is the Schwarzschild solution for M = 0 (because there is no interior mass), which is flat space.4

This is true despite the expansion of the rest of the universe, as long as it is spherically symmetric.
Therefore in the actual universe where the sphere is not empty, the gravitational field inside the
sphere is caused entirely by the matter it contains; if this field is weak and the sphere expands slowly
compared to c, then the newtonian approximation is accurate.

4.2.1 Schwarzschild metric and coordinates

In Schwarzschild’s original choice of coordinates xµ ∈ (t, r, θ, φ),

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θ dφ2), (4.14)

or in other words

g00 = −(g11)−1 = −
(

1− 2M

r

)
, g22 = r2, g33 = r2 sin2 θ, g0i = 0.

As is customary in GR, we have adopted units G = c = 1 so that mass, length, and time are
equivalent: one solar mass M� corresponds approximately to 1.5 km and 5 × 10−6 s. In ordinary

4Birkhoff’s Theorem doesn’t strictly apply if the vacuum includes a cosmological constant, but it doesn’t make
much difference on scales � c/

√
Λ.
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units,

g00 → −
(
c2 − 2GM

r

)
.

Many other coordinate systems could be used, but Schwarzschild coordinates are both mathemati-
cally convenient and relatively easy to interpret.

The interpretation begins with the notion of a stationary observer [SO]. Mathematically, a SO
sits at constant r, θ, t, and her 4-velocity

uµ =
dxµ

dτ
=

1√
−g00

(1, 0, 0, 0) , so gµνu
µuν = −1. (4.15)

Physically, a SO recognizes herself as such by measuring a constant blueshift in the spectrum of each
distant star (to the extent that intrinsic accelerations of the stars are negligible). If the black hole
is at rest with respect to the stars, then they all show the same blueshift. To see this, note quite
generally that an observer of 4-velocity uµ measures the energy of a photon of 4-momentum pµ as
(−pµuµ) = −u0p0.

Problem 4.4. Verify the formula −pµuµ for the measured energy by evaluating it in a FFRF that
is instantaneously at rest with respect to the observer, and then proving that the expression is
invariant under transformation of coordinates.

But the photon travels to the observer on a null geodesic with conserved p0 since the metric doesn’t
depend on x0; and far from the black hole where space is flat, the photon was emitted with energy
hν∞, hence −p0 = hν∞ all along the geodesic. Thus the measured frequency is

νr = u0ν∞ =
ν∞√
−g00

= ν∞

(
1− 2M

r

)−1/2

. (4.16)

If one expands the square root to first order in 2GM/c2r, this agrees with the gravitational-redshift
formula derived in the last lecture,

νr − ν∞
ν∞

≈ −Φr − Φ∞
c2

.

Actually the correspondence can be made exact by rewriting the weak-field formula as

ν1

ν2
=

1 + Φ2/c
2

1 + Φ1/c2
,

and interpreting
Φ

c2
→
√
−g00 − 1. (4.17)

The SO needs a rocket to maintain her position and avoid falling into the black hole. The
4-acceleration she requires is simply the lefthand side of the geodesic equation evaluated on her
worldline:

aα =
d

dτ

(
gαν

dxν

dτ

)
− 1

2
gµν,α

dxµ

dτ

dxν

dτ
→ −1

2
g00,αu

0u0 =

(
0,
M/r2

−g00
, 0, 0

)
.

The proper acceleration, which is what the SO measures with an accelerometer, can be determined
by transforming this into a FFRF where she is instantaneously at rest. It is equivalent, and more
convenient, to project aα onto a radial unit vector:

lµ =
1
√
g11

(0, 1, 0, 0) ; gµν l
µlν = 1, gµν l

µuν = 0. (4.18)
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Thus the radial proper acceleration of the SO is

lαaα =
M

r2

(
1− 2M

r

)−1/2

. (4.19)

At large r this agrees with the newtonian formula, but the proper acceleration of stationary observers
is infinite at the Schwarzschild radius

RS ≡
2GM

c2
≈ 3.0

(
M

M�

)
km. (4.20)

In fact, one way to remember the result (4.19) is to compute the proper acceleration as Φ, i with
Φ given by eq. (4.17). (Warning: although this works for slowly-moving objects in Schwarzschild
coordinates, it is not a general result.) The acceleration is outwards rather than inwards because
GR considers freely-falling observers unaccelerated and SOs accelerated, while newtonian mechanics
takes the opposite view.

The SO determines her angular coordinates θ, φ as those of the star she sees overhead, i.e., in the
direction of her acceleration. Consider two SOs at the same r separated by (dθ,dφ) [they know they
are at the same r because they see the same blueshift for distant stars]. Their proper separation

ds =
√
gµνdxµdxν = r

√
dθ2 + sin2 θdφ2,

just as in polar coordinates in flat space. It follows that the proper circumference of a circle of
constant r is 2πr, and the proper area of a sphere is 4πr2. This gives the physical interpretation of
the r coordinate. On the other hand, r is not simply related to radial distance; the proper separation
associated with a coordinate separation dxµ = (0,dr, 0, 0) is not dr but dr

√
g11.

Finally, the t coordinate is the proper time of SOs in the limit r →∞. This could be established
by broadcasting a carrier signal of known ν∞ to all SOs. Each SO at finite r knows that her own
proper-time clock elapses more slowly than t:

dτ = dt
√
−g00 (4.21)

and corrects accordingly. (Here, as for radial acceleration, the newtonian or weak-field result becomes
exact in Schwarzschild coordinates if Φ/c2 → −1+

√
−g00.) Synchronization of t-time can be achieved

using the round-trip delay of lightsignals exchanged between each SO and the standard clock.

4.2.2 Null (photon) orbits

By definition of a null curve, the squared tangent gµν ẋ
µẋν = 0, so from eq. (4.14),

0 = −
(

1− 2M

r

)(
dt

dσ

)2

+

(
1− 2M

r

)−1(
dr

dσ

)2

+ r2

(
dθ

dσ

)2

+ r2 sin2 θ

(
dφ

dσ

)2

. (4.22)

For α = 2, the geodesic equation (4.11) reads

d

dσ

(
r2 dθ

dσ

)
= r2 sin θ cos θ

(
dφ

dσ

)2

. (4.23)

Because of spherical symmetry, we can always rotate axes so that θ = π/2 and θ̇ = 0 at σ = 0.
It then follows from eq. (4.23) that d2θ(0)/dσ2 = 0, and by iterative differentiation of eq. (4.23),
dnθ(0)/dσn = 0 for every n > 0. So the orbit remains in the plane θ = π/2. Furthermore on



4.2. NON-ROTATING BLACK HOLES 65

geodesics, the energy E = −p0 and φ component of angular momentum Lφ = pφ are conserved
because gµν, 0 = gµν, 3 = 0:

E =

(
1− 2M

r

)
dt

dσ
, Lφ = r2 sin2 θ

dφ

dσ
. (4.24)

Eq. (4.22) now becomes, for geodesics,

0 =

(
1− 2M

r

)−1
[
−E2 +

(
dr

dσ

)2
]

+
L2

r2
,

or equivalently, (
dr

dσ

)2

= E2 − 2V (r, L), (4.25)

where V (r, L) ≡ L2

2r2

(
1− 2M

r

)
. (4.26)

With the total angular momentum L in place of Lφ, eqs. (4.25)-(4.26) hold for arbitrary orientations
of the orbital plane.

The function V (r, L) is an effective potential for radial motion. At r < 2M , V < 0 so that the
righthand side of eq. (4.25) is positive, and it follows that dr/dσ cannot change sign at r < 2M ; this
follows also from eq. (4.22), so it is true for all null paths, not just geodesics. Therefore if a photon
is inside the Schwarzschild radius and travelling inward, it will have to continue to r = 0. The same
can be demonstrated for massive particles. The surface r = 2M is an event horizon: a point of no
return.

Differentiating eq. (4.25) and dividing by 2dr/dσ yields

d2r

dσ2
= − ∂V

∂r
=

L2

r3

(
1− 3M

r

)
. (4.27)

Circular photon orbits exist. On such an orbit, r = rcirc = constant, so dr/dσ = 0 = d2r/dσ2. From
eq. (4.27),

rcirc = 3M ,

and substituting this into eq. (4.25),

(L/E)2
circ = 27M2.

It’s easy to see that the circular orbit is unstable, since rcirc is a local maximum of V .
More significantly, consider a photon approaching the black hole from r � 2M ; then for θ ≡ π/2,

L

E
→ r2 dφ

dt
= cb as r →∞ ,

where b is the impact parameter: that is, the distance of closest approach that one would calculate
by extrapolating the trajectory in flat space. Let the actual minimum radius be rmin, which is clearly
an increasing function of b. If rmin > 0 then dr/dσ = 0 and d2r/dσ2 ≥ 0 at r = rmin. But eq. (4.27)
shows that the latter implies rmin ≥ 3M , else the photon continues inward to r = 0. Evaluating
eq. (4.25) at rmin, we find (L/E)2 ≥ (L/E)2

circ. So the minimum impact parameter for which the
photon can escape back to infinity is

bmin =

(
L

E

)
circ

=
3
√

3

2
RS . (4.28)
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If one saw a black hole from a great distance against a uniformly bright background, its apparent
radius would be bmin ≈ 2.6 RS.

Finally, we show that although a null trajectory crossing the event horizon can never return, it
takes an infinite time to get there. Eq. (4.25) can be solved as a quadrature:

dσ = − dr√
E2 − 2V (r, L)

. (4.29)

Since V = 0 at r = 2M , it’s clear that the Schwarzschild radius is reached after a finite increment
in affine parameter σ, provided of course that L/E < (L/E)circ. If one eliminates dσ in favor of dt
using eq. (4.24),

dt = − E rdr

(r − 2M)
√
E2 − 2V (r, L)

. (4.30)

Upon integration from any r > 2M down to r = 2M , the change in t diverges:

t− t0 ≈ 2M ln

(
const.

r − 2M

)
as r → 2M ,

or r − 2M ≈ (const.) × exp[−t/2M ] as t→∞. (4.31)

Problem 4.5. By eliminating dσ from eq. (4.29) in favor of dφ, or otherwise, show that a photon
with b� bmin is deflected through angle ≈ 2RS/b by mass M .

4.2.3 Timelike orbits

The first steps are the same as for null orbits, except that τ replaces σ on the righthand side of
eq. (4.22), and −1 replaces 0 on the left. The conserved quantities E, and Lφ take the same form as
in eq. (4.24) with σ → τ , so that E → −p0/m and Lφ → p3/m: i.e., energy and angular momentum
per unit mass. By an argument similar to the one for null geodesics, timelike geodesics also lie in a
plane, so Lφ → L in the radial equation (4.25). Instead of (4.26), the effective potential is

V (r, L) ≡ 1

2

(
L2

r2
+ 1

)(
1− 2M

r

)
, (4.32)

where the “+1” reflects the replacement of 0 with −1 in eq. (4.22). As before, ∂V/∂r = 0 on circular
orbits, but now this condition yields

rcirc =
L2 ± L

√
L2 − 12M2

2M
. (4.33)

Instead of a unique radius, there are in fact two possible circular orbits for every angular momentum
L > M

√
12. Only the larger root for rcirc is stable, since V → −∞ as r → 0, so that the smaller

root corresponds to a local maximum of V . At L = M
√

12 ≡ Lmin, the two roots merge, and

rcirc(Lmin) = 6M = 3RS . (4.34)

This defines the marginally stable orbit. Since V (6M,
√

12M2) = 4/9, the energy per unit mass of
the marginally stable orbit is [putting dr/dτ = 0 in eq. (4.25)],

Ems =

√
8

9
≈ 1− 0.057 . (4.35)

Eq. (4.25) will be important to us when we discuss accretion disks. Notice that a geodesic escaping
to r =∞ must have E ≥ 1.
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Problem 4.6. Calculate the minimum impact parameter bmin at which a timelike geodesic escapes
capture, as a function of its 3-velocity at large distances, v∞.

Now consider radial geodesics, L = 0. Furthermore, suppose that the particle is released from
rest at some initial radius r0 > 2M . Then E2 = 1− 2Mr−1

0 , and the analog of eq. (4.29) is

dτ = − dr√
2M(r−1 − r−1

0 )
.

To simplify the discussion, take r0 →∞, i.e. the particle falls from rest at some very large distance.
A finite proper time elapses between any r > 2M and the event horizon:

τ(2M)− τ(r) =
4M

3

( r

2M

)3/2

.

However, as with the photon, an external SO says that the particle takes infinite time to reach the
event horizon. Local SOs very near the horizon see the particle fall past them at almost the speed
of light, but distant ones see it frozen at r = 2M . Actually they can’t really “see” it for very long:
if the infalling observer emits radial photons of constant frequency in his rest frame, then SOs at
infinity see this signal redshifting exponentially with an e-folding time

RS

c
≈ 10−4

(
M

M�

)
s.

Problem 4.7. Derive this last result. Hint: start from p
(phot.)
µ uµ(infall) = −hν0.

4.2.4 Tidal fields

Suppose two particles are released from rest on the same radial line but separated by ∆r � r−2M .
At the initial instant, both particles satisfy [cf. eqs. (4.25)&(4.32)]

dr

dτ
(0) = 0,

d2r

dτ2
(0) = −M

r2
,

and therefore
d2∆r

dτ2
(0) =

2M

r3
∆r .

Now the proper separation between the particles is actually ∆l = ∆r
√
g11, but since dg11(0)/dτ = 0,

1

∆l

d2∆l

dτ2
=

1

∆r

d2∆r

dτ2
=

2M

r3
.

This is the 1̂1̂ component of the tidal tensor: the ratio of proper relative radial acceleration to proper
radial distance, measured in the instantaneous rest frame. By similar arguments using particles re-
leased from the same r but slightly different θ or φ, one finds that the 2̂2̂ and 3̂3̂ components of the
tidal tensor are both = −M/r3, and that the offdiagonal components vanish. All of this has exactly
the same mathematical form as the newtonian tide, although r and τ are not exactly newtonian
radius or time. Notice that the sum of the diagonal components of the tide vanishes; this is always
true of the tidal field in vacuum (also true in newtonian theory). Finally, although we will not prove
it, these tidal components are actually independent of velocity for radially falling observers. Thus
an observer crossing the event horizon feels a finite radial tide (2M)−2.
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Problem 4.8. An observer enclosed in a small windowless box is dropped from rest at an unknown
(to him) radius from a black hole. Is there any way for him to know by local measurements, including
tides, when he crosses the event horizon or what is the mass of the hole?

4.3 Rotating black holes

Rotating blackholes have two parameters: mass (M) and angular momentum (J). For G = c = 1,
the units of J are (mass)2, and it is conventional to define a ≡ J/M . Rotating black holes are
stationary but not static: that is, coordinates exist in which gµν ,0 ≡ 0 but not also g0i = 0.
The “no-hair” theorem says that an isolated stationary black hole is completely determined by its
total mass, angular momentum, and electrical charge. Astrophysically, any significant electrical
charge would quickly be neutralized by selective accretion of ions or electrons, and episodes of
significant nonstationarity are probably very brief, being damped by gravitational radiation on
timescales ≈ GM/c3. Thus, the exact solution given below for an uncharged rotating black hole—
the Kerr metric—describes all black holes likely to be encountered in astrophysics. Even better,
despite superficial algebraic complexity, the Kerr metric conceals remarkable simplifications that
one had no right to hope for, given the loss of spherical symmetry. Nature has been kind.

4.3.1 Kerr metric

ds2 = −∆− a2 sin2 θ

ρ2
dt2 − 2a

2Mr sin2 θ

ρ2
dtdφ +

(r2 + a2)2 − a2∆ sin2 θ

ρ2
sin2 θ dφ2 +

ρ2

∆
dr2 + ρ2 dθ2, (4.36)

∆ ≡ r2 − 2Mr + a2, (4.37)

ρ2 ≡ r2 + a2 cos2 θ . (4.38)

In these Boyer-Lindquist coordinates, t is still the proper time of stationary observers [SOs] at
infinity, and φ is clearly an angle in the direction of azimuthal symmetry. It is harder to interpret r
and θ. They are topologically similar to the corresponding Schwarzschild coordinates, and in fact,
eq. (4.36) reduces to Schwarzschild for a = 0.

4.3.2 Horizon and ergosphere

The event horizon occurs where ∆(r) = 0 since for null curves, some rearrangement of terms involving
ṫ ≡ dt/dσ and φ̇ yields

− ρ4

∆
ṙ2 = ρ4θ̇2 + [a ṫ− (r2 + a2)φ̇ ]2 sin2 θ −∆ [ṫ − a sin2 θ φ̇ ]2. (4.39)

When ∆ < 0, the righthand side is positive, so that ṙ 6= 0. Therefore once an ingoing (ṙ < 0) photon
enters the region ∆ < 0, it cannot reverse course to escape.5 For timelike curves, +ρ2 is added to
the righthand side of (4.39), so the same conclusion holds. Explicitly, the radius of the event horizon
is

rH = M +
√
M2 − a2 (horizon). (4.40)

5There is a loophole: ∆ changes sign again at r− ≡M−
√
M2 − a2, so it is conceivable that particles could reverse

course inside r−. But it can be shown that the inbound particle does not reach r = rH until t =∞.
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The event horizon disappears when a ≥ M . This would allow outsiders to see the physical singu-
larity at r2 = 0. According to the Cosmic Censorship Hypothesis, such “naked” singularities are
disallowed, hence one presumes a < M for all physically realizable solutions.

Just outside the event horizon lies the ergoregion defined by 0 < ∆ ≤ a2 sin2 θ, or another words

rH < r < M +
√
M2 − a2 cos2 θ (ergoregion). (4.41)

The outer boundary of the ergoregion is the ergosphere, which meets the horizon at the poles
θ = 0, π. Particles and photons within the ergoregion cannot maintain constant φ, even with the
aid of rockets, because if dφ = 0 in eq. (4.36), then

−∆− a2 sin2 θ

ρ2
dt2 = ds2 − ρ2

∆
dr2 − ρ2 dθ2

But the lefthand side is positive (since ∆ < a2 sin2 θ), whereas the righthand side is negative (since
∆ > 0 and ds2 ≤ 0)—a contradiction.

Consider a null path on the horizon—or rather, just outside where ∆ = 0+. The lefthand side
of eq. (4.39) is either negative or zero, while the righthand side is either positive or zero (since the
term ∝ −∆ is negligible compared to the other terms). Therefore every term must vanish. It follows
that ṙ = θ̇ = 0 (so that the path stays on the horizon) and that (note r2

H + a2 = 2MrH)(
dφ

dt

)
H

=
a

2MrH
≡ ωH , (4.42)

which is called the angular velocity of the horizon.

4.3.3 Negative energies

As in the Schwarzschild case, the metric does not depend on t or φ, so p0 and p3 are conserved along
geodesics:

E = −g0µẋ
µ = ṫ

∆− a2 sin2 θ

ρ2
+ φ̇

2aMr sin2 θ

ρ2
, (4.43)

Lφ = g3µẋ
µ = −ṫ 2aMr sin2 θ

ρ2
+ φ̇

(r2 + a2)2 − a2∆ sin2 θ

ρ2
sin2 θ . (4.44)

For null curves, E = −p0 and Lφ = p3, while for timelike ones, E = −p0/m and Lφ = p3/m (energy

and angular momentum per unit mass). The coefficients of ṫ and φ̇ in eqs. (4.43)-(4.44) define a
2× 2 matrix whose determinant reduces to

D = ∆ sin2 θ . (4.45)

The equations can be inverted (except where D = 0):

ṫ = E
(r2 + a2)2 − a2∆ sin2 θ

ρ2 ∆
− Lφ

2aMr

ρ2 ∆
, (4.46)

φ̇ = E
2aMr

ρ2 ∆
+ Lφ

∆− a2 sin2 θ

ρ2 ∆ sin2 θ
. (4.47)

E and Lφ are defined by eqs. (4.44)-(4.43) for all particles, but of course they are not guaranteed to
be constant unless the particle follows a geodesic.
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In Schwarzschild geometry we discussed stationary observers [SOs], defined as timelike worldlines
with dr = dθ = dφ = 0. We’ve just seen that we can’t have dφ = 0 inside the ergoregion of Kerr
spacetime, however. So we invoke timelike zero-angular-momentum observers [ZAMOs] with Lφ = 0

instead of φ̇ = 0, and dr = 0 = dθ. From (4.44),(
dφ

dt

)
ZAMO

=
2aMr

(r2 + a2)2 − a2∆ sin2 θ
≡ ω, (4.48)

which tends to ωH as r → rH . The ZAMO 4-velocity, which is distinguished from general 4-velocities
by a capital letter, is

Uµ = E−1
Z (1, 0, 0, ω), EZ =

√
ρ2 ∆

(r2 + a2)2 − a2∆ sin2 θ
. (4.49)

A quick route to the normalization factor begins with the observation that

pµẋ
µ = −m. (4.50)

For the ZAMOs, the only nonzero pµ is p0 = −mEZ so ṫ = E−1
Z . Writing f for the coefficient of EZ

in eq. (4.46), the latter equation reduces to ṫ = fEZ, whence ṫ = E−1
Z = f−1/2, thus establishing

eq. (4.49).
In GR, energy can be a subtle concept. In SR, all physical observers agree on the sign of a given

particle’s energy, since it is preserved by Lorentz transformations and all physical observers move
forward in time, U0 > 0. This continues to be true in GR as long as one compares measurements
made at the same event. But observers at different locations may not agree on the sign, even though
in a stationary geometry such as Schwarzschild or Kerr, the conservation of E ≡ −p0 gives a global
definition of energy. E corresponds to the energy that a ZAMO or SO at r = ∞ would measure
locally if the particle reached her. The energy measured by ZAMOs at finite r is not E, however,
but rather −pµUµ. The latter must be be positive,6 so

E−1
Z (E − ωLφ) > 0 ⇔ E > ωLφ. (4.51)

where E and Lφ refer to the particle, and EZ > 0 to the ZAMO. On the other hand, using eqs. (4.48)
and (4.49), we can rewrite eq. (4.46) as

ṫ = E−2
Z (E − ωLφ),

and therefore the condition (4.51) is equivalent to the very reasonable requirement that the particle
be future-directed, ṫ > 0. On the other hand, we can rewrite eq. (4.50) as

ṫE = φ̇ Lφ + ρ2
(

∆−1 ṙ2 + θ̇2
)

+ m̃ , (4.52)

where m̃ ≡

{
1 if timelike

0 if null.

In the ergoregion, Lφφ̇ can be negative, hence orbits exist for which E < 0 even though ṫ > 0. (E.g.,

choose initial conditions ṙ = θ̇ = 0.) This is especially easy for photons but also happens for massive
particles if they move fast enough so that the +m̃ is negligible. The negative-E orbits always have
the opposite sign of angular momentum from that of the black-hole: E − ωLφ > 0 hence ωLφ < 0,
and ω has the sign of a.

6because the Principle of Equivalence says that local physics is consistent with SR, and we do not have negative-
energy particles in SR
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Negative-E particles cannot reach r =∞, but they can be produced in the ergoregion. For exam-
ple, a π0 (neutral pion) within the ergoregion could decay into “forward” (Lφ > 0) and “backward”
(Lφ < 0) photon. The latter can have negative energy and eventually fall into the horizon, while
the latter escapes to r =∞ with greater energy than the π0!

There is some precedent for such negative energies within classical newtonian mechanics. A
change in momentum ∆p is galilean invariant: ∆p̄ = ∆p. But the associated energy changes are
∆E = p ·∆p/m and

∆Ē = p̄ ·∆p/m = ∆E + v ·∆p,

if v is the relative velocity of frame Ō with respect to O. Thus it is possible to have ∆E > 0 and
∆Ē < 0 if v ·∆p < 0. Similar remarks apply to rotating reference frames with momentum replaced
by angular momentum and velocity by angular velocity. This gives rise to the important concept of
negative-energy waves, since the creation of a wave in a medium generally changes the energy and
momentum of the medium. A slow wave propagating against a current may have positive energy
locally, but negative energy if it is seen to be borne downstream by an external observer. If we
replace the wave by a particle and the current by the angular velocity ω in the ergoregion, then the
analogy is rather close. [For an excellent and elementary discussion of negative-energy waves, see
[48].]

4.3.4 Irreducible mass

For reasons too involved to discuss here, black holes are actually thermodynamic objects. The
entropy of a black hole is proportional to the area of its event horizon:

S =
kB

L2
Pl

× A

4
where LPl ≡

√
~G
c3

= Planck length.

For a nonrotating hole, the area simply A = 4πR2
S. For a rotating hole, however, it is

A =

∫ ∫
r=rH

√
g22 dθ

√
g33 dφ = 4π(r2

H + a2) = 4π(2M)2

(
1 +

√
1 − (a/M)2

2

)
. (4.53)

This has the same area as a nonrotating black hole of mass

Mirred =

(√
1 − a/M +

√
1 + a/M

2

)
M , (4.54)

which is less than M if a 6= 0. Mirred is called the irreducible mass, because M −Mirred is the
maximum energy that can be extracted from the rotating hole without reducing its entropy (and
thereby violating the Second Law of black hole thermodynamics!). Up to 29% of the mass of a
critically rotating (a = M) black hole can be extracted, in principle.

As a check on this result, it is straightforward to calculate from eqs. (4.40), (4.42), and (4.53)
that (

∂J

∂M

)
A

=
2MrH
a

=
1

ωH
,

which is just what one would expect for nondissipative extraction of energy from a flywheel: the
change in energy (here, M) per unit change in angular momentum (J = aM) at constant entropy
(A) is the angular velocity (ωH).

In the subsequent lectures, we will discuss astrophysical scenarios for spinning up and spinning
down the black hole.
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4.3.5 Orbits

Miraculously, there is a simple “third integral” conserved by geodesics in Kerr geometry [10]:

K = (ρ2θ̇)2 + L2
φ csc2 θ + a2(m̃2 − E2) cos2 θ. (4.55)

In the spherical limit a → 0, K reduces to L2, the square of the total angular momentum. The
existence of four first integrals of the geodesic equations (E, Lφ, K, and m̃2 = −gµν ẋµẋν) allows
the equations of motion to be reduced to four first-order equations:

ρ2 dr

dσ
= ±

√
[(r2 + a2)E − aLφ]2 −∆[m̃2r2 + aE(aE − 2Lφ) +K] , (4.56)

ρ2 dθ

dσ
= ±

√
K − L2

φ csc2 θ + a2(E2 − m̃2) cos2 θ , (4.57)

plus eqs. (4.46)-(4.47) for ṫ and φ̇. Dividing eq. (4.56) by eq. (4.57) yields an equation for dr/dθ in
terms of r and θ. These results make it considerably easier to integrate orbits in the Kerr metric.
Furthermore, the electromagnetic, Dirac, and linearized gravitational-wave equations all can be
separated in Kerr geometry, despite the loss of spherical symmetry [59]. It seems likely that this
reflects some hidden (super?)symmetry that has not yet been fully elucidated.



Chapter 5

Accretion onto rotating black holes

It is strongly believed that quasars derive their luminosities from dissipation of the orbital energy
of gas surrounding a black holes with masses ∼ 108 − 109M� residing at the centers of galaxies.
Since the gas reaching the hole comes from a much larger radius, it is very unlikely that its initial
angular momentum is small enough to allow it to fall directly into the event horizon. (If the gas did
so, there would probably be very little dissipation and very little radiation produced.) Therefore,
the gas probably forms a rotating accretion disk around the hole. Its orbits are nearly circular,
but because of strong differential rotation (variation of angular velocity with radius), hydrodynamic
or magnetohydrodynamic turbulence results, leading to dissipation, radiation, and gradual inward
radial drift of the gas. Accretion adds both mass and angular momentum to the hole, and under
simple assumptions, this leads eventually to an extreme Kerr solution with a ≈ 0.998M .

To understand these results, one must study the behavior of circular orbits in Kerr geometry.

5.1 Circular and marginally stable orbits

For timelike equatorial orbits (i.e. θ = π/2, dθ = 0), (4.36), (4.46), & (4.47) can be combined into

r3ṙ2 = (r3 + a2r + 2a2M)E2 − 4aMEL+ (2M − r)L2 − r(r2 + a2 − 2Mr), (5.1)

where ṙ ≡ dr/dτ as usual. For circular orbits (geodesics), the conditions ṙ = 0 and r̈ = 0 yield two
relations among (E,L, r):

0 = (r3 + a2r + 2a2M)E2 − 4aMEL+ (2M − r)L2 − r(r2 + a2 − 2Mr), (5.2)

L2 = (3r2 + a2)(E2 − 1) + 4Mr. (5.3)

So the orbits form a one-parameter family. Using (5.3) to eliminate L from (5.2) gives

0 = r3(r3 + 9M2r − 6Mr2 − 4Ma2)E4

− 2r2[r4 − 7r3M + 16M2r2 − 3M(4M2 + a2)r + 5a2M2]E2

+ (r3 − 4Mr2 + 4M2r −Ma2)2. (5.4)

There are two roots for E2 at each r, both real and positive, corresponding to prograde and retrograde
orbits. Having found a root, we can go back to eq. (5.3) to find the angular momentum. This
procedure defines E and L as functions of r.

The following useful fact holds for all circular orbits:

dE

dr
= Ω

dL

dr
, where Ω ≡ dφ

dt
(5.5)
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is the angular velocity of the orbit. To prove this, write the geodesic equation in terms of the
4-velocity uµ and its lower-index counterpart uµ ≡ gµνu

ν = pµ/m. The radial component of the
geodesic equation becomes

du1

dτ
=

1

2
gµν,1u

µuν .

Since u1 = 0 for circular orbits, it follows that the righthand side above vanishes. Furthermore,
since gµνu

µuν = −1,

0 = (gµνu
µuν) ,1 = gµν,1u

µuν︸ ︷︷ ︸
0

+gµνu
µ
,1u

ν + gµνu
µuν,1 = 2uνu

ν
,1 . (5.6)

We have combined the final two terms by relabeling dummy indices, and we have used the definition
of uν . On the other hand, since gµνu

µuν = uνu
ν ,

0 = (uνu
ν) ,1 = uν,1u

ν + uνu
ν
,1.

Therefore uνu
ν
,1 = −uν,1uν so that in view of (5.6),

uνuν,1 = 0.

Since uν = (ṫ, 0, 0, φ̇), (5.5) follows directly.
We are most interested in marginally stable orbits. As in the Schwarzschild case, these can be

found from dL/dr = 0, since they have minimal angular momentum. In view of the theorem (5.5),

dE

dr
=

dL

dr
= 0 at r = rms, (5.7)

Therefore, differentiating eq. (5.3) with respect to r,

E2
ms = 1− 2M

3rms
. (5.8)

Similarly differentiating eq. (5.2) and eliminating E2
ms,

L2
ms =

2M

3rms
(3r2

ms − a2). (5.9)

Finally, substituting these results for E and L in (5.3) gives an equation for rms itself:

r4
ms − 12Mr3

ms + 6(6M2 − a2)r2
ms − 28Ma2rms + 9a4 = 0. (5.10)

To avoid having to solve a quartic, it is convenient to regard this last equation as a quadratic
equation for a2 given rms. The physically acceptable root is

a2 =
rms

9

(
3rms + 14M − 8

√
3Mrms − 2M2

)
. (5.11)

This is plotted in Figure 5.1. There are two solutions for rms at each a 6= 0: the smaller and more
tightly bound orbit is prograde (aLφ > 0), while the other is retrograde. The two converge at a = 0
(Schwarzschild). At a = 1 the prograde orbit lies at the event horizon, r = M = rH (recall that
for a > 1 there is no event horizon). The binding energy per unit mass of prograde orbits varies
between the limits

ε =

{
1−

√
8/9 ≈ 0.057 a = 0,

1−
√

1/3 ≈ 0.423 a = 1.
(5.12)

Compare this with the efficiency of uranium fission (≈ 10−3) and hydrogen fusion (≈ 0.007).
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Figure 5.1: Black-hole spin, a/M (left axis), and the corresponding orbital binding energy per unit
mass, ε ≡ 1− E (right axis), versus the radius of the marginally stable orbit, rms.

5.2 Growth of the hole

The matter in a thin accretion disk gradually spirals inward through a succession of nearly circular
orbits. In order to do so, the gas must shed angular momentum. It is generally believed that this
occurs through some sort of friction between neighboring annuli, probably mediated by magnetic
fields. Total angular momentum is conserved; some is radiated as photons, and perhaps rather more
could be lost in a gaseous wind, but most of it is transferred outward through the disk itself by
friction. Once the material reaches rms, any further loss of angular momentum is catastrophic since
there is no circular orbit of lower L available. It is usually assumed that the gas then plunges quickly
into the event horizon, conserving the energy and angular momentum that it had at rms.

Consider the effects of the accreted matter on mass and angular momentum of the black hole—
and especially on the interesting ratio

a∗ ≡
a

M
. (5.13)

Characterize an infalling parcel by its rest mass δm0: that is, the energy that it would have when
at rest at r =∞. The energy and angular momentum added to the hole when this parcel falls in are

δM = Emsδm0 , δJ = Lmsδm0 .

Hence as the black hole grows,
dJ

dM
=
Lms

Ems
.

Since J = a∗M
2, it follows that

M2 da∗
dM

=
Lms

Ems
− 2Ma∗ .
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Therefore, a∗ will increase as the black hole accretes provided that the righthand side above is
positive, or equivalently if Lms > 0,

0 <
L2

ms

E2
ms

− (2Ma∗)
2 = 6M · ∆ms + 2M(1− a2

∗)

3rms − 2M
,

where we have substituted for L2
ms and E2

ms from eqs. (5.8)-(5.9). The righthand side of this last
equation is clearly positive as long as a∗ < 1, but note that it vanishes as a∗ → 1 because then
rms → M and ∆ms → 0. The conclusion is that accretion from a thin disk causes the black hole to
approach the critical value a∗ = 1 (a = M).

There are some caveats to this argument. First, it needn’t be true if the direction of the angular
momentum of the gas supplied to the hole varies as it grows, as may well happen. Second, the
material plunging in from rms might be magnetically connected, if only briefly, to the inner parts of
the disk, in which case it would probably enter the hole with L/E < Lms/Ems. [This idea, attributed
by [60] to Z’eldovich & Schwartzman, has been revised recently by Gammie, Krolik, and others].
Even if neither of these first two cases obtained, [60] showed that the the increase would stop at
a∗ ≈ 0.998 due to the fact that photons emitted from the disk on retrograde paths are more likely
to be captured by the hole than prograde ones, hence de-spinning the hole. A glance at Fig. (5.1)
makes this plausible, because the retrograde circular orbits terminate at larger rms, and hence larger
Lms, than prograde ones.

5.3 Steady, thin-disk accretion

In this section, we will show that the effective temperature of a steady disk can be expressed in
terms of radius and accretion rate, plus a and M , without having to specify the viscosity mechanism
responsible for transferring angular momentum outward through the disk. We consider disks that
are axisymmetric (independent of φ) as well as time-independent, lie in the plane θ = π/2, and are
very thin (∆θ � 1). The central mass M is at r = 0.

Much of this lecture is drawn from two classic papers: [43] and [60].

5.3.1 Newtonian accretion disks

We begin by reviewing the nonrelativistic case. Locally, such a disk is characterized by

Σ ≡ mass per unit area = surface density,

vr ≡ radial drift (accretion) velocity,

F ≡ Teff = energy/area/time emitted from one side of disk.

(The fluxes from the upper and lower sides of the disk are each equal to F ). Also, the angular
velocity and angular-momentum per unit mass are

Ω =

√
GM

r3
and L = Ωr2 =

√
GMr,

respectively. In writing the above, one neglects the influence of pressure gradients on the rotation
curve and assumes that the gravitational attraction of the central mass is balanced only by centrifugal
acceleration. It can be shown that corrections are smaller by ∼ ×∆θ2 since pressure also determines
the thickness of the disk. The orbital energy per unit mass is

E ≈ 1

2
(Ωr)2 − GM

r
= − GM

2r
.
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The contribution of vr to EK is negligible since one assumes vr � Ωr. Also, since we are discussing
nonrelativistic theory, the contribution +c2 from the rest mass has been omitted from E. The
accretion rate or mass flux Ṁ(r) is the mass per unit time crossing radius r in the inward direction:

Ṁ = −2πrΣ vr .

In a steady disk, Ṁ is independent of r as well as t, else mass would accumulate or drain away
from parts of the disk. At the inner edge, the accreting matter joins the central mass M . The
angular-momentum flux is

fJ = −ṀL + 2πrW.

The first term represents bodily transport by the mass itself (minus sign because fJ > 0 when
transport is outwards). The second represents transport by stresses such as magnetic fields, turbu-
lence (Reynolds stress), etc.—often called “viscous transport,” although true microscopic viscosity
is almost always negligible in astrophysics. The rate of accumulation of angular momentum between
r and r + dr is

fJ(r) − fJ(r + dr) = −∂fJ
∂r

dr .

Since this vanishes in a steady disk, fJ is also independent of radius; this would not be possible
without the W term unless Ṁ = 0, because dL/dr 6= 0. It follows that

2πrW = ṀL + fJ, in, (5.14)

where fJ, in is the angular momentum flux at the inner edge of the disk.

The newtonian energy flux is

fE = −ṀE + 2πrΩW.

The second term arises because 2πrW is the torque exerted by the part of the disk interior to r on
the part exterior, and this torque does mechanical work at the rate 2πrΩW . Now fE is not constant:

∂fE
∂r

= −Ṁ dE

dr
+

∂

∂r
[Ω(2πrW )]

= −ṀΩ
dL

dr
+

∂

∂r
[Ω(2πrW )]

= Ω
∂

∂r
(−ṀL + 2πrW ) + 2πrW

dΩ

dr

= 2πrW
dΩ

dr
.

The second line above follows from the first because of the theorem (5.5) [which holds nonrelativis-
tically also, as can easily be checked]. The fourth line follows from the third because ∂fJ/∂r = 0.
The divergence of the energy flux does not accumulate in the disk but is radiated from its surface.
Thus

2× 2πrF = −∂fE
∂r

= 2πrW
dΩ

dr

⇒ 4πrσT 4
eff = −

(
ṀL + fJ, in

) dΩ

dr
. (5.15)

This is the promised relation between accretion rate and disk emission, from which the stress term
has been eliminated. The constant fJ, in is determined by an appropriate boundary condition at the
inner edge of the disk.
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5.3.2 Relativistic conservation laws

The equations for steady relativistic disks are similar to the newtonian ones, but there a few pre-
dictable differences. First, since energy and mass are unified, and since energy is lost by radiation
from the disk surface, the statement ∂Ṁ/∂r = 0 must be reinterpreted to mean something other
than conservation of total mass within the disk. Second, while the newtonian theory neglects the
angular momentum carried off by the radiated photons, the relativistic theory does not, leading to
nonzero divergence of fJ . Finally, distinctions will have to be made between the measurements of
various quantities in the “lab” frame and in local frames comoving with the gas.

Recall from the lectures on SR that if Nµ ≡ N̄U ν̂ is the 4-current of a flow of particles having
4-velocity U ν̂ (a function of spacetime) and number density N̄ in their rest frame, and if these
particles are neither created and destroyed, then

N ν̂
, ν̂ = 0. (5.16)

The generalization of this to a general coordinate system is

g−1/2
(
g1/2Nν

)
, ν

= 0, (5.17)

where
g ≡ |det{gµν}| . (5.18)

Many authors omit the absolute value signs from the definition of g and write
√
−g in eq. (5.17).

This result is proved in the §5.4, where it is also shown that the infinitesimal volume element

g−1/2 d4x = ḡ−1/2 d4x̄ . (5.19)

is independent of the coordinates. Therefore if V is an arbitrary 4-volume and f is any function that
vanishes outside V, eq. (5.17) implies

0 =

∫
V

f
(
g1/2Nν

)
, ν
d4x = −

∫
V

Nνf, ν g
1/2d4x (5.20)

using integration by parts in each coordinate dx0 . . . dx3. In particular, if f is the characteristic function
of V, meaning

f(x) =

{
1 if x ∈ V,
0 otherwise,

then the righthand side of eq. (5.20) becomes an integral over the boundary ∂V, so that eq. (5.20)
implies the integral form of the conservation law (5.17).

The generalization of T µ̂ν̂, ν̂ = 0 is usually more complicated, but if the metric is independent of

x0 and x3, then it can be shown that(
g1/2T ν

0

)
, ν

= 0 and
(
g1/2T ν

3

)
, ν

= 0. (5.21)

To make this plausible, consider the case of “dust” free of nongravitational forces: Tµν → pµN
ν ,

where pµ is the 4-momentum of an individual particle and Nν is their 4-current; then(
g1/2T ν

µ

)
, ν

= pµ

(
g1/2Nν

)
, ν

+ g1/2Nν ∂pµ
∂xν

.

The first term on the right vanishes if the particles are conserved, while the second term is propor-
tional to the change in pµ along the particle worldlines; but since the particles move along geodesics,
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p0 = −E and p3 = Lφ are constant on each worldline. The generalization of this to arbitrary energy-
momentum tensors basically follows from Newton’s Third Law: particles can exchange energy and
angular momentum by exerting forces on one another, but E and Lφ are still locally conserved.

For the Kerr metric in Boyer-Lindquist coordinates,

g1/2 = ρ2 sin θ → r2 at θ ≈ π

2
. (5.22)

The relativistic version of Ṁ =constant follows by multiplying eq. (5.17) by g1/2 and integrating
over θ from the top (θt = π/2−∆θ/2) to the bottom (θb = π/2−∆θ/2) of the disk

0 =

θt∫
θb

dθ ∂r(r
2N1) +

[
r2N2

]θb
θt
.

Replace Nµ → N̄Uµ, where N̄ is the number per unit volume in the fluid rest frame, which vanishes
at the top and bottom of the disk. Then the second term above vanishes. In the first term, exchange
the order of ∂r and

∫
dθ:

0 = ∂r

r2

θt∫
θb

dθ N̄U1

 .
Now define rest mass per unit area in the rest frame:

Σ(r) ≡ mr
θt∫
θb

dθ N̄(r, θ). (5.23)

where m is the rest mass of a single particle. Assuming that U1 does not vary much across the disk,
we then have

∂rṀ = 0, Ṁ ≡ − 2πrΣU1. (5.24)

Although Ṁ has the dimensions of mass/time, it is really just a rescaling of (number of parti-
cles)/time.

To get the energy and angular-momentum conservation laws, we start by defining a bare-bones
energy-momentum tensor in the local rest frame of the gas. Using orthonormal axes aligned with
the radial, azimuthal, and vertical directions, this is

T µ̂ν̂ =


mN̄ 0 F 0

0 0 0 S
F 0 0 0
0 S 0 0

 (5.25)

= mN̄U µ̂U ν̂ + F (r, θ)
(
U µ̂bν̂ + U ν̂bµ̂

)
+ S(r, θ)

(
aµ̂cν̂ + aν̂cµ̂

)
. (5.26)

F is the vertical (i.e., θ direction) energy flux, and S is the offdiagonal stress responsible for angular
momentum transport, i.e. azimuthal force per unit area perpendicular to r. In the second line,
aµ̂, bµ̂, and cµ̂ are unit vectors in the radial, vertical, and azimuthal directions, orthogonal to one
another and to the 4-velocity U µ̂, e.g.

ηµ̂ν̂a
µ̂aν̂ = 1, ηµ̂ν̂a

µ̂bν̂ = ηµ̂ν̂a
µ̂cν̂ = ηµ̂ν̂a

µ̂U ν̂ = 0,
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and so forth. In the “lab” frame, at rest with respect to the Boyer-Lindquist coordinates, the
components of this tetrad are

Uµ = (U0, U1, 0, U3) U1 � U3&U0

aµ = (a0, a1, 0, a3) a0&a3 � a1

bµ = (0, 0, r−1, 0)

cµ = (c0, c1, 0, c3) c1 � c0&c3. (5.27)

The indicated relative sizes of these components follow from the fact that the relative velocity of the
rest and lab frames is mostly along the φ direction, since the radial velocity of the gas is very small.
Note furthermore that

Uµ ≡ gµνUν = (−E, grrUr, 0, L). (5.28)

Now integrate the angular-momentum conservation law across the disk:

0 = ∂r

r2

θt∫
θb

dθ T 1
3

 + r2
[
T 2

3

]θb
θt

(5.29)

Comparing eqs. (5.26), (5.27), and (5.28), T 2
3 = FL/r. Furthermore the energy fluxes at top and

bottom are equal in magnitude but opposite in direction, so F (r, θt) = −F (r, θb) ≡ F . So the
second term in eq. (5.29) yields 2rFL. After performing the integration in the first term, we get a
contribution (−LṀ/2π) from the mN̄U0U

3 piece of (5.26), and the rest is

r2

∫
dθ S(r, θ) c3 a

1 ≡ rW (r). (5.30)

(There is also a negligibly small contribution proportional to a3 c
1.) Putting it all together, we have

the angular-momentum conservation law in the form

∂r

[
−LṀ + 2πrW

]
+ 4πrFL = 0. (5.31)

The same procedure turns the energy-conservation law (g1/2T µ
0 ), µ = 0 into

∂r

[
EṀ + 2πrWE

]
− 4πrFE = 0,

where

rWE(r) ≡ r2

∫
dθ S(r, θ) c0 a

1 .

However, WE is related to W by the fact that

0 = cµU
µ ≈ c0U0 + c3U

3,

the term c1U
1 being smaller by O[(U1/U0)2]� 1. But

U3

U0
=

dφ

dt
≡ Ω,

whence c0 = −Ωc3. It follows that WE = ΩW , and therefore

∂r

[
EṀ − 2πrΩW

]
− 4πrFE = 0. (5.32)
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Equations (5.24), (5.31), and (5.32) are the fundamental equations of a steady thin disk. The
stress term W can be eliminated by adding Ω times eq. (5.31) to eq. (5.32) and invoking eq. (5.5),
which leads to

W = −2F (E − ΩL)/∂rΩ . (5.33)

Substituting this into eq. (5.31) gives a first-order differential equation for F :

d

dr

[
r(E − ΩL)

∂rΩ
F

]
− rLF = −Ṁ

4π

dL

dr
.

This equation has the integrating factor µ = (E − ΩL), so

F (r) = σT 4
eff =

rdΩ/dr

(E − ΩL)2

(constant) − Ṁ

4π

r∫
(E − ΩL)

dL

dr
dr

 (5.34)

Once again, the constant is fixed by boundary conditions at the inner edge of the disk.

5.4 Appendix: Invariant 4-volume and divergence formula

To prove eq. (5.18), let {xµ̂} be freely-falling coordinates, so that

gµν =
∂xµ̂

∂xµ
ηµ̂ν̂

∂xν̂

∂xν
.

This can be regarded as a matrix equation, g = MTηM , so by taking determinants of both sides,

g =

∣∣∣∣{∂xµ̂∂xµ

}∣∣∣∣2 .
But the righthand side is the square of the jacobian of the transformation {xµ̂} → {xµ}, so
g1/2d4xµ = d4xµ̂, which suffices to establish (5.19).

Next we will need the following theorem about matrices: If dM is a first-order derivative of a
nonsingular N ×N matrix M , then the corresponding derivative of its determinant is

d(detM) = (detM)Trace
(
M−1dM

)
. (5.35)

To prove this, consider that the contribution from the change in the ith row of M is, by Cramer’s
rule,

N∑
j=1

(−1)i+j CijdMij = (detM)

N∑
j=1

[M−1]ji dMij ,

where Cij is the ijth minor of M . Summing this expression over all rows i yields (5.35). Now

∂

∂xµ̂
(
N µ̂
)

=
∂xµ

∂xµ̂
∂

∂xµ

(
∂xµ̂

∂xν
Nν

)

=
∂xµ

∂xµ̂
∂xµ̂

∂xν
Nν

,µ +
∂xµ

∂xµ̂
∂2xµ̂

∂xν∂xµ
Nν

= δµνN
ν
,µ + Trace

(
M−1dNM

)
,

= Nµ
, µ + (detM)−1dN (detM),

if [M ]µ̂ν ≡
∂xµ̂

∂xν
and dN ≡ Nν ∂

∂xν
.
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Finally, recognizing once again that detM = g1/2, we have

N µ̂
, µ̂ = g−1/2

(
g1/2Nν

)
, ν

QED. (5.36)
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5.5 Problems for Chapter 5

1. (a) A nonrotating neutron star of mass M and radius1 R > 3M has an angular diameter
δ � 1 as seen by a distant stationary observer at r � R. Show that if the observer computes
the apparent diameter as Dapp = rδ, then

Dapp = 2R

(
1− 2M

R

)−1/2

.

Evaluate this for the realistic (?) values M = 1.4M� and R = 10 km.

(b) Suppose that the entire surface radiates as a black body at temperature Tsurf . What tem-
perature T∞ does a stationary observer at r � R see? [Hint: Recall that the mode occupation
number n is constant along photon trajectories in vacuum, even in GR.] What is the relation-
ship between the luminosity (radiated power) Lsurf = 4πR2σT 4

surf computed by an observer
standing on the surface and the luminosity L∞ measured by stationary observers at r � R?
If you used part (a) to calculate this, can you justify the result for L∞/Lsurf in another way?

2. Show that the geodesic equations can be written in hamiltonian form

dxµ

dσ
=
∂H

∂pµ
,

dpµ
dσ

= − ∂H
∂xµ

, (5.37)

where

H ≡ pµ
dxµ

dσ
− L =

1

2
gαβpαpβ .

Here and always, if g is the 4× 4 symmetric matrix whose components are gαβ , then gαβ are
the components of g−1, so that

gµβg
βν = δνµ ≡

{
1 if µ = ν ,

0 if µ 6= ν .

In the case of a massive particle, we take dσ = mdτ to make the dimensions of momentum
work out right. You will need to make use of the identity

gαβ,µ = −gκλ,νgακgβλ ;

derive this by applying the product rule to

d
(
g · g−1

)
= dI = 0,

where I is the identity matrix and d is any derivative operator.

(b) (Required of graduate students only.) Write a computer program to integrate orbits (both
timelike and null) in the Kerr metric using the hamiltonian equations (5.37) and any suitable
numerical algorithm, e.g. Runga-Kutta4. (The only nondiagonal part of g is the tφ block.
You can read off gtt, gtφ, gφφ from (4.46) & (4.47), remembering that (E,Lφ) ≡ (−pt, +pφ.)
Check the accuracy of your results by the constancy of H and of the third integral K given
by (4.55). Plot some representative trajectories in the (r, θ) plane (with nonzero θ of course).
Verify as many of the analytic results given in lecture as you have time and patience for, e.g.
the radii of prograde and retrograde orbits, the angular velocity ωH of the horizon.

1in the sense of the Schwarzschild coordinate, i.e. the proper circumference is 2πR
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Chapter 6

Neutron Stars

The possibility of self-gravitating, macroscopic objects consisting solely of neutrons was recognized
independently by Lev Landau and Fritz Zwicky shortly after the discovery of the neutron (by Chad-
wick) in the 1930s.

6.1 Masses and radii

While we are mainly concerned with the surfaces and atmospheres of neutron stars, and with their
radiative processes, a few remarks on their internal structure are in order because an important
motivation for studying these objects is to constrain the equation of state of matter under extreme
conditions. For this purpose, a precise observational determination of the relationship between mass
and radius is much desired, but so far elusive.

Nevertheless, it is possible to understand why neutron stars have roughly the masses and radii
they do at the back-of-the-envelope level. Like white dwarfs, neutron stars are supported by degen-
eracy pressure rather than thermal pressure. But whereas the electrons in a white dwarf behave as a
(degenerate) ideal gas to a good first approximation, the neutron fluid in a neutron star is definitely
not ideal: inter-nucleonic forces play important roles. Still, the ideal-gas approximation is the place
to start. Thus, let a star of total mass1 M consist of M/m identical fermions each of mass m. The
radius of the star is R, so that the total number of states in phase space at radii r ≤ R and momenta
p ≤ pf is, including a factor for spin, is

(2s+ 1)

(
4π

3
R3

)(
4π

3
p3
f

)
h−3 ≈ M

m
. (6.1)

This determines the Fermi momentum pf in terms of (N,R); it is only an approximation, because
in general the number density N will vary with radius, decreasing from r = 0 to r = R, and so will
the local pf ∼ ~N−1/3. We take 2s + 1 = 2 henceforth, as appropriate for electrons, neutrons, and
quarks.

On the other hand, the total energy of the “star” is

E ≈ M

m
εf −

GM2

R
, (6.2)

in which εf is the kinetic energy per particle corresponding to momentum pf, and the second term
above is the gravitational energy in the approximation of a Newtonian sphere of uniform mass
density. Obviously there should be numerical factors in front of both the kinetic and potential

1Where relativistic corrections to mass-energy are important, M is to be taken as the total rest mass, i.e. Nm,
where m is the rest mass each fermion would have if it were not in a gravitational field, and N is their number.
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terms above, but these factors are similar for uniform density and therefore do not much alter the
equilibrium radius, which is determined by the condition (∂E/∂R)M = 0. Now(

∂εf
∂R

)
M

=
dεf
dpf

(
∂pf
∂R

)
M

= −vf
pf
R
,

where vf = ε′f(pf) is the 3-velocity at the Fermi surface, as can be verified from ε(p) =
√
p2c2 +m2c4−

mc2. Therefore (
∂E

∂R

)
M

≈ −M
m

vfpf
R

+
GM2

R2
, (6.3)

If the fermions are nonrelativistic, then vf ≈ pf/m, and in combination with (6.1), this leads to
R ∝ M−1/3. But in sufficiently massive and compact stars vf → c, in which case (6.1) yields
pfR ≈ GMm/c. Using this to eliminate (pfR)3 from (6.1) yields a unique mass:

M ≈ 3
2π

1/2

(
~c
G

)3/2

m−2 ≈ 5
(mp

m

)2

M� , (6.4)

which should be interpreted as a maximum mass that can be supported by degeneracy pressure in
the ideal-gas approximation.

For a white dwarf, scrutiny of the steps above shows that m should be interpreted as the rest
mass associated with each electron, which is not me but (A/Z)mp ≈ 2mp for compositions consisting
of light elements heavier than hydrogen. This yields Mmax,WD ≈ 1.25M�, which is not a bad
approximation to the more correct value 1.4M�, considering the simplicity of our approximations.

For a neutron star, two important corrections are required. First, the general-relativistic form
of the differential equation for hydrostatic equilibrium must be used. This is called the Tollman-
Openheimer-Volkoff Equation. For an ideal gas of neutrons, this leads to a maximum mass that is
actually < M� because relativistic gravity is stronger than newtonian. The second correction is to
the equation of state. As the neutrons are squeezed together, the forces between them make the
ideal-gas approximation untenable. At densities above nuclear density, ρ > ρnuc = 2.8×1014 g cm−3,
these forces are repulsive. This is plausible because as the nucleons begin to overlap, the pf of their
constituent quarks starts to increase, leading to a decrease in the effective value of the fermion mass
m in (6.4) (the u and d quarks probably have masses . 10 MeV/c2). Qualitatively, this is the same
reason that atoms or molecules repel one another as their electron clouds are forced to overlap. This
“stiffening” of the equation of state (EOS) partly compensates for the reduction of Mmax by the
TOV equation. But the quantitative details of the EOS of nuclear matter are still uncertain, and
consequently the maximum mass of neutron stars is still unknown. Several accurately measured
masses have been obtained for pulsars in binary systems by means of accurate pulse timing and
detection of various relativistic effects on the orbit. Most of these are in the range 1.3-1.6M�, but
recently a well-determined mass of 1.97± 0.04M� has been announced [14].

6.1.1 Radii

Neutron-star radii are more difficult to measure than masses. In principle, the moment of inertia
I ∼ MR2 might be constrained in binary pulsars via gravitational versions of spin-orbit coupling,
but this has not yet been achieved: the coupling is weak because R is extremely small compared
to the orbital separation. From time to time, there are claims of detections of gravitationally
redshifted spectral lines from neutron-star surfaces, but none of these claims has been generally
accepted. Probably the best current constraints come from analysis of Type I X-ray bursts of
accreting neutron stars, as described below.

Some simple upper and lower bounds on R can easily be derived. The star should be larger than
its own Schwarzschild radius, hence R > 6(M/2M�) km. Relativistic considerations dictate that
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R must actually be larger than this bound by at least a factor of 9/8 in order that the speed of
sound implied by the EOS be < c. Some pulsars are rapidly rotating; the current record-holder is
PSR J1748-2446ad, with a rotation rate Ω/2π = 716 Hz [26]. Since the equatorial rotation velocity
must be less than that of a circular orbit, R < (GM/Ω2)2/3 ≈ 24(M/2M�)1/3 km; a more careful
consideration of relativistic effects leads to R0 < 16(M/2M�)1/3 km, where R0 is the radius that the
star would have if it were nonrotating [32]. The geometric mean of these upper and lower bounds is
R̄ ≈ 10 km. Calculations based on plausible equations of state predict R ≈ 8−15 km for a canonical
M = 1.4 M� [32].

6.2 Type I X-ray bursts

These are thermonuclear flashes on the surfaces of neutron stars accreting from a binary companion.
For reviews, see [58, 19], which have theoretical and observational emphases, respectively.

Matter falling onto the surface of a neutron star releases a gravitational energy

Ė =
z

1 + z
Ṁc2 ≈ 0.23Ṁc2, (6.5)

where z is the gravitational redshift defined by eq. (6.7) below, z ≈ 0.31 for M = 1.4M� and
R = 10 km. This is much larger than the energy released by (hydrogen) fusion, 0.007Ṁc2. If the
accreting material burned continuously, then the heat of fusion would be difficult to detect. However,
at accretion rates below 1% of the Eddington accretion rate

ṀEdd =
1 + z

zc2
LEdd,∞ =

8πGMmp

(1 +X)σTcz

≈ 1.0× 10−8

(
M

M�

)(
10 km

R

)
2

1 +X
M� yr−1 , (6.6)

whereX is the hydrogen mass fraction of the accreted material (X� ≈ 0.7), this material accumulates
until it reaches a mass column Σign ∼ 2 × 108 g cm−2 and a pressure Pign ∼ 3 × 1022 dyn cm−2,
whereupon it ignites, reaching peak temperatures in the burning layer ∼ (Pign/a)1/4 ∼ 109 K, at
which point radiation pressure causes the layer to expand. These bursts last 10s of seconds and
recur at intervals of a few hours to a few days, depending on Ṁ). At accretion rates 10−2ṀEdd <
Ṁ < 10−1ṀEdd, the hydrogen burns steadily to helium but the helium accumulates until it ignites.
At still higher rates but . 0.3ṀEdd, the hydrogen cannot burn quickly enough to keep up with
the accretion, so that it bursts together with the helium. At still higher rates, everything burns
steadily. Or such at least is the theoretical expectation; the actual behavior appears to deviate
somewhat from this expectation as judged by comparisons between the time-integrated emission
between bursts, which measures Ṁ via eq. (6.5). The neutron stars involved in Type I bursts
appear to be relatively weakly magnetized compared to normal (i.e., non-millisecond) pulsars, but
it is possible that because of magnetic channeling or other reasons, the accreting material is not
uniformly distributed over the surface, in which case what matters for these various burning regimes
is not the total accretion rate but rather the local rate per unit area.

Interest in these events is motivated in part by the possibility of determining the neutron star
mass, radius, and distance from the X-ray light curve and spectral energy distribution [62]. An
example of such an event is shown in Figure 6.1. The light curve shown in the top panel has a flat
portion: this is interpreted as emission at the effective Eddington limit. Note that the peak X-ray
luminosity is & 6 × 1038 erg s−1, which is 5LEdd for 1M� of hydrogen. This probably does not
indicate a 5M� neutron star but rather an atmosphere consisting of helium and heavier elements,
for which the mass per electron is twice what it would be for pure hydrogen, with a corresponding
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increase in LEdd/M .2 The second panel shows the radiation temperature inferred from the X-ray
spectral energy distribution (SED), i.e. the color temperature. At the circled point, corresponding
to the peak flux, kBTc ≈ 2.5 keV, whence Tc ≈ 2.9 × 107 K. Näıvely interpreted, this implies a
photospheric radius Rph ≈ (Lmax/4πσTT

4
c )1/2 ≈ 11 km.

Figure 6.1: An extreme photospheric-expansion burst in the globular cluster Terzan 2 observed by
RXTE [19]

In rough outline, postponing possible complications, the logic by which mass (M), radius (R),
and distance (D) may all be determined can be summarized as follows. The peak bolometric flux
received at Earth determines Lpk/D

2 and therefore M/D2 if Lpk = LEdd. The SED gives Tc, and
therefore (R/D)2 ≈ Fpk/T

4
c . Eliminating D between these expressions gives M/R2. Now there are

corrections to L and T as observed “at infinity” compared to their local values at the photosphere,
which scale as powers of the gravitational redshift

1 + z ≡ (−g00)−1/2 =

(
1− 2GM

c2Rph

)−1/2

. (6.7)

These corrections would be degenerate with the quantities already determined if Rph were constant,
but in fact it appears to vary during the outburst, as judged by variations in F/T 4

c . The interpreta-
tion is that the luminosity gets so close to the Eddington limit that scale height of the atmosphere
becomes comparable to or larger than R itself: this is indicated by the bottom panel of Fig. 6.1.
The gap in the light curve shown in the top panel around 5-10 seconds is caused by the shift of

the color temperature Tc ∝ R−1/2
ph to values lower than those to which the detector is sensitive; the

bolometric luminosity is presumed to be almost constant within ∼ ±0.01LEdd, at least during the
period when Rph is substantially larger than R.

The reason that the luminosity must be so close to LEdd during a photospheric radius expansion
(“PRE” in the literature) is as follows. We have seen that the temperature at which a neutron star
radiates LEdd from its surface is ∼ 2×107 K. If radiation pressure forces were unimportant, the scale

2Even so, the implied mass is somewhat overlarge in this case. It is suspected that the inner part of the accretion
disk acts as a mirror, concentrating flux towards the observer and giving the illusion of a larger isotropic luminosity.
The average peak flux from bright bursts with well-determined distances is 3-4×1038 erg s−1, in line with expectations
for a hydrogen-poor atmosphere above a ∼ 1.4M� star [19].
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height for the gas pressure and density at this temperature would be H0 ∼ kBT/(mpg) ∼ 10 cm (!),
where

g(r) = (1 + z)
GM

r2
(6.8)

is the proper gravitational acceleration experienced by a stationary observer Schwarzschild radial
coordinate r: note the redshift factor (Chap. 4). Thus, if the atmosphere is in hydrostatic equilibrium
with an actual scale height ∼ Rph−R� H0, the radiative forces cannot be negligible but must cancel
the gravitational ones to an accuracy ∼ H0/(Rph − R). Why must the atmosphere be hydrostatic
rather than a wind? In fact, there may be some outflow near or beyond Rph, but the bulk of the
atmosphere cannot be ejected because, as we have also seen, the energy available from fusion is
much less than its binding energy.

Now the local Eddington luminosity at finite radius r is different from the luminosity defined by a
stationary observer at infinity, even if this is based on the correct mass M and chemical composition
(X,Z) (i.e, the correct opacity), because of the gravitational redshift. On the one hand, LEdd(r)
is increased relative to the nonrelativistic result by the factor (1 + z) in the proper acceleration
(6.8). On the other hand, for any luminosity L(r) measured by a stationary observer at radius r, the
corresponding luminosity measured at infinity is L(∞) = L(r)/(1 + z)2: each photon is redshifted
by a factor (1 + z)−1 as it climbs out of the potential well, and the rate of emission of these photons
suffers time dilation by the same factor. The upshot is that

LEdd(∞) =
LEdd(r)

1 + z(r)
. (6.9)

Thus, insofar as LEdd(Rph) is constant while Rph expands and recontracts, the astronomer’s received
flux ∝ LEdd(∞)/D2 should vary as described by eqs. (6.9) & (6.7). with a fractional amplitude
. 30%. If this variation is measured, and to the extent that it can be attributed to this effect,3 one
has a measure of M/R.

Recently, [39] have attempted to measure the mass and radius of the Type I burster EXO 1745-
248 in the globular cluster Terzan 5. The advantage of using a burster in a globular cluster is that the
distance to the cluster can be estimated independently, removing the need to rely on the relativistic
effects to provide the third relation among the three a priori unknowns {M,R,D}. They find that
the apparent emitting area A = 4πD2F/[σT(Tc/fc)4] is constant during the fading part of the burst,
as expected if the photosphere lies at the neutron-star surface during this phase. In this formula
for A, the quantity fc—the color correction factor—relates the color temperature measured from
the SED to the effective temperature (which expresses the emitted bolometric flux). After making
the appropriate relativistic corrections to A, these authors find two solutions that fit the data well:
{M,R} ≈ {1.7M�, 9 km} and {1.4M�, 11 km}, both with 1σ errors of order 10%. These values are
eminently reasonable and consistent with popular equations of state, but one ought to be concerned
about the possibility of systematic errors [25, 24].

Under the conditions relevant to the expanded photosphere of a Type I burst, the absorption
opacity (κa) is much smaller than the electron-scattering opacity (κs). This inevitably leads to a
discrepancy between the color temperature and the effective temperature. The former determines
the shape of the spectral energy distribution to the extent that it can be described as a blackbody,
while the latter determines the normalization of the spectrum. In other words, if fc ≡ Tc/Teff , then

Iν(θ, φ) = f−4
c Bν(Tc)

F = σsbT
4
eff ≡

∫
Iν(θ, φ) cos θd2Ω = f−4

c σsbT
4
c . (6.10)

3There should also be a small variation due to the dependence of the Klein-Nishina cross section on Tc, but this
is only a few percent at keV energies, and in any case is predictable. Much more important uncertainties are due to
possible variations in opacity, instrumental errors, reflection of flux by the accretion disk, etc.
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In the second line, F is the frequency-integrated flux emerging from the surface of the atmosphere,
and the polar angle θ is defined with respect to the outward-pointing normal. Note that the effective
temperature Teff is a measure of the (fourth root of) the flux F ; the effective temperature can
therefore be defined even for spectral energy distributions that bear little resemblance to a black
body. A source that emits with a spectrum having the shape of a black body but a different
normalization is sometimes called a gray body, and the normalization fg < 1 is called the graybody
factor. With the color correction factor fc defined as above, fg = f−4

c .
In particular, the color correction factor has to be predicted from a theory of the radiative transfer

in the atmosphere, using assumptions about the atmospheric composition. We give a simplified
discussion of this issue below. But first, we digress to introduce the equation of radiative transfer
itself

6.2.1 Radiative transfer in the diffusion approximation

The purpose of this section is to motivate the approximate equations (6.16). If these are already
familiar, then skip ahead.

In a form sufficiently general for present purposes, the equation of radiative transfer is

dIν
ds

(Ω, s) = −ρ(κa + κs)Iν + ρκaBν(Tm) + ρκs

∫
Iν(Ω′, s)

dσ

dΩ
(Ω′ → Ω)d2Ω′ (6.11)

Here s is arc length along a ray, Ω is a shorthand for the direction (θ, φ) of the ray, Tm is the internal
temperature of the matter that emits and absorbs the radiation, and dσ/dΩ is the differential cross
section for scattering from direction Ω′ to Ω, normalized according to∫

dσ

dΩ
(Ω′ → Ω) d2Ω = 1, (6.12)

so that the integral term returns just as much energy to the radiation field as the term −κsIν removes
from it. More generally, when the matter has no well-defined internal temperature—as in the case of
nonthermal synchrotron radiation, for example—the combination κaBν(Tm) would be replaced by a
source function Sν(Ω). Also, one generally has to allow for a change in frequency under scattering
(due, for example, to electron recoil). But the simplified form (6.11) is adequate for X-ray burst
atmospheres in the first approximation.

The distinction between absorption and scattering is sometimes hard to draw precisely, but
one should think of scattering as changing some properties of a photon without entirely destroying
it—mainly its direction—whereas absorption replaces the original photon with photons drawn at
random from a distribution determined by Tm or other internal parameters of the radiating matter.
Absorption may change the number of photons, whereas scattering does not. In particular, Compton
scattering conserves photon number, bremsstrahlung emission and free-free absorption do not.

It is not hard to see that if the matter is at a uniform temperature, then eq. (6.11) has the
particular solution Iν = Bν(Tm), in which case the lefthand side vanishes and the radiation field
is isotropic. This solution holds deep in the atmosphere. Close to the photosphere, however, it
cannot hold because there the specific intensity Iν(Ω) becomes anisotropic. If there is no radiation
impinging upon the photosphere from outside, then Iν(θ, φ; sph) = 0 for cos θ < 0 if θ is measured
with respect to the outward pointing normal.

Even eq. (6.11) is too complicated to solve directly without a lot of numerical work. So we adopt
the diffusion approximation: The radiation field is presumed only mildly anisotropic, so that its
angular dependence can be expanded in Legendre polynomials:

Iν(Ω, s) =

∞∑
n=0

I(n)
ν (z)Pn(cos θ).
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For simplicity, the spatial dependence depends on a single spatial coordinate, z, which measures
height in the atmosphere and increases along the outward normal; this is related to arc length along
a ray by dz = cos θ ds. The specific intensity is independent of the azimuthal angle φ. In the diffusion
approximation, one further discards all terms in the above series except the first two, i.e. n = 0 and
n = 1: these are the minimum set needed to describe a net outward flux. The surviving terms are
given special names and symbols:

Uν(z) ≡ c−1

∫
Iν(Ω, s)d2Ω → 4π

c
I(0)
ν (z), (6.13a)

Fν(z) =

∫
Iν(Ω, z) cos θ d2Ω → 2πI(1)

ν (z), (6.13b)

Pν(z) = c−1

∫
Iν(Ω, z) cos2 θ d2Ω → 1

3
Uν(z) . (6.13c)

Here Uν(z) is the energy density per unit frequency at height z; Fν(z) is the corresponding flux
density, which vanishes for an isotropic field; and Pν(z) is the radiation pressure, which is defined

in general by the first equality in eq. (6.13c) but reduces to Uν/3 when I
(n)
ν → 0 for n ≥ 2.

With the further assumption that dσ/dΩ is front-back symmetric, i.e. that the rates for scattering
from (θ′, φ′) to (θ, φ) and to (π − θ, φ+ 2π) are the same—this is true of nonrelativistic Thompson
scattering—one obtains coupled equations for the energy density and flux:

dFν
dz

= −ρκa [cUν − 4πBν(Tm)] (6.14a)

c

3

dUν
dz

= −ρ(κa + κs)Fν . (6.14b)

Eq. (6.14a) results from integrating (6.11) over d2Ω after replacing ds→ dz/ cos θ on the left side.4

The scattering terms annihilate because of the normalization (6.12). Eq. (6.14b) results from a
similar integration over d2Ω after first multiplying both sides of eq. (6.11) by cos θ; the final term in
(6.11) gives no contribution when weighted by cos θ because of the assumed front-back symmetry.

It is often convenient to change the independent variable from z to optical depth

τ ≡
∞∫
z

(κa + κs)ρ dz . (6.15)

Equations (6.14) then become

dFν
dτ

= α [cUν − 4πBν(Tm)] (6.16a)

c

3

dUν
dτ

= Fν , (6.16b)

where α ≡ κa/(κa + κs) is the fraction of the total opacity represented by absorption.

6.2.2 The graybody factor

Equations (6.16) consitute two ordinary differential equations in z (for each frequency ν) and there-
fore require two initial or boundary conditions. One condition is

cUν − 4πBν(Tm)→ 0 as τ →∞ , (6.17)

4Do not confuse z as vertical coordinate with z as redshift.
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i.e., the radiation and matter temperatures are at equilibrium deep in the atmosphere.
The other boundary is τ = 0, which is notionally a surface from which photons escape freely. In

reality the gas density never quite falls to zero, and so τ = 0 corresponds to z = +∞. However,
if the atmosphere were truly plane-parallel, it would asymptotically occupy half the sky as seen
from increasingly large heights and correspondingly low optical depths. At such large heights,
Fν → fecUν , where fe is a positive constant less than unity (because all photons move outward, but
not directly upward). This leads to the boundary condition fe = 1/2.

Fν → fecUν at τ → 0 . (6.18)

In the Eddington approximation, one supposes that at τ � 1, the specific intensity is constant along
ingoing rays—i.e., Iν(θ, τ) ≈ Iν(0, 0) at angles θ < π/2 measured from the outward normal—and
vanishes on ingoing rays (θ > π/2). With these assumptions, fe = 1/2.

If (for simplicity) the matter temperature Tm and the fractional absorption α are constants, then
eqs. (6.16) are linear inhomogeneous equations with constant coefficients. A particular solution is
(Uν , Fν) = (4π/c)Bν , 0), and the homogeneous solutions are ∝ exp(±τ

√
3α). The solution for the

flux that satisfies the boundary conditions (6.17) & (6.18) is

Fν(τ) = 4π

(
1

fe
+

√
3

α

)−1

Bν(Tm)e−τ
√

3α . (6.19)

In the limit α = 1, corresponding to negligible scattering, the atmosphere should radiate as a black
body, so that Fν(0) → πBν . This will be the case if fe = (4 −

√
3)−1 ≈ 0.441, close enough to the

Eddington approximation fe = 1/2.
In the opposite limit of weak absorption,

Fν(0) ≈ 4

√
α

3
πBν(Tm) α� 3

16
, (6.20)

so that the graybody factor fg � 1.
The square-root dependence deserves a heuristic explanation. If κa � κs, the number of scat-

terings that a photon typically undergoes while random-walking between τ � 1 and τ ∼ 0 is
Nscatt ∼ τ2. The probability of absorption per scattering is ∼ α � 1. Therefore, equilibrium
between the radiation and matter temperatures will be maintained at optical depths such that
αNscatt > 1, i.e. for τ & α−1/2 ≡ τeq. At smaller optical depths, the photons diffuse by scattering
with little change in their numbers or energies (since we neglect electron recoil). Hence the color
temperature remains approximately constant at τ ≤ τeq. However, a gradient in the energy density
is required at τ ≤ τeq to drive the diffusive flux [eq. (6.16b)], so that

Fν(0) ∼ c Uν(τeq)

3τeq
∼ 4π

3c
α1/2Bν(Tm) .

since Uν = (4π/c)Bν in thermal equilibrium.
The main source of absorption opacity is free-free, for which the following Kramers formula is a

reasonable first approximation (B. Paczynski, private communication):

κa ≈ 13(1 +X)(Z + 0.001)

(
ρ

1 g cm−3

)(
T

107 K

)−7/2

cm2 g−1

≈ 0.2
Pgas

Prad

(Z + 0.001)(1 +X)(5X − Z + 3)

4

(
T

107 K

)−1/2

cm2 g−1 , (6.21)

where X and Z are the mass fractions in hydrogen and “metals” (≡ elements heavier than He).
Note that in the second line, most of the temperature dependence has been absorbed into the ratio
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of gas pressure to radiation pressure ∝ ρ/T 3. For a neutron star radiating at its Eddington limit,
the radiation temperature is ∼ 2× 107 K5 The pressure ratio

Pgas

Prad + Pgas
≈ 1− L

LEdd
(6.22)

as a direct consequence of the hydrostatic and (frequency-integrated) radiative-transfer equation.
In the case at hand, this ratio is � 1. Therefore, it is indeed expected that κa � κs in Type-I
X-ray bursts. The graybody factor fg ≈ 4

√
κa/3κs is small and scales with the composition of the

atmosphere as (Z/Z�)1/2.

5Actually, this is Teff , since the Eddington limit applies to the flux. Tc and Tm are somewhat larger, making κa
even smaller.
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Chapter 7

The Blandford-Znajek mechanism

We have seen that

1. accretion from a thin disk can spin a black hole up nearly to its critical angular momentum
Jcrit = GM2/c, or equivalently, a ≡ J/M = 1;

2. at a/M = 1, the accretion efficiency of a thin disk is ε = 1 − 3−1/3 ≈ 0.42: that is, of every
parcel of rest mass accreted, a fraction 31/2 is added to the mass of the hole, while the rest
can be radiated1;

3. thermodynamics permits a fraction ≤ 1 − 2−1/2 ≈ 29% of M to be extracted from the black
hole by spinning it down.

It follows that by first growing a black hole up from a very small initial mass and then spinning
it down again, a net efficiency of 1 − 3−1/2 · 2−1/2 ≈ 59% might in principle be achieved, leaving
more “headroom” to meet the constraints imposed by comparison of the quasar population with
inert black holes in galactic nuclei [68, and references therein]. Also, one wants to explain how
radio galaxies emit large amounts of radio, gamma-ray, and mechanical energy in relativistic jets
with relatively little associated thermal emission; this points to the need for a “cleaner” power source
than standard disk accretion.

To achieve these goals astrophysically, one requires a means of achieving step 3 above. An
important theoretical model of how this might occur is the Blandford Znajek mechanism [hencforth
BZM], which in effect wires the spinning black hole as a Faraday unipolar dynamo. This model
is by no means universally accepted. There is no observational proof of it, and furthermore, it
still requires a disk, whose properties upon close theoretical inspection are perhaps implausible.
Nevertheless, it brings together GR and electrodynamics in an astrophysically interesting context.
The ultimate theory of radio galaxies and their jets (and possibly other sources such as GRBs) may
well incorporate elements of the BZM.

7.1 Faraday unipolar dynamo

Imagine a conducting disk made to rotate around its symmetry axis in an imposed magnetic field.
For simplicity (this is not essential) let the field be uniform and parallel to the axis. The rotation
velocity is v = ω × r at position r within the disk, where ω is the angular velocity. In locally
corotating frame, the motion contributes a radial electric field (v ×B)/c. The total electromotive

1 Taking into account preferential capture of retrograde photons by the hole, however, (a/M)max ≈ 0.998 and
εmax ≈ 0.30 [60].

95
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force due to this is

E =

R∫
0

ωBr

c
dr =

ωBR2

2c
=

ωΦ

2πc
, (7.1)

where Φ ≡
∫
B · dA = πR2B is the total magnetic flux through the disk.

If the disk is electrically isolated (no wires or brushes attached) and the rotation is steady, the net
electric field parallel to the surface of the conductor must vanish. Charges redistribute themselves
within the disk so as to create a radial electrostatic field that just cancels the v ×B/c contribution.
Hence there is a nonzero normal component E⊥ = 4πσ, where σ is the surface charge density, and
therefore a nonzero E ·B. But E ·B is Lorentz invariant, so it follows that there will be a nonzero
E⊥ in the lab (nonrotating) frame also. Also, since E and B are perpendicular to the disk in the
rotating frame, the electric field in the lab frame has the radial component E‖ = v ×B/c, and so
the voltage from the center to the edge of the disk is

V0 − VR =
ωΦ

2πc
, (7.2)

just equal to E .
What Faraday did next, of course, was to make electrical contact with the outer edge of the disk

using a wire brush, and thereby complete a circuit through an electrical load to the center of the
disk. As long as mechanical energy is supplied to keep the disk turning, a current I = E/(ZL +ZD)
flows through the circuit, and a total electrical power

P = IE =
E2

ZL + ZD

is generated, where ZD and ZL are the impedences (resistances) of the disk and the load, respectively.
The power supplied to the load is

PL = I2ZL = ZL
E2

(ZL + ZD)2
,

so the efficiency of the dynamo PL/P = ZL/(ZL+ZD), which is maximized for ZL � ZD. However,
PL itself is maximized when ZL = ZD—for a fixed E , that is, fixed Φ and ω.

7.2 Electrical conductivity of a black hole

From the point of view of external observers, the event horizon behaves as an imperfectly conducting
surface. The proof proceeds in a few steps.

1. Infalling geodesic observers move radially at the speed of light as seen by local observers who
are stationary with respect to the horizon. Consider the Schwarzschild case. In a previous lecture,
the radial equation of motion was shown to be(

dr

dτ

)2

= E2 −
(

1− 2M

r

)(
1 +

L2

r2

)
, and E =

(
1− 2M

r

)
dt

dτ

Thus dr/dτ → −E as r → 2M regardless of the angular momentum. It follows that

dr

dt
→ −

(
1− 2M

r

)
as r → 2M.

regardless of both E and L. Now a local stationary observer has proper time dτso = dt
√
−g00, and

the radial proper length corresponding to dr is dr
√
g11, so according to the stationary observer, the

radial 3-velocity is
dr
√
g11

dt
√
−g00

→ −1. Q.E.D.
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In the case of a rotating black hole, “stationary with respect to the horizon” means keeping constant
r and θ but rotating at the angular velocity of the horizon itself,(

dφ

dt

)
H

= ωH =
a

2MrH
. (7.3)

Otherwise, the proof goes through similarly, but with more algebra.
2. Charges and currents outside the horizon produce electric and magnetic fields at the horizon

that are finite as seen by freely infalling observers. For our purposes this is a postulate. It is plausible
because we have already seen that there is nothing special about the horizon from the point of view
of the infalling observer (finite tidal fields, etc.). Also, for example, it is easy to show that an infalling
observer sees finite energies for all infalling photons, so the electric and magnetic fields associated
with those photons are finite.

Using FFRF instantaneously comoving with the infalling and stationary observers (“orthonormal
frames,” for short), the transformation between the electric and magnetic fields seen by these two
sets of observers is

E‖ = γ(Ē‖ + v × B̄‖) E⊥ = Ē⊥ ,

B‖ = γ(B̄‖ − v × Ē‖) B⊥ = B̄⊥ ,

as in SR. Here the subscript ‖ means parallel to the horizon, hence perpendicular to the 3-velocity
v → −r̂ of the infalling observer, whose electromagnetic fields are denoted by the overbars. The
Lorentz factor γ → ∞ as r → rH . So unless Ē‖ = 0 = B̄‖, the stationary observer’s fields are
almost parallel to the horizon, and

E → r̂ ×B as r → rH (if Ē‖ 6= 0). (7.4)

As a check that all this makes sense, consider the electromagnetic 3-velocity defined by the ratio
of the Poynting flux to the energy density:

vem ≡
c(E ×B)/4π

(E2 +B2)/8π
.

Eq. (7.4) implies that vem → −cr̂ at the horizon, as one might expect.
Next, imagine immersing a nonrotating hole in a purely electrostatic field. Presumably B van-

ishes everywhere, hence B‖ = 0 at the horizon, and it follows that E‖ = 0. Hence the electric field
is normal to the horizon, just as one would expect if the horizon were a conductor.

To quantify the conductivity of the horizon, consider that it should perfectly absorb any incident
Poynting flux c(E‖ ×B‖)/4π. On the other hand, if there were a surface current J [dimensions:
current/(transverse length)] flowing on the horizon, the power dissipated by Joule heating would
be J · E‖ per unit area. Equating these two powers and recognizing that |E‖| = |B‖| yields
J = (c/4π)E‖. This looks like Ohm’s law for a two-dimensional conductor with surface conductivity

ΣH =
c

4π
. (7.5)

Σ−1
H has units of resistance and equates to 377 Ohms in the SI system.

7.3 Black hole as dynamo

[5] proposed to replace the disk in Faraday’s dynamo by a black hole with the angular velocity (7.3).
[Their paper is important but difficult. For a more readable account of the main ideas, see [6]. For
a thorough pedagogical discussion of black-hole physics, see [61].]
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[64] analyzed the simplest analog of the electrically isolated dynamo: a Kerr black hole embedded
in a stationary, asymptotically uniform magnetic field B0 parallel to the spin axis [cf. 61]. He found
an exact solution, with total flux through the upper half of the horizon

ΦH = 4πB0M(rH −M),

so that ΦH → πR2
SB0 in the nonrotating limit a→ 0, rH → 2M = RS. As with Faraday’s disk, the

horizon develops a surface charge to cancel the parallel component of the induced (v ×B)H electric
field in its corotating frame:

σH = −B0 a
√
M2 − a2

4MrHP2(cos θ) + (a sin2 θ)2

4π(r2
H + a2 cos2 θ)2

.

Here P2(cos θ) ≡ (3 cos2 θ − 1)/2 is the usual Legendre polynomial. So for a�M , the electric field
is quadrupolar, just as one expects for a rotating spherical conductor in a uniform field. σH changes
sign at mid-latitude, and the net electric charge on the horizon is zero.

Wald’s solution has nonzero E ·B: for example, the electric field at the “north pole” is parallel
to the axis and of magnitude

4πσH(0) = −B0 a
√
M2 − a2

4M

r3
H

.

The voltage difference between the horizon and r =∞ is of order rHB0(a/M), or numerically,

∆V ∼ 1020
( a
M

)( M

109M�

)(
B0

104 Gauss

)
Volt, (7.6)

for parameters thought relevant to quasars and radio galaxies. With such a huge voltage drop along
field lines, one expects that any stray electron in the vicinity of such a hole would be accelerated to
huge energies and, upon colliding with stray photons or charges of opposite sign, produce a cascade
of e+e− pairs. Very quickly therefore, the vacuum surrounding the black hole would be filled with a
highly conducting plasma. The plasma-loaded field lines can serve as “wires” to complete a circuit
between the pole and equator of the horizon. The EMF around this circuit is [cf. eq. (7.1)]

E =
ωHΦH

2π
,

which is numerically comparable to (7.6). Because of the plasma mentioned above, the black-hole
“magnetosphere” is almost completely short-circuited (E ·B ≈ 0), so this voltage drop occurs
mostly in two places:
(i) across the horizon itself, where the impedance ZL ∼ 4π/c;
(ii) and possibly at some distance from the hole where the circuit is closed.
The latter is called the “astrophysical load.” The thought is that the load is due either to bulk
acceleration of matter, or else the magnetosphere becomes charged-starved so that individual charges
accelerate to very high Lorentz factors. In hope is that this occurs mainly near the axis and powers
a well-collimated relativistic jet. However, the problem is at least as difficult as (and in many ways
perhaps similar to) the acceleration of pulsar winds. At the present stage, it is perhaps best described
as a scenario rather than theory. Relativistic MHD simulations may provide insight. In any case,
the same considerations concerning the power dissipated in the load and in the dynamo itself apply
to this case, so that the maximum power one may hope to extract is of order [61]
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erg s−1 , (7.7)

comparable to what is required to explain powerful radio galaxies.
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7.4 Back-of-the-envelope AGN

There must be matter surrounding the black hole—presumably an accretion disk—to sustain the
magnetic field. Otherwise, since the hole behaves like an imperfect conductor, the flux would diffuse
away from the horizon on a timescale of order [M9 ≡M/(109M�)]

GM

c3
≈ 5× 103M−1

9 sec.

But if the disk is a good conductor, the field lines cannot easily cross it, and the flux will be trapped
on the horizon. In fact the disk will probably be turbulent and accreting, in which case it can
probably serve as a magnetic dynamo to generate the large-scale magnetic flux necessary to tap the
spin energy of the black hole. The disk will have its own luminosity, which is likely to be comparable
to the maximum power (7.7) extracted from the hole.

To develop some sense for the orders of magnitude involved, recall that the maximum luminosity
of an accreting mass is believed to be the Eddington limit,

LE ≡
4πGMmpc

σT
≈ 1.3× 1047M9 erg s−1 . (7.8)

At this point, the outward radiation force on an electron, LσT /4πr
2c just balances the inward

graviational force on its associated proton, GMmp/r
2, at all radii r � RS (electrostatic fields will

prevent any significant separation of the charges). At any higher luminosity, ordinary matter is more
likely to be driven off by radiation pressure than to accrete. The energy density of the radiation
field at the Eddington limit is

ρEc
2 ∼ LE

4πR2
Sc
≈ 4× 106M−1

9 erg cm−3.

If the inner parts of the accretion disk are radiation-pressure-dominated, as seems likely, then the
energy density within the disk will be comparable to ρE (but larger by a factor of the disk optical
depth, which might be substantial). A characteristic magnetic field strength can be defined by
equating this to B2/8π:

BE ≈ 1.0× 104M
−1/2
9 Gauss; (7.9)

it is unlikely that a stronger field could be generated or stably confined by the disk. Similarly, one
can derive a characteristic temperature for the emission from the disk by setting aT 4

E = ρEc
2:

TE ≈ 1.5× 105M
−1/4
9 K ≈ 13 k−1

B M
−1/4
9 eV, (7.10)

comparable to the ionization potential of hydrogen for AGN disks.
These estimates suggest that the energy extracted from the spin of the hole, and hence perhaps

the energy in the jet, is likely to be comparable to the luminosity of the disk.
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Chapter 8

Gravitational Waves

Despite our earlier disclaimers, we have decided to include a short discussion of gravitational waves,
even though their discussion requires use of the field equations, for which we give a brief self-
contained derivation in the weak-field limit. The topic is timely and interesting because of the
prospects for direct detection by upcoming gravitational-wave detectors, especially LISA, and be-
cause these detections will probe sources of great astrophysical interest that will be difficult to study
electromagnetically, such as merging supermassive black holes at redshifts z & 1.

For a more complete discussion, see [56], whose notation we follow by and large.

8.1 Overview

Gravitational waves (henceforth GW) are perturbations in the metric and its derivatives that prop-
agate at the speed of light. The source of GW is (oscillatory parts of) the energy-momentum tensor,
Tµν , or sometimes (since GR is nonlinear) the gravitational field itself—as in the case of merging
black holes, for instance.

Perhaps 99% of practical astrophysical applications to date have used nothing more than the
Quadrupole Formula, which gives the energy loss rate (“luminosity”) in gravitational waves of
sources whose internal bulk speeds are � c:

LGW =
G

5c5
〈
...
–I ij

...
–I
ij〉 , (8.1)

in which –Iij is the traceless part of the quadrupole moment of the mass distribution,

–Iij(t) ≡ c−2

∫ (
xixj − 1

3
ηijxkxk

)
T 00(t,x)dx , (8.2)

and
...
–I
ij ≡ d3–Iij/dt3. We have divided by c2 in (8.2) to convert the energy density T 00 to a

mass density. The Quadrupole Formula is the analog for GW of the Larmor formula (2.9) for the
electromagnetic luminosity of an oscillating electrical dipole. Like the Larmor formula, (8.1) is valid
when the period of oscillation is large compared to the light-crossing time R/c across the source, or
in other words, when the emitted wavelength λ� R, which is normally true if the internal velocities
are � c.

In the usual GR units G = c = 1,
...
–I
ij

is dimensionless (check this), and therefore so is LGW . It
follows that there must be a unit of luminosity that can be constructed from G and c alone:

L0 =
c5

G
≈ 3.6× 1059 erg s−1. (8.3)

101
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Roughly speaking, this is the luminosity that an object of size comparable to its Schwarzschild radius
would produce if it radiated all of its rest mass in its light-crossing time. Since the characteristic
frequency of a nonrelativistic source with internal velocities ∼ v and size ∼ R is ω ∼ v/R, it follows
that

...
–I ∼ Mv3R−1 and LGW ∼ (v/c)6(RS/R)2L0 � L0. Thus, typical sources radiate inefficiently

because they are slow (v � c) and because they are not compact (R� GM/c2).

8.2 The Weak-Field Approximation

In order to calculate the production of GW, it practically unavoidable to linearize the Field Equa-
tions around some exact solution, normally Minkowski space. Thus we assume that the metric
perturbation hµν ≡ gµν − ηµν is small and work to first order. Obviously this depends as much
upon our choice of coordinates as upon the intrinsic geometry, since it would not be true even in flat
space if we chose, e.g., polar coordinates. Even in strongly curved space, the Principle of Equivalence
ensures that coordinates can be found such that hµν is small in the neighborhood of any given event.
One can’t necessarily find a single set of coordinates that makes hµν small everywhere, but this is
true often enough for the Weak-Field Approximation to be very useful.

8.3 Analogy with Electromagnetism

Recall that Maxwell’s equations

∇×B − 1

c

∂E

∂t
=

4π

c
J , ∇×E +

1

c

∂B

∂t
= 0 ,

∇·E = 4πρ , ∇·B = 0 , (8.4)

lead to wave equations (
∇2 − 1

c2
∂2

∂t2

)
E = 4π

(
1

c

∂J

∂t
+∇ρ

)
(
∇2 − 1

c2
∂2

∂t2

)
B = −4π

c
∇× J .

But while all solutions of (8.4) satisfy these wave equations, not all solutions of the latter satisfy
(8.4): for example,

B ∝ ex cos(ωt− kx),

which has∇·B 6= 0. To avoid this, and for other reasons, one introduces scalar and vector potentials
A & Φ such that

B =∇×A , which guarantees ∇·B = 0 ;

E = −∇Φ− 1

c

∂A

∂t
, which guarantees ∇×E +

1

c

∂B

∂t
= 0 .

Substitution into the first of eqs. (8.4) then yields

∇(∇·A)−∇2A+
1

c2
∂2

∂t2
A+

1

c

∂

∂t
∇Φ =

4π

c
J . (8.5)

For any arbitrary function f(t,x), the gauge transformation

A→ A+∇f Φ→ Φ− 1

c

∂f

∂t
(8.6)
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has no effect on E and B. One can show that f may chosen so that, after the transformation,

∇·A+
1

c

∂Φ

∂t
= 0. (8.7)

This is called Lorentz Gauge. Then the wave equation (8.5) simplifies to

�A ≡
(
∇2 − 1

c2
∂2

∂t2

)
A = −4π

c
J . (8.8)

Note that we have defined the D’Alembertian operator � ≡ ηµν∂µ∂ν in passing. Furthermore,
∇·E = 4πρ leads in Lorentz Gauge to

�Φ = −4πρ. (8.9)

Equations (8.8) & (8.9) can be combined into one equation for the four-potential Aµ ≡ (Φ,A) in
terms of the 4-current Jµ ≡ (ρ,J/c):

�Aµ = −4πJµ. (8.10)

Gauge tranformations (8.6) and the Lorentz gauge (8.7) are expressed as

Aµ → Aµ + ∂µf and ∂µA
µ = 0 , (8.11)

respectively, in this notation. Finally, the solution of (8.8) for outgoing waves is expressed in terms
of the retarded Lenard-Weichart potential:

Aµ(t,x) =

∫
Jµ(tret,x

′)

|x− x′|
dx′, tret ≡ t−

|x− x′|
c

. (8.12)

8.4 The gravitational-wave equation

Just as Aµ can undergo a gauge transformation without affecting the physical electromagnetic fields
E,B, the metric perturbation can undergo an infinitesimal change of coordinates without affecting
the intrinsic geometry and tidal fields. Such a coordinate change is

x̄µ = xµ + εµ, (8.13)

where εµ is of the same order of smallness as hµν . Note that contrary to our (and Schutz’s) usual
convention, the bar has been put on the coordinate itself rather than its index, i.e. x̄µ instead of xµ̄,
in order to make equations like (8.13) easier to write, where µ has the same value in both coordinate
systems. Expanding to first order in εµ and hµν the metric transformation law

ηµν + hµν =
∂x̄α

∂xµ
∂x̄β

∂xν
(
ηαβ + h̄αβ

)
yields the required “gauge transformation,”

h̄µν = hµν + εµ,ν + εν,µ . (8.14)

It doesn’t matter whether εµ,ν means ∂εµ/∂x
ν or ∂εµ/∂x̄

ν since these differ at second order. (By
the way, indices on first-order quantities are raised and lowered using the zeroth-order metric, e.g.
εµ = ηµνε

ν and hµν = ηµαhαν .)
We will now sketch the derivation of the linear wave equation in a way that closely parallels the

derivation of the exact nonlinear field equations (see, e.g., [66]). (If you are willing to take the result,
(8.19) on faith, skip ahead to that equation; but know that that form of the wave equation applies
in harmonic gauge (8.17) only.) The ingredients are
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1. All terms should involve two derivatives of hµν except the source term, which is Tµν .

2. The equation should be Lorentz covariant, meaning that all terms should be tensors with the
same free indices upstairs and downstairs.

3. It should be invariant under “gauge transformations” (8.14).

4. It should imply Tµν,ν = 0 (just as Maxwell’s Equations imply charge conservation).

5. It should be consistent with Poisson’s equation ∇2Φ = 4πρ in the Newtonian limit.

These are the same assumptions as those of exact GR, except that the second and third would then
be combined into the requirement that all terms transform as tensors under arbitrary coordinate
changes, and the fourth would become Tµν;ν = 0. In our case, the difference between the covari-
ant derivative, indicated by the semicolon, and the ordinary partial derivative is second-order of
smallness.

The most general form satisfying the first two assumptions is

A�hµν + C
(
hαµ,αν + hαν,αµ

)
+Dh,µν + ηµν

(
B�h+ Ehαβ,αβ

)
= Tµν (8.15)

Here h ≡ hλ λ is shorthand for the trace of the metric perturbation, and A,B,C,D,E are constants.
Assumption 3 implies that the lefthand side would vanish if hκλ were replaced by εκ,λ + ελ,κ. With
a little algebra (check this), this leads to

A+ C = 0, C +D = 0, B + E = 0 .

Assumption 4 leads to
A+ C = 0, B +D = 0, C + E = 0.

So A = D = E = −B = −C, and (8.15) reduces to

�hµν −
(
hαµ,αν + hαν,αµ

)
+ h,µν + ηµν

(
−�h+ hαβ,αβ

)
= A−1Tµν . (8.16)

The Newtonian limit means weak fields (already assumed) and slow motions, so that ∂0 � ∂i, and
Tij � T0i � T00 → ρ. By the Principle of Equivalence—specifically, the thought experiments about
gravitational redshifts in static Newtonian potentials, Φ—it also means h00 ≈ −2Φ. So we require

−2∇2Φ −
(
−�h+ hαβ,αβ

)
= A−1ρ ≡ − 8πρ.

By taking the trace of (8.16), one shows that the parenthesized term on the left equals 1
2A
−1Tλ,λ ≈

−A−1ρ. So we conclude that A−1 = −16π .
Like (8.5), (8.16) is rather messy, so we are motivated to find a gauge in which it simplifies. [In

both equations, while the lefthand side as a whole is gauge invariant, individual terms can be made
to vanish by appropriate choice of gauge.] The four free functions {εµ} in (8.14) can be chosen to
impose four constraints on hµν : in particular, the “harmonic gauge conditions”(

hµν − 1
2η
µνh
)
,ν

= 0. (8.17)

In this gauge, the linearized Einstein Field Equations become

�
(
hµν − 1

2η
µνh
)

= −16πTµν .

To save writing, we will use the abbreviation

Hµν ≡ hµν − 1
2η
µνh , (8.18)

(Schutz calls this h̄µν), so that the wave equation becomes, in harmonic gauge,

�Hµν = −16πTµν . (8.19)
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8.5 Solution for fields in the radiation zone

Equation (8.19) has the same form as the electromagnetic wave equation (8.10), except for an extra
index, and therefore can be solved in the same way:

Hµν(t,x) = 4

∫
Tµν(tret,x

′)

|x− x′|
dx′ . (8.20)

The next step, as in E&M, is to Fourier transform in time:

H̃µν(ω,x) =

∫
Hµν(t,x)eiωtdt ,

Hµν(t,x) =

∫
H̃µν(ω,x)e−iωt

dω

2π
.

With a similar definition for T̃µν(ω,x′), (8.20) becomes

H̃µν(ω,x) = 4

∫
eiω|x−x

′| T̃
µν(ω,x′)

|x− x′|
dx′ . (8.21)

Thus, in the tranform, the time of propagation tret − t is expressed by the phase of the exponential
factor above. Next, we suppose that the source is confined to a region |x′| . R, and that we are
interested in the fields in the far field where r ≡ |x| � R. Then we may expand

|x− x′| ≈ r − x
r
· x′ +O(|x′|2/r).

Let n ≡ x/r be the unit vector from the center of the source to the distant field point; note that
the sign convention differs from previous chapters. Then

H̃µν(ω,x) = 4
eiωr

r

∫
e−iωn·x

′
T̃µν(ω,x′) dx′ . (8.22)

We have set |x−x′| → r in the denominator because this is insensitive to x′, but we have been more
careful in the the exponential because if the source is large compared to a wavelength, i.e. ωR > 1,
then the phase may go through several cycles as x′ varies along the line of sight. In fact, (8.22) may
be written succinctly in terms of the four-dimensional Fourier transform of Tµν ,

T̂µν(ω,k) ≡
∫∫

Tµν(t,x)eiωt−ik·xdtdx ,

as

H̃µν(ω,x) = 4
eiωr

r
T̂µν(ω, ωn) . (8.23)

This solution is asymptotically exact in the limit r � R (within the weak-field approximation, of
course).

If internal motions of the source are slow, then since typical frequencies [i.e., those at which T̃µν

is appreciably large] are ω ∼ v/R, it follows that |ωn · x′| . v � 1. Thus to leading order in v
(actually v/c), we can replace the exponential inside the integrand of (8.22) by unity. We will focus
on the spatial components H̃ij , since H̃i0 & H̃00 can be expressed in terms of them (see below):

H̃ij(ω,x) ≈ 4
eiωr

r

∫
T̃ ij(ω,x′) dx′ , (8.24)

with corrections that are smaller by powers of v/c.
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For the next step, we will need the identity∫
T ij(t,x)dx =

1

2

d2

dt2

∫
xixjT 00(t,x)dx. (8.25)

To prove this, start with

∂2

∂xk∂x`
(xix`) = δikδ

j
` + δjkδ

i
`.

Therefore

1

2

∂2

∂xk∂x`
(xix`)T k` =

1

2
(T ij + T ji) = T ij .

Substituting this into (8.25) and integrating twice by parts, we have∫
T ij(t,x)dx =

1

2

∫
xixjT k`,`,kdx. (8.26)

Using Tµν,ν = 01 we have (
T k`,`

)
,k

=
(
−T k0

,0

)
,k

= −
(
T k0

,k

)
,0

= +T 00
,0,0 .

Using this substitution in (8.26) leads to (8.25). In the Fourier transform, ∂t → −iω, so (8.25)
implies that (8.24) can be written

H̃ij(ω,x) ≈ −2
eiωr

r
ω2

∫
xixj T̃ 00(ω,x′) dx′ . (8.27)

Whether we use the general form (8.23) or the slow-motion approximation (8.24), the spatial
dependence of ∇H̃µν(ω,x) in the radiation zone ωr � 1 is dominated by the phase factor exp(iωr),
whose gradient is iωn exp(iωr), so that

∇H̃µν(ω,x) = iωnH̃µν(ω,x) +O(r−2). (8.28)

From now on, unless otherwise specified, let us ignore the O(r−2) parts since they are asymptoti-
cally negligible compared to the O(r−1) radiated fields. The harmonic gauge condition (8.17) then
becomes, using (8.28) for the spatial derivatives,

−iωH̃µ0 + iωnjH̃
µj = 0.

This implies that

H̃i0(ω,x) = njH
ij

and H̃00(ω,x) = ninjH
ij , (8.29)

which confirms that all components of H̃µν can be expressed in terms of the nine space-space
components H̃ij .

1which is true to first order since Tµν is already small, although derivatives of the metric would enter the mix at
higher orders
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8.5.1 Transverse-traceless (“TT”) gauge

Note that it is the full quadrupole moment that appears in (8.27),

Iij ≡
∫
xixj T̃ 00(ω,x′) dx′ ,

rather than its traceless counterpart –Iij = Iij − 1
3η
ijIkk. So it would appear that (8.27) allows

radiation from a spherical source, for which Iij = 1
3η
ijIkk, contrary to Birkhoff’s Theorem. This is

not just a feature of the slow-motion approximation, since (8.23) says that H̃ij ∝ T̂ ij(ω, ωn), and
the latter does not generally vanish for a pulsating spherical source.

Once again, there is an analogy in in E&M. In Lorentz gauge, Ã(ω,x) ∝ Ĵ(ω, ωn) 6= 0 for a
pulsating spherical charge distribution. In the latter case, rotational symmetry clearly implies that
Ĵ(ω,k) ‖ k, so that Ã(ω,x) ‖ n: that is, the vector potential is parallel to its local direction of
propagation, in other words, it is longitudinal rather than transverse. We know that the physical
radiation fields Ẽ & B̃ must be transverse, however. In fact, since ∇Ãµ = iωnÃµ + O(r−2) [by
the same logic that lead to (8.28)], B̃ = ∇× Ã = O(r−2) when Ã is longitudinal. So, there is no
radiated magnetic field from a spherical source (actually no external magnetic field at all).

The longitudinal part of the vector potential is a gauge “phantom”: it can be eliminated from the
radiation zone, at least locally, by a further restriction of the gauge. The Lorentz gauge condition
(8.11) is obviously preserved by any further transformation in which �f = 0. In particular, a plane-
wave f(t,x) = F exp(ikµx

µ), where F is constant, satisfies �f = 0 provided that kµk
µ = 0. In

the radiation zone, Ãµ is locally well approximated by a plane wave, Ãµ ≈ aµ exp(ikνx
ν), where

kµ = (ω, ωn), with aµ a constant 4-vector. In these terms, the remaining gauge freedom is aµ →
aµ+ikµF . We may choose the constant F so that a0 → 0 after the transformation (assuming ω 6= 0).
The general Lorentz gauge condition, which has not been spoiled, means that kµa

µ = O(r−2), so
that a0 = 0 requires k · a = O(r−2). In short, this supplementary gauge choice makes Φ = 0 and
∇·A = 0, at least to leading order in r−1. In this gauge, which is often called “radiation gauge,”
the radiated part of Ãµ is has just two, rather than four, degrees of freedom, which are the two
transverse spatial components, i.e. those orthogonal to n. These can be thought of as the two
polarizations.

Note, however, that radiation gauge is available only locally, in the radiation zone. It is not
actually restricted to plane waves, but it can’t be used where there is a nonzero charge density, at
least not without violating Lorentz gauge, since (8.9) demands ρ = 0 in regions where A0 = 0.

Correspondingly, the harmonic gauge condition (8.17) is preserved by transformations such that
�εµ = 0.
Exercise: Verify this.
In particular, we may use any plane wave εµ(t,x) = εµ(0) exp(ikνx

ν) with kνk
ν = 0. In the radiation

zone where H̃µν(ω,x) and h̃µν(ω,x) are locally planar, the infinitesimal coordinate transformation
(8.14) translates to

h̃µν → h̃µν + ikµε̃ν(0) + ikν ε̃µ(0)

with kµ ≡ (ω, ωn). By adjusting the four constants εµ(0), we can impose four conditions on H̃µν .

It is convenient to use three of these to make H̃0j = 0. It then follows from (8.29), which is true
in any Lorentz gauge, that njH̃

ij = 0 = H̃00. We still have one degree of freedom left among the

four ε̃µ(0), which we use to make the trace h̃ = 0. To summarize, we have achieved a “transverse
traceless gauge” such that

0 = h̃ = h̃00 = h̃0i = h̃ijnj . (8.30)

Since these conditions hold for every frequency component h̃µν(ω,x), they hold also for the inverse
temporal Fourier transforms hµν(t,x).2 Without loss of generality, we may rotate our coordinates

2Actually our supplementary gauge choices depended upon ω 6= 0, so hµν(t,x) is allowed to have a nonzero time
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so that n = (0, 0, 1), i.e. the wave is locally propagating parallel to the z axis. Then the conditions
(8.30) imply that

h̃TT
µν = H̃TT

µν =


0 0 0 0

0 1
2 (h̃xx − h̃yy) h̃xy 0

0 h̃xy
1
2 (h̃yy − h̃xx) 0

0 0 0 0

 if n = (0, 0, 1) & ω 6= 0. (8.31)

Note: on the righthand side, the components shown are the radiation fields derived from the (asyp-
totically) “exact” solution (8.23) for the radiation field in a globally valid Lorentz gauge, whereas
hTT
µν are the components in the more specialized local TT gauge.

As in the electromagnetic case, there are just two independent polarizations, represented here by
h̃xy = h̃yx and h̃xx = −h̃yy. Also in parallel with E&M, the TT gauge is available only in source-free
regions, as one can easily see from the original wave equation (8.19).

The form of (8.31) is valid for a sufficiently distant observer (on the z axis) receiving radiation
from any finite source, even a strong one, since the field is weak in the far field; but the actual values
of the nonzero components are those given by (8.19) only if the source is weak. If the source is not
only weak but also slow, we have from (8.27) that

h̃xxTT(ω,x) = −h̃yyTT = −e
iωr

r
ω2
(
Ĩxx − Ĩyy

)
,

h̃xyTT = h̃yxTT = −2
eiωr

r
ω2Ĩxy . (8.32)

Recalling that the phase shift exp(iωr) simply reflects the time delay of propagation from 0 to r, or
by explicitly performing the inverse Fourier transform, we have also that

hxxTT(t,x) = −hyyTT =
1

r

[
Ïxx(t− r)− Ïyy(t− r)

]
=

1

r

[
–̈I
xx − –̈I

yy
]
tret

,

hxyTT = hyxTT =
2

r
Ïxy(t− r) =

2

r
–̈I
xy

(tret) . (8.33)

8.6 Gravitational waves from a binary star

This is perhaps the most reliable astrophysical source in practice: we know that close binaries exist,
even a few very close ones involving white dwarfs and neutron stars, though no double-black-hole or
even bh-ns pairs have been identified to date.

Let the component masses be M1 & M2, the binary semimajor axis a, and the orbital frequency
Ω. For simplicity, assume a circular orbit. (Dissipative processes, including energy loss by GW
emission, usually tend to circularize orbits.) If the orbit lies in the xy plane with center of mass at
the origin, then the instantaneous positions x(1), x(2) evolve as

x(1)(t) = −M2

M1
x(2)(t) =

M2

M1 +M2
a (cos Ωt, sin Ωt, 0) ,

so that the quadrupole moment

Iij(t) = M1x
i
(1)x

j
(1) +M2x

i
(2)x

j
(2) = µa2

 cos2 Ωt sin Ωt cos Ωt 0
sin Ωt cos Ωt sin2 Ωt 0

0 0 0

 ,

average that doesn’t satisfy the analog of (8.30). In fact 〈h00〉t has the O(r−1) piece 2M/r, where M is the total
mass of the source.
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where µ = M1M2/(M1 +M2) is the reduced mass. Therefore

Ïij(t) = −2Ω2µa2

 cos 2Ωt sin 2Ωt 0
sin 2Ωt − cos 2Ωt 0

0 0 0

 ,

which is already traceless. So

hxxTT(t,x) = hxyTT

(
t+

π

4Ω
, x
)

= 2
µΩ2a2

r
cos 2Ω(t− r). (8.34)

Note that the frequency of the wave is twice the frequency of the orbit; this is because the quadrupole
moment is invariant under x′ → −x′, which advances the system by half its orbital period. Since
the metric is dimensionless, the expressions (8.34) have to me multiplied by G/c4 in conventional
units. However, let us continue with relativistic unit for now. With M ≡M1 +M2, Kepler’s Law is
Ω2 = M/a, so the semiamplitude of both polarizations is

hTT
ij,max = 2

µ

r

M

a
.

Consider, for example, a 103M� black hole orbiting around a much heavier one in a galactic nucleus
at redshift z = 1: a plausible source for LISA, according to some theorists. Then r ≈ cH−1

0 ≈
1.3× 1028 cm, and the length equivalent of µ ≈ 3× 108, so that h

TT)
ij,max ≈ 2× 10−20(M/a). At the

marginally stable orbit, M/a ranges from 1/6 if the larger black hole is nonrotating, to 1 if it is
maximally rotating. So we are talking about (dimensionless) wave amplitudes of order 10−20. In
order to have a sense of whether this is interesting and detectable, we have to examine the physical
effects of the wave.

8.7 Detection of gravitational waves

The simplest and perhaps most effective wave detectors involve precise measurement of the time-
dependent separation between test masses in free fall. This is the basic idea for LISA.

The geodesic equation can be put in the form

d2xµ

dτ2
= −gµν

(
gαν,β −

1

2
gαβ,ν

)
dxα

dτ

dxβ

dτ
, , (8.35)

which reduces in the weak-field limit to

d2xµ

dτ2
= −

(
h µ
α ,β −

1

2
h µ
αβ,

)
dxα

dτ

dxβ

dτ
, . (8.36)

So in TT gauge, where h0µ = 0, trajectories xi(τ) =constant are actually geodesics. This doesn’t
meen that the wave has no effect; the spatial separation between these geodesics is modulated
by hij even though their spatial coordinates are constant. Specifically, for a detection system far
from the source along the z direction, the physical separation of between test masses at r(a) and
r(b) = r(a) + ∆r is

l(t) =
[
∆r ·∆r + hxx(∆x)2 + +2hxy∆x∆y + hyy(∆y)2

]1/2
= l0 +

1

2l0

{
hTT
xx (t)

[
(∆x)2 − (∆y)2

]
+ 2hTT

xy (t)∆x∆y
}
, (8.37)

where l0 = |∆r| is the unperturbed separation, assuming for simplicity that ∆z = 0 so that hTT
ij

has exactly the same instantaneous value at both masses. Thus for a given h—meaning now the
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wave amplitude rather than the trace—the oscillation in the separation is linearly proportional to
the separation itself: δl = l − l0 ∼ h× l0. With laser metrology for example, the directly measured
quantity is δl (in wavelengths of light) rather than δl/l0, so other things being equal, larger l0 makes
for a more sensitive detector.

The LISA detector, which is currently projected to launch in 2012 or 2013, will have three
spacecraft forming an equilateral triangle with sides of 5× 106 km and will use lasers of wavelength
λ = 1µm. Thus the oscillations in separation to be measured are on the order of ∼ 10−8 cm = 10−4λ.

Ideally, if we consider only photon shot noise, the laser measurement error is σ = λN
−1/2
γ when Nγ

photons are detected. If laser power P is transmitted through an aperture of area A1 to a receiving
aperture A2 at distance R, the rate at which photons are received is

Ṅγ =
P

hν
× A1A2

(λR)2
, (8.38)

in which hν = hc/λ is of course the energy per photon. In practice the rate of photons detected will
be smaller by an efficiency factor η ∼ 0.30 because of imperfect reflectivity of the optical surfaces,
quantum efficiency of the detectors, etc., but we ignore this for purposes of rough estimates. LISA
will use R = 5 × 1011 cm, P ≈ 1 W, and A1 = A2 ≈ 700 cm2 (apertures diameters = 30 cm), so
Ṅγ ≈ 109 s−1. Thus, the predicted error is σ ∼ 3× 10−5λ(tint/1 s)−1/2, where tint is the integration
time. This seems more than good enough, especially considering that the integration time can
probably be much longer than a second: for M = 106M6M�, the wave period is πM(a/M)3/2 →
16M6(a/M)3/2 s, and one can probably integrate coherently over many wave periods.

8.8 Energy of gravitational waves

Like most linear waves, weak-field GW carry an energy density and flux that is quadratic in wave
amplitude. The energy and flux cannot be first-order quantities because all quantities linear in the
wave vanish upon averaging over oscillations. We will derive the expression for the flux in harmonic
and TT gauge by considering the backreaction on the source, i.e., on the matter.

Start from the geodesic equation (4.11), which reduces to

d

dτ
(ηµν ẋ

ν + hµν ẋ
ν) =

1

2
hαβ,µẋ

αẋβ ,

for weak fields. Dots indicate d/dτ of course. Expand the derivative on the lefthand side to obtain

ηµν ẍ
ν + hµν,λẋ

λẋν

after discarding hµν ẍ
ν because it is second order. Then after some obvious rearrangement and

raising of indices (using ηµν , remember), we have

ẍµ =

(
1

2
h µ
αβ, − h

µ
α,β

)
ẋαẋβ . (8.39)

Now imagine a whole cloud of particles following geodesics and having similar 4-velocities—in other
words, a dust-like fluid. We can then consider the four-velocities Uµ to be a smooth vector field to
which the particles’ world lines are tangent, so that

dxµ

dτ
= Uµ(x0, x1, x2, x3)

d2xµ

dτ2
=
dUµ

dτ
= UνUµ,ν
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Making this replacement in (8.39) and multiplying both sides by the rest-frame number density of
particles, N̄ , we have

N̄UνUµ,ν =

(
1

2
h µ
αβ, − h

µ
α,β

)
UαUβ .

Now Nν = N̄Uν is the 4-current associated with particle number, which is conserved,

(N̄Uν),ν = 0.

Multiplying this last equation by mUµ, where m is the rest mass per particle, and adding it to the
previous one gives

Tµν,ν =

(
1

2
h µ
αβ, − h

µ
α,β

)
Tαβ (8.40)

since mN̄UµUν is the energy-momentum tensor of dust. Although we have derived it for dust only,
we will assume that (8.40) holds for any mass distribution in the weak-field approximation. It is
second order, because hµν and Tµν are individually of first order. The lefthand side would vanish
to first order, so we should regard the lefthand Tµν as accurate through second order. Sometimes
we will write this as Tµν(2) to distinguish it from versions of the energy-momentum tensor that may

be accurate to first order only. On the righthand side of (8.40), it doesn’t matter to second order
whether we use Tµν(2) or its less accurate counterparts Tµν(1) , because of the explicit factors of hµν .

Physically, the righthand side can be regarded roughly as the work done on the first-order mass
distribution by the first-order gravitational field, i.e. the backreaction, and it ought to describe the
exchange of energy (and momentum) between matter and outgoing waves. However, it also includes
terms that merely redistribute energy within the source without carrying it off as radiation, as we
shall see shortly.

Let us integrate (8.40) over all space:∫
dxTµν ,ν =

∫
dxTµ0

,0 +

∫
dxTµi ,i =

d

dt

∫
dxTµ0 (8.41)

because the integral of Tµi ,i vanishes by Gauss’s theorem (or integration by parts) if the matter is
confined to a finite spatial region, as we assume it is. The integral of part of the righthand side of
(8.40) is

−
∫

dxhµ α,βT
αβ = −

∫
dxhµ α,0T

α0 −
∫

dxhµ α,iT
αi

= −
∫

dxhµ α,0T
α0 +

∫
dxhµ αT

αi
,i

= −
∫

dxhµ α,0T
α0 −

∫
dxhµ αT

α0
,0

= − d

dt

∫
dxhµ αT

α0

[We used the fact that Tαν,ν vanishes to first order between the second and third lines above.]
Because this is a total time derivative, it is useful to group it with (8.41), so that the complete
integrated form of (8.40) becomes

d

dt

∫
dx
(
Tµ0 + hµ αT

α0
)

=
1

2

∫
dxh µ

αβ, T
αβ .

Now let us set µ = 0 (because we are interested in energy) and integrate over a finite time interval
t1 ≤ t ≤ t2: ∫

dx
(
Tµ0 + hµ αT

α0
)∣∣∣∣t=t2
t=t1

=
1

2

t2∫
t1

dt−
∫

dx ḣ µ
αβ, T

αβ . (8.42)
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The dot on h now means ∂/∂t. Now if the source were to be stationary before t1 and to stop
oscillating well before t2, then there would be no waves near the source at t1 (because they had
not been created yet), nor at t2 (because they would have propagated away). Although there may
be nonzero metric perturbations in the source, they are near-field rather than radiation terms. If
the source were to return to exactly its original configuration, the left side would vanish; it is the
difference of some function of state. Thus the lefthand side can be regarded as as the change in the
energy of the source, to second order, ∆Esource. The righthand side clearly is not a function of state,
since it would be nonzero even if the source were to return to its original configuration. Thus it is
fair to regard it as (or at least to contain) the energy carried off by waves.

Let us now specialize to harmonic gauge. We can then use (8.14) to eliminate Tαβ(1) from (8.42)

in favor of Hαβ and beat the result into a symmetrical shape by integration by parts:

∆Esource =
1

32π

t2∫
t1

dt

∫
dx ḣαβ�H

αβ

=
1

32π

t2∫
t1

dt

∫
dx
(
ḣαβ�h

αβ − 1
2 ḣ�h

)

=
1

32π

t2∫
t1

dt

∫
dx
[
−ḣαβḧαβ + ḣαβ∇2hαβ + 1

2

(
ḣḧ− h∇2h

)]

=
1

32π

t2∫
t1

dt

∫
dx
[
−ḧαβḣαβ −∇ḣαβ · ∇hαβ + 1

2

(
ḧḣ+∇ḣ · ∇h

)]

=
1

32π

t2∫
t1

dt

∫
dx 1

2

∂

∂t

[
−ḣαβḣαβ −∇hαβ · ∇hαβ + 1

2

(
ḣ2 + |∇h|2

)]

= −
∫

dx
1

64π

[
ḣαβḣ

αβ∇hαβ · ∇hαβ − 1
2

(
ḣ2 + |∇h|2

)]∣∣∣∣t2
t1

Ooops—the right side is a function of state after all! But in order to make it so, we had to transform
it into something no longer local to the source; it can now be nonzero at large distances where
Tµν = 0. So in these regions, the quantity

FGW =
1

64π

〈
ḣαβḣ

αβ +∇hαβ · ∇hαβ − 1
2

(
ḣ2 + |∇h|2

)〉
. (8.43)

can be identified as the energy density of the waves. The angle brackets indicate that the expression
should be averaged over oscillations. Since the waves propagate radially outward, the flux is simply
cnF . With these interpretations, (8.42) states that ∆Esource = −∆EGW.

We can make two further simplifications to F . First, since it is a local expression, we may
evaluate it in TT gauge, where h = 0. Second, we may use the property (8.28) to replace spatial
derivatives with temporal ones: i.e., a radially propagating wave depends upon (t,x) mainly in the
combination t− r, so ∇ = −n∂t +O(r−1). Thus we have

FGW =
1

32π

〈
ḣTT
ij ḣ

ij
TT

〉
. (8.44)



Chapter 9

Cosmic Rays

Almost all of what astrophysics knows about the universe outside the solar system has been learned
through the collection of photons. Cosmic rays, however, are material samples from distant parts of
the Galaxy, and probably beyond. This would be enough to justify scientific interest in cosmic rays,
even if there were not still many unsolved questions about their sources, their acceleration to high
energies, and their propagation through the interstellar medium.

The term “cosmic ray” is often applied to high-energy photons and leptons (e±, νν̄), but here it
will refer to hadronic particles unless stated otherwise.

9.1 Energy spectrum

As shown in Figure 9.1, the energies of cosmic rays observed at Earth span an enormous range. The
spectrum is roughly a power law,

N(> E) ≈ 5000(EGeV + 1)−1.6 m−2 sr−1 s−1. (9.1)

It is conventional to state the flux per sterradian per unit area normal to the velocity, as here.
At the low-energy end, the observed spectrum is significantly distorted by solar modulation:

these cosmic rays have difficulty penetrating the solar system against the flow of the solar wind. The
solar wind is quite variable, but typically at the Earth (1au), VSW = 350 km s−1, BSW = 50µG,
NSW = 10 cm−3. The gyroradius of a CR of momentum p (=

√
(E/c)2 − (mc)2) and charge Ze is

rg =
R

B
, R ≡ pc

Ze
. (9.2)

The quantity R is called the rigidity and is often measured in gigavolts ( GV); note that for a relativis-

tic CR, the energy in GeV is Z times R in GV. Thus for R = 1 GV, rg ≈ 7× 1010 cm4× 10−3 au.
Hence these cosmic rays are rather closely coupled to the wind. They must diffuse “upstream”
against the wind, so that their number density satisfies an equation of the form

∂N

∂t
+∇ · (NV W −D∇N) = 0, (9.3)

where D is a diffusion coefficient. By analogy with the kinetic theory of gases, D ≈ λv/3, where
v ≈ c is the speed of the CR. The mean free path λ is associated with “scatterings” of the CR
against the field B. This can hardly be less than rg, but it is possible that λ� rg if the field lines
are open and very smooth, since particles could then stream along them.1 In a steady state, (9.3)

1Even in a smooth field, adiabatic invariance of rgp⊥ (where p⊥ is the momentum perpendicular to the field) can
limit the distance along the line to which the CR penetrates (“magnetic mirroring”).
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Figure 9.1: Cosmic ray energy spectrum, from http://www.cosmic-ray.org/reading/.

implies, assuming approximate spherical symmetry,

1

N

∂N

∂r
≈ VW

D

Therefore the CR flux at Earth will be strongly modified for energies low enough so that D/VW .
1au. If we take D = vrg/3, then this occurs at E ∼ 100 MeV for protons according to the numbers
above.

Although the approximate agreement of this simple estimate with the low-energy cutoff seen in
Figure 9.1 is reassuring, there are a number of complications that have not been taken into account.
For one thing, λ could be larger than rg as already noted. For another, equation (9.3) does not take
into account energy changes of the CR due to their interaction with the wind: these occur primarily
because the wind is an expanding flow, so that the CR “cool” adiabatically. On the other hand,
one has direct observational evidence for the influence of the solar wind on the CR spectrum: the
low-energy cutoff varies with time in correlation with the solar cycle; and it varies with distance
from the Sun (as measured by interplanetary spacecraft). By fitting a diffusive model like (9.1)
(including energy losses) to such data, it is possible to correct the CR spectrum for solar modulation
and estimate its form beyond the heliopause (where the solar wind meets the ISM). The corrected
spectrum still flattens at E . GeV. This not unreasonable, since it represents the transition between
relativistic and nonrelativistic motion.

Although it is barely visible in Fig. 9.1, there is a slight but highly statistically significant
steepening of the powerlaw slope at E ∼ 1015.5 eV, from −2.7 → −3.1. This is called the “knee”.
The spectrum appears to flatten again above 1018 eV (1018 eV ≡ 1 EeV: “exa-” electron-volt), a
feature referred to as the “ankle.” In a typical interstellar field of 3µG, a rigidity R = 1015.5 eV
corresponds to a gyroradius of ≈ 1 pc, and R = 1018 eV corresponds to rg ∼ 360 pc.
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Figure 9.2: Cosmic ray composition, from imagine.gsfc.nasa.gov/Images/science.

9.2 Detection of cosmic rays

Primary cosmic rays generally do not reach the ground, but their secondaries do. The term “primary”
is used to denote the original interplanetary particle, whose interactions with the Earth’s atmosphere
creates a cascade of “secondary” CR as collision products.

The atmosphere is a very effective shield against primaries. At sea level, the column density at
zenith is about 1 kg cm−2. Total nuclear cross sections are typically σ ∼ 1 (fermi)2 = 10−26 cm−2

per nucleon. So a primary CR entering at zenith angle θ has probability ∼ exp(−6 sec θ) of reaching
sea level without collision. (A more accurate value is exp(−8 sec θ) for protons.) Thus, to obtain
relatively pristine samples of primary cosmic rays, high-altitude balloons or spacecraft are necessary.
(The exponential scale height of the atmosphere is ∼ 10 km.)

The composition of relatively low-energy cosmic rays (E . 10 GeV) can be determined at high
altitudes by the tracks they leave in nuclear emulsions, plastics, and other suitable materials. The
material should be thick enough so that the CR slows completely to rest within it due to ionization
losses.

Higher-energy cosmic rays are usually measured indirectly, through their secondaries. The first
nuclear collision of the primary usually occurs high in the atmosphere (after ∼ 102 g cm−2) and
creates a pion—π+, π−, or π0 with roughly equal probability. The charged pions decay into muons
and the π0 into gamma rays. These particles in turn collide and create more particles, so that
a cascade or air shower is initiated. At its peak, the air shower contains ∼ 1., (Eprimary/GeV)
particles, which can be measured with detectors of the kind used in experimental particle physics,
e.g. scintillation counters and proportional counters. At very high energies > 1014 eV, air show-
ers ionize the air itself extensively, and the recombining electrons and ions release optical pho-
tons that can be sensed at a distance by telescope mirrors and phototubes. (That is, the air
itself serves as the scintillator.) The latter method has been used by the Fly’s Eye experiment
(1981-1993) to measure CR up to 3 × 1020 eV, roughly the energy of a baseball thrown by a
major-league pitcher. (For web links to this and many other high-energy CR observatories, see
www.mpi-hd.mpg.de/hfm/CosmicRay/CosmicRaySites.html.)

The energy of the shower is a good measure of the energy of the primary CR. Since only a
fraction of the secondary particles are collected (to collect them all would require carpeting many
square kilometers with detectors), statistical corrections are used to infer the shower energy. Since
it is impossible to calibrate these methods directly by producing one’s own primaries, Monte Carlo
methods must be relied on. Intercalibration of different experiments is therefore somewhat uncer-
tain, probably at levels & 10%, especially if they use different methods to reconstruct the shower.
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Nevertheless, it seems to be broadly accepted that energies in excess of 1020 eV have been observed.

9.3 Inferences from the composition of cosmic rays

As remarked above, detailed information about the composition of cosmic rays can be obtained at
relatively low energies, as shown in figure 9.2. About 50 − 90% (authorities differ!) of the CR are
protons (H nuclei), and the relative abundances of the heavier elements are broadly similar to those
in the solar system and in the local ISM. From this it can be inferred that the mechanisms that
accelerate cosmic rays act upon fairly conventional interstellar material.

However, the light elements Li, Be, B are overrepresented in the CR, as are the elements just
below iron. These are understood to be consequences of spallation: the fragmentation of heavier CR
nuclei in collisions with interstellar gas atoms. At the energies of interest, the cross sections can be
measured experimentally or calculated reasonably reliably.

9.3.1 Spallation model

Following [33, chap. 20], let us develop a simplified “slab” model. One imagines that all cosmic rays
traverse the same column density

ξ⊕ =

Earth∫
source

ρ ds.

where ρ is the mass density of the interstellar gas along the CR path,

ρ = (n1H + 4n4He + . . .) mp = X−1nHmp,

where nH and X ≈ 0.7 are the number density and the relative abundance by mass of interstellar
hydrogen. Contrary to our usage in previous chapters, lower-case “n” is used here for number
densities in the non-relativistic (with units of cm−3), and uper-case “N” is used for fluxes of cosmic
rays (units of cm−2 s−1 sr−1 GeV−1). The flux of the ith CR species (i.e., nuclei of a particular
isotope) is presumed to evolve along the path as

∂Ni
∂ξ

=
X

mp

∑
j>i

Njσji − σiNi

 − X

ρc

(
1

τi,esc
+

1

τi,dec

)
Ni, (9.4)

in which ξ is now a variable along the path, σji is the partial cross section for production of nucleus
i as a result of collision of nucleus j with an interstellar proton, and σi is total cross section for
destruction of nucleus i. To avoid having to solve a diffusion equation, escape of cosmic rays from the
Galaxy is represented as a constant rate τ−1

esc at all positions. Finally, τ−1
i,dec is the radioactive decay

rate of species i allowing for time dilation (hence it is a function of energy); of course τi,dec =∞ for
stable isotopes. For simplicity, collisions with interstellar nuclei heavier than hydrogen have been
ignored, and it is assumed that all CR have speed ≈ c. Equation (9.4) takes no account of changes
in particle energy due to the collisions and to ionization losses, etc..

To the extent that the escape time is the same for all species, which is probably a reasonable
approximation at a common rigidity, we may eliminate the escape term by rewriting (9.4) in terms
of new variables

N̂i(ξ) ≡ Ni(ξ) exp

− X

cτesc

ξ∫
dξ′

ρ

 ,
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satisfying

∂N̂i
∂ξ

=
X

mp

∑
j>i

N̂jσji − σiN̂i

 − X

ρcτi,dec
N̂i. (9.5)

The exponential term cancels when one considers relative abundances, N̂i/N̂j = Ni/Nj .
Consider first the production of stable isotopes of Li, Be, B by spallation of CNO elements (C,

N, O, Ne, Mg). For simplicity we group these into two aggregate fluxes NL (“light”) and NM
(“medium”). The latter are so abundant compared to all possible parent nuclei (except perhaps Fe)
that we ignore the contribution of spallation to their abundance (see Fig. 9.2). Using appropriately
averaged cross sections, we have

∂N̂L
∂ξ

=
X

mp

(
N̂MσML − σLN̂L

)
∂N̂M
∂ξ

= − X

mp
σM N̂M ,

The solution to this linear system when NL(0) = 0 is

N̂M (ξ) = N̂M (0) exp(−ξσMX/mp),

N̂L(ξ)

N̂M (ξ)
=

σML

σM − σL

(
eξ(σM−σL)X/mp − 1

)
.

The observed relative abundance is NL/NM ≈ 0.1, and the cross sections (appropriately averaged
over the elements concerned) are σML, σM , & σL are ≈ 70, 280, & 200 in units of millibarns (1 mb ≡
10−27 cm2) respectively. Plugging thise numbers (and X = 0.7) into the equation above yields
ξ⊕ ≈ 3 g cm−2.

A more careful calculation that accounts for the individual species, energy losses, and so forth
yields [57]

ξ⊕ ≈ 5 g cm−2 (9.6)

for the average column density through which the cosmic rays pass, at least at the relatively low
energies where their composition is well determined.

9.3.2 Confinement time

The column density (9.6) can be converted to a propagation time given a value for nH. The latter
is believed to be ≈ 1 cm−3 in the solar neighborhood, implying t = ξ⊕X/mpnHc ≈ 2× 106 yr.

An independent estimate of nH and hence t can be obtained from the abundance of radioactive
spallation products. A particularly important case is 10Be, whose decay time (in its rest frame) is
only τdec(10Be) = 3.8 × 106 yr. From Tables 5.1 & 9.1 of [33], we may estimate that about 0.16 of
the beryllium nuclei produced by spallation of CNO are 10Be. Yet at E ≈ 100 MeV/nucleon, only
about 0.05 of the beryllium in cosmic rays observed at Earth is 10Be, about 27% of the relative
production rate. This can be accounted for by including the decay term in (9.5), provided that
〈nH〉 ≈ 0.12 cm−3; more careful estimates yield ∼ 0.2 cm−3 [57]. Hence the time of flight is larger
than estimated above by a factor ∼ 5, or

tconf ≈ 107 yr, (9.7)

with an uncertainty of about 50% (this would be ∼ 1.8×107 yr for 〈nH〉 ≈ 0.12 cm−3). One assumes
that the Earth obtains a representative sample of the cosmic rays, although this might not be true
if the nearest CR source happens to be much closer than the mean distance between sources in
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the Galaxy. Then it follows that cosmic rays must be lost on the timescale (9.7), presumably by
diffusing out of the Galaxy. Hence it is called the confinement time.

Since the 10Be argument requires nH to be smaller averaged over the path than it is locally,
one infers that the region in which the cosmic rays are trapped is larger than the disk thickness,
2H ∼ 500 pc. Let us write 2H ′ for the thickness of the trapping region. The time to escape from
the middle of this region if traveling in a straight line is ∼ H ′/c ∼ 3000 (H ′/ kpc) yr. The time to
escape by a random walk of mean free path λ � H ′ is longer than this by a factor ∼ H ′/λ, i.e.
τesc ∼ (H ′)2/cλ. Setting this equal to tconf , we estimate λ ≈ 0.3 (H ′/ kpc)2 pc.

This mean free path is probably small compared to the distance to the nearest sources (which are
probably supernova remnants). The angular distribution of cosmic rays should therefore be quite
isotropic. Indeed, the dipolar anisotropy is . 10−3 at energies 1012 − 1015 eV.

9.4 Acceleration mechanism

An outstanding question about cosmic rays is how nature manages to endow single nuclei with such
large energies. Actually, considerable theoretical progress has been made towards answering this
question, at least up to ∼ 1015 eV if not 1020 eV.

We have seen that rotating supermassive black holes surrounded by suitable disks might create
voltage gaps up to 1020 eV. Unfortunately, the black hole at the center of our own Galaxy is both
lightweight and (at least at the moment) rather inactive.

Most astrophysicists now believe that cosmic rays below the “knee” at least are accelerated in
interstellar shocks. The mechanism is a variant of an idea proposed by [15]. Fermi suggested that
in the absence of loss mechanisms, “collisions” between cosmic rays and much larger masses such as
interstellar clouds would tend toward equipartition of energy: that is, individual CR particles would
eventually acquire energies comparable to those of the clouds. (The “collisions” were assumed to be
mediated by the interaction between the magnetic field of the cloud and the charge of the CR.) A
giant molecular cloud has a typical mass ∼ 3×105M� ∼ 1039 g and a random velocity ∼ 10 km s−1,
hence an energy ∼ 1050 erg ∼ 1062 eV!

Of course the Galactic magnetic field is totally incapable of confining particles with such energies,
but more importantly, the time required to achieve equipartion is more than astronomical. In a single
collision, the energy of the (relativistic) CR will change by a factor

E′

E
= γ2(1− β · n)(1 + β · n′)1 + β · (n′ − n) +

[
β2 − (β · n′)(β · n)

]
+O(β3),

where n is the CR’s directions of motion as measured before scattering in the ‘lab” frame where
the cloud’s velocity is βc and its Lorentz factor γ = (1 − β2)−1/2. The direction n′ is measured
after scattering in the cloud’s rest frame. Assuming that the dot products have random signs, the
energy change vanishes on average to first order. But it is clear that the second-order term is always
nonnegative and hence is positive on average, with an average value ∼ β2. (The exact value depends
on the correlation between n and n′, if any.) For β ∼ 10−4.5, some 109 collisions are required
to e-fold the CR energy; if the distance between clouds is measured in light years, then the time
required to reach 1015 eV starting from a (kinetic) energy ∼ GeV is & 1011 yr. This is marginally
longer than the age of the universe (≈ 1.3 × 1010 yr), but more urgently, it is orders of magnitude
longer than the inferred confinement time (9.7).

In 1977-1978, several groups independently noticed that a nonzero average of the first-order term
can be achieved in a shock, where the flow is systematically converging (∇ · v < 0): [2], [30], [3], [8].
Very roughly speaking, the effect is analogous to the increase in the internal energy of a gas when
it is compressed by a piston.

Consider a non-relativistic shock in the shock rest frame. The pre-shock fluid approaches the front
with density velocity v = −Vshock � c and density ρ (which we may take equal to the density of rest
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mass). The postshock fluid has velocity v′ = v/r, where r = ρ′/ρ > 1 is the shock compression ratio.
For a strong shock in an ideal gas with adiabatic exponent γ,

r =
γ + 1

γ − 1
=

{
4 γ = 5/3 : monatomic nonrelativistic gas

7 γ = 4/3 : gas of relativistic particles
(9.8)

If the thickness of the shock (∆xshock) is very small compared to its radius of curvature we may
approximate it as plane-parallel.

Cosmic rays scatter off magnetic irregularities advected with the fluid, so that particles may cross
the shock front repeatedly. It is assumed that the scattering preserves the particle’s energy viewed
in the local fluid rest frame. In the shock rest frame, however, the energy change is

∆E

E
≈ v ·∆n

c

to first order, where n is the direction of motion of the particle. Now the average of v ·∆n is not zero
for a particle that crosses the shock repeatedly. Consider a particle that crosses the shock upstream—
i.e. towards the preshock fluid—scatters, and returns to the shock. For simplicity suppose that the
velocity of the particle parallel to the shock remains unchanged, so that the angle of motion with
respect to the shock normal changes from θ → π − θ. In this case v ·∆n = 2|Vshock cos θ /c|. Next
the particle enters the downstream (postshock) flow, scatters and returns again to the shock and to
its original direction of motion. For this second event, v · ∆n = −2r−1|Vshock cos θ /c|, the minus
sign occuring because the downstream flow moves away from the shock, so that the particle has to
overtake it. Thus the average energy change after one upstream and one downstream shock crossing
is 〈

∆E

E

〉
≈ r − 1

r

2|Vshock|
c

〈| cos θ|〉 .

For an isotropic velocity distribution of the cosmic rays, cos θ is uniformly distributed between ±1,
but since when averaging over particles we must weight them by the rate at which they cross the
shock, and this brings in an additional factor of | cos θ| :

〈cos θ〉 =

∫ 1

−1
cos2 θ d cos θ∫ 1

−1
| cos θ|d cos θ

=
2

3
.

Inserting this above, we have 〈
∆E

E

〉
≈ 4(r − 1)

3r

|Vshock|

c
, (9.9)

Now the typical cosmic ray cannot cross the shock indefinitely often, because the cosmic rays are
advected away from the shock by the downstream flow. Let N ′ be the number density of cosmic rays
behind (downstream from) the shock. The rate of upstream crossings per unit area is approximately

N ′c

2

∫ 1

0

cos θ d cos θ =
N ′c

4
.

since v′ � c and we assume isotropic velocities. On the other hand, since the cosmic rays are
advected downstream, the excess of downstream over upstream crossings (per unit area per unit
time) must be N ′v′ = N ′|Vshock|/r. We can summarize this situation by saying that each time the
particle crosses the shock going dowstream, there is a small probability

Pesc = 4
|Vshock|
rc

(9.10)

that it will escape from the shock region and never return.
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These results can be combined to determine the energy spectrum of the accelerated cosmic rays.
Assume for simplicity that they all start with energy E0 (before encountering the shock). A cosmic
ray that crosses the shock going upstream a total of k times (and therefore crosses downstream k+1
times) achieves an energy

Ek = E0

(
1 +

∆E

E

)k
.

The fraction of the CR population that crosses k or more times is

Pk = (1− Pesc)
k
.

So CR accelerated to energies E � E0 have experienced at least

k(E) = ln

(
E

E0

)/
ln

(
1 +

∆E

E

)
≈ ln(E/E0)

∆E/E

upstream crossings. Hence

N(> E) ∝ (1− Pesc)
k(E) ≈ exp [−k(E)Pesc] ≈ exp

[
− 4|Vshock|/rc

4(r − 1)|Vshock|/3rc
ln

(
E

E0

)]
,

where we have use equations (9.9) & (9.10). Notice that Vshock cancels out, leaving

N(> E) ∝
(
E

E0

)−3/(r−1)

.

Usually one discusses the differential spectrum

N(E) ≡ −dN(> E)

dE
∝
(
E

E0

)−(r+2)/(r−1)

. (9.11)

The effective adiabatic index of the interstellar medium is probably intermediate between γ = 5/3
and γ = 4/3, since the nonrelativistic component (neutral atoms, ions, and electrons) and the
relativistic components (magnetic field and cosmic rays) make comparable contributions to the
pressure. (As a rough rule of thumb, the energy densities in all of these components is of order
1 eV cm−3.) Thus we expect 4 ≤ r ≤ 7 for strong shocks, leading to N(E) ∝ E−p with 3/2 ≤ p ≤ 2.
Recall that the observed slope p ≈ 2.5 − 3.1. So the agreement is not perfect, but it is a miracle
that this simple argument leads to a power law similar to what is observed, and furthermore that
the result does not depend upon the shock velocity, provided at least that the shock is strong.

The picture presented above is by no means complete. One hint of trouble is that the predicted
postshock energy density in CR

∞∫
E0

EN(E) dE

diverges at the upper limit if p ≥ 2. This indicates that it will be necessary to consider the
backreaction of the jump in cosmic-ray pressure on the shock itself in order to obtain an internally
consistent solution of the acceleration problem.

Another area to explore is relativistic shocks. The argument presented above, which is essentially
that due to [3] and is reproduced in [33], relies upon the smallness of Vshock/c at several steps. When
Vshock ∼ c, a particle can gain a large energy in a single shock crossing. Studies of the relativistic
shock acceleration problem predict a universal exponent p ≈ 2.2− 2.3 (add references here).
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9.4.1 Energetics

Can supernovae supply enough energy to maintain the cosmic rays? The energy density in the
spectrum (9.1) is UCR = 0.3 eV cm−3, or 5×10−13 erg cm−3, and most of it at the low end E ∼ GeV.
Taking the volume of the Galaxy to be V ∼ πR2H ′ ∼ 300 kpc2 ∼ 1067 cm3, the power that must be
supplied is

PCR
V UCR

tconf
∼ 1040 erg s−1.

Each supernova releases ∼ 1051 erg, and the rate of supernovae is probably once per century, yielding
PSN ∼ 3× 1041 erg s−1. The conclusion is that supernovae are indeed sufficient, provided that a few
percent of their energy is converted to cosmic rays.
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Chapter 10

Compton scattering

Compton scattering is the scattering of light by free electrons or positrons. It affects photons’
energies but conserves their number. It is believed to be responsible for the powerlaw X-ray spectra
observed from many accreting black holes of stellar and of quasar mass, and neutron stars.

10.1 Compton cross section

The cross section can be calculated classically if the photon energy hν � mec
2. Therefore, let an

free electron q = −e undergo a forced oscillation due to a plane wave

Einc(r, t) = eEinc exp(ik · r − iωt),

where e is the polarization (e ·k = 0, e ·e∗ = 1), and the physical field is the real part of the above.
The amplitude of the velocity perturbation is ∼ eE/ωme, and if this is � c, then in a frame where
〈X〉 = 0, we may neglect v in eqs. (2.8) and use

a(tret) ≈ −e
eEinc

m
exp(−iωtret)

for the acceleration, so that the reradiated field

E(x, t) ≈ − e

cR
n× (n× a) → e2Einc

mcR
n× (n× e)e−iω(t−R/c)

is parallel to the projection of the acceleration onto the plane of the sky—this is a general result
when v � c. The power radiated per solid angle is

dP

dΩ
=
cR2

8π
E ·E∗ =

(
e2

mec2

)
cE2

inc

8π
|n× e|2.

Dividing by the incident energy flux cE2
inc/8π yields the Thomson differential cross section:(

dσT
dΩ

)
pol

=

(
e2

mec2

)2

|n× e|2. (10.1)

The subscript signifies that this is for a definite polarization. Notice that the original wavevector k
doesn’t appear in this formula: the re-radiated power is symmetric around an axis parallel to e and

123
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varies as sin2 Θ, where Θ is the angle between n and e1 Integrating eq. (10.1) over all solid angles
gives the total cross section,

σT =
8π

3

(
e2

mec2

)2

≈ 0.665× 10−24 cm2. (10.2)

The quantity re ≡ e2/mec
2 is the classical radius of the electron, because before quantum electrody-

namics it was conjectured that the mass of the electron might be due entirely to its own electrostatic
field.

Often it is useful to have the differential cross section for unpolarized radiation. If e lies in the
plane of n and k (but ⊥ k of course), then |n× e|2 = cos2 ψ, where ψ is the angle between n and
k, i.e., the angle through which the light is scattered. But if e is perpendicular to this plane, then
|n × e|2 = 1. For completely unpolarized incident light, one averages these two results with equal
weight: (

dσT
dΩ

)
unpol

=

(
e2

mec2

)2(
1 + cos2 ψ

2

)
. (10.3)

Of course the total cross section is still (10.2). But notice that the re-radiated light at ψ = π/2 is
completely linearly polarized.

At photon energies ~ω & mec
2 ≈ 511 keV, the classical calculation is not valid. For an initially

stationary electron, quantum electrodynamics gives the Klein-Nishina formula(
dσKN
dΩ

)
unpol

=
3σT
16π

(
ω′

ω

)2(
ω

ω′
+
ω′

ω
− sin2 ψ

)
, (10.4)

where the scattered photon energy is

~ω′ = ~ω
[
1 +

~ω
mec2

(1− cosψ)

]−1

. (10.5)

The electron, of course, recoils with energy ~(ω−ω′)+mec
2. Notice that whereas the nonrelativistic

formula (10.3) is front-back symmetric (ψ ↔ π − ψ), the Klein-Nishina formula is strongly peaked
in the forward direction if x ≡ ~ω/mec

2 � 1. The exact result for the total cross-section is given in
[53]; the high-energy limit is

σ ≈ 3

8

(
ln 2x + 1/2

x

)
σT (x� 1). (10.6)

It is instructive to practice dimensional analysis on this formula. In quantum-mechanical cal-
culations, it is useful to think in units where ~ = c = 1 (but G 6= 1 because gravity is normally
not taken into account). This leaves only one dimension: [mass] ↔ [length]−1 because, for exam-
ple, the reduced Compton wavelength of the electron is λe/2π ≡ ~/mec. Electric charge becomes
dimensionless, the square root of the fine-structure constant:

α ≡ e2

~c
≈ 1

137
. (10.7)

Now the photon-electron scattering amplitude ∝ e2 because the force exerted on the electron by the
incident photon is ∝ e, and the re-emission brings in another power of e. The scattering cross-section
∝ (amplitude)2. Hence σ ∝ α2 × (length)2. By dimensional analysis, the length should be inversely
proportional to some mass or energy, but we have two of these: me and ω. (The total cross section
should depend on the particle energies before scattering only.) Now the cross section transforms

1assuming linear polarization; but formula (10.1) itself is valid for general ellipticall polarizations.
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like a piece of surface perpendicular to the relative motion of the particles before scattering, and
therefore σ is invariant with respect to boosts along the direction of relative motion (a general fact).
Therefore we can evaluate it in the center-of-mass frame [COM]. If the total COM energy � me,
then one expects me to be irrelevant; then there is only one energy scale with which to construct
the cross section (the photon and electron have opposite momenta in the COM, hence each carries
energy ≈ ECOM/2 if xCOM/gg1). Hence

σ ∼ α2

E2
COM

=
α2

me(me + 2ω)
.

In the final expression, we have evaluated E2
COM in terms of the incident energies of the photon and

electron in the “lab” frame where the electron is at rest; this is most easily done using the invariance
of (~p+~k)2, where ~p and ~k are index-free notations for the 4-momentum of the electron and photon,
respectively2 Restoring the appropriate powers of ~ and c, this predicts that σ ∼ r2

e when x � 1
and σ ∼ r2

e/x when x � 1. This is correct, except that the high-energy formula (10.6) contains a
logarithm that “remembers” me even at ECOM � me.

10.2 Inverse Compton scattering

This is really the same process as Compton scattering, but viewed in a frame in which the electron
is not at rest, so that the photon may gain energy by scattering.

Previous results can be applied by transforming into the electron rest frame. The photon is
assumed to be soft, meaning that the rest-frame photon energy hν̄ � mec

2, and recoil of the
electron is neglected. Since

ν̄ = ν γ(1− β cos θ), (10.8)

where θ is the angle between the electron 3-velocity βn ≡ p/p0 and the photon momentum k in the
lab, the corresponding condition on the lab-frame energy is γhν � mec

2.
Suppose that the photons are isotropic and monoenergetic in the lab frame:

Iν(Ω) = K δ(ν − ν0), K = constant.

The corresponding specific intensity in the electron rest frame is

Īν̄(Ω̄) = K δ(ν − ν0)
( ν̄
ν

)3

= K δ
(
ν̄ −D−1ν0

)
D−4 , (10.9)

where the Doppler factor is the inverse of the transformation (10.8):

D(θ̄, β) ≡ ν

ν̄
= γ(1 + β cos θ̄)

[
=

1

γ(1− β cos θ)

]
,

and θ̄ is the angle of propagation in the rest frame. The total energy per unit time striking the
electron is (

dĒ

dt̄

)
inc

= σT

∫
dΩ̄

∫
dν̄ Īν̄(Ω̄)

= 2πσTK

1∫
−1

d cos θ̄

[γ(1 + β cos θ̄)]4

= 4πσTK γ2

(
1 +

β2

3

)
= 4πσTK

(
4γ2 − 1

3

)
. (10.10)

2Thus ~p · ~k means ηµνpµkν , and ~p 2 ≡ ~p · ~p = −m2
e.



126 CHAPTER 10. COMPTON SCATTERING

Since recoil is neglected, the electron simply reflects all of the energy incident upon it. The
reflected power carries no net momentum (although the incident power does, see below) because the
Thomson differential cross section (10.3) is symmetric between forward and backward scattering,
ψ → π − ψ. Because

dE = γ(dĒ + β·dp̄) → γdĒ if dp̄ = 0, (10.11)

and dt = γdt̄, it follows that the emitted power is invariant:(
dE

dt

)
refl

=

(
dĒ

dt̄

)
refl

=

(
dĒ

dt̄

)
inc

. (10.12)

Therefore, in terms of the photon energy density in the lab Uph = 4πK/c, we have the following
expression for the inverse-Compton power per electron:

PIC =
4γ2 − 1

3
UphσT c , (10.13)

Although derived for monochromatic photons, clearly this applies to any soft and isotropic photon
spectrum.

For a nonrelativistic (and nondegenerate) thermal distribution of Ne electrons per unit volume
at temperature Te, 〈γ2 − 1〉 = 3kBTe/mec

2, so that

Ne〈PIC〉 ≈
(

1 +
4kBTe
mec2

)
NeσT cUph (kBTe � mec

2) (10.14)

The “1+” represents the power incident upon the electron, which is independent of the electron
velocity β if the photons are isotropic:

Pinc =

∫
dν

∫
dΩ Iν(Ω) |vph − β| =

∫
dν

∫
dΩ Iν(Ω) (1− β cos θ) = cσT Uph .

The ratio PIC/Pinc is the average increase in photon energy per scattering:〈
ν′

ν

〉
=

4γ2 − 1

3
. (10.15)

The net rate per electron at which energy is input to the photon field is PIC − Pinc, which must be
balanced by an energy loss from the electron:(

dE

dt

)
IC

= −(PIC − Pinc) = − 4(γ2 − 1)

3
cσT Uph . (10.16)

This is called Compton drag.

10.3 Kompaneets Equation

The methods of the previous section are classical; they would be exact in the limit ~ → 0 where
the energy and momentum of individual photons would be negligible and electron recoil would
completely vanish. But in reality, ~ 6= 0 so that if the electrons were initially completely “cold,”
i.e. 〈γ〉 = 1, or (at least for a nondegenerate gas) Te = 0, recoil effects would tend to heat the
electrons until equilibrium with the photon distribution was achieved. In the nonrelativistic regime
~ω& kBTe � mec

2, this evolution is described by the Kompaneets equation.
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Let ne(p) and nph(k) be the number of electrons and photons per mode at momenta p and ~k,
respectively. (Both populations are assumed to be completely depolarized, so we do not keep track
of spin.) Suppose that in some standard volume V there were a single electron and a single photon
at these respective momenta; then define R(p,k; p′,k′) to be the probability per unit time that they
would scatter to some other momenta (p′, vk′). Of course

p′ + k′ = p+ k and E′ + ~ω′ = E + ~ω, (10.17)

where E ≡
√
p2 +m2

e and ω ≡ c|k|, etc.. Microscopic reversibility dictates that

R(p,k; p′,k′) = R(p′,k′; p,k). (10.18)

One might think that the kinetic equation describing the evolution of nph should be

∂

∂t
nph(k) =

∑
p,k′

R(p,k; p′,k′)
[
ne(p

′)nph(k′) − ne(p)nph(k)
]
.

The first term represents scatterings into the electron mode at k, and the second term represents
scatterings out of that mode. The above equation is indeed correct in the limit that both the
electrons and photons are very dilute, viz. ne, nph � 1. But the generally correct equation is

∂

∂t
nph(k) =

∑
p,k′

R(p,k; p′,k′)
[
n′en

′
ph(1− ne)(1 + nph)− nenph(1− n′e)(1 + n′ph)

]
, (10.19)

in which an obvious shorthand has been used (nph ≡ nph(k), n′ph ≡ nph(k′)). The factors (1 ±
n) reflect Bose-Einstein and Fermi statistics: if the mode at p is filled, then no scattering into
that mode can occur, and the factor 1 − ne(p) enforces this. For the (bosonic) photons, on the
other hand, the probability of scattering into the mode at k increases to the extent that the mean
occupation number nph(k) is already > 0 (stimulated emission). This argument doesn’t explain why
the final-state factors are 1±n rather than (say) (1±n)2. But consider fermionic and bosonic gases
in thermal equilibrium,

ne(p) = {exp[(E + µe)/kBT ] + 1}−1
nph(k) = {exp[(~ω + µph)/kBT ] − 1}−1

.

When these forms are inserted, the righthand side of the kinetic equation (10.19) vanishes identically
because of energy conservation (10.17). The constants µe , µph are chemical potentials associated
with conservation of particle number. For the electrons, −µe is the Fermi energy,3 and the electrons
are degenerate if −µe & kBT . The chemical potential of a photon blackbody is µph = 0 because
photons are not conserved. But pure Compton scattering conserves photons while redistributing
their energies and momenta. When Compton scattering dominates, the photons may evolve to
µph > 0, meaning that the photon gas is dilute: fewer photons per unit volume than there would be
for a black body of the same mean energy per photon.

The derivation of the Kompaneets equation assumes that the electrons are thermal and nonde-
generate, so the (1− ne) factors are dropped and the electron distribution is Maxwellian,

ne(E) = Ke−E/kBTe , K = e−µe = const. (10.20)

But the (1 +nph) factors are retained. The electron and photon distributions are assumed isotropic,
so that they can be written as functions of E and ω, as above. Finally, the electrons are nonrelativistic
and the photons are soft, so that the fractional changes in photon energy are small,

∆ω ≡ ω′ − ω � ω.

3For nonrelativistic electrons, one uses E for the kinetic energy p2/2m, so the relativistic µe → −(EF +mec2).
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Figure 10.1: Left panel: Sunyaev-Z’eldovich effect. Hot electrons shift photons from the Rayleigh-
Jeans into the Wien part of the spectrum. Right panel: Interferometric images of SZ effect in
clusters of galaxies. Note that the amplitude of the signal does not depend upon redshift as long as
the cluster is resolved [9]

Then the kinetic equation can be reduced to a differential equation by expanding ne and nph to
second order in energy changes:

ne(E
′) ≈ ne(E) − ~∆ω

∂ne
∂E

+
1

2
(~∆ω)2 ∂

2ne
∂E2

=

[
1 + ∆x+

1

2
(∆x)2

]
ne(E),

nph(x′) ≈ nph(x) + ∆x
∂nph

∂x
+

1

2
(∆x)2 ∂

2nph

∂x2
.

We have introduced a dimensionless photon energy

x ≡ ~ω
kBTe

. (10.21)

Putting these expansions into the kinetic equation, we have

∂nph

∂t
= ∆x

[
∂nph

∂x
+ nph(nph + 1)

]
+ (∆x)2

[
1

2

∂2nph

∂x2
+
∂nph

∂x
(nph + 1)

]
, (10.22)

where the first and second moments of the energy change are

∆x ≡
∑
p,k′

∆xne(p)R(p,k; p′,k′) (10.23)

(∆x)2 ≡
∑
p,k′

(∆x)2 ne(p)R(p,k; p′,k′) (10.24)
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Labor is saved by realizing that in order to guarantee conservation of total photon number (hence-
forth we omit the subscript from nph):

Nph ∝
∫
x2ndx ,

it must be possible to cast eq. (10.22) in the form

∂

∂t
(x2n) = −∂F

∂x
, (10.25)

By inspection, there must be functions A,B,C such that the number flux F is

− F = A(x)
∂n

∂x
+B(x)n+ C(x)n2 . (10.26)

Matching coefficients of n, n2, and their derivatives, one finds

A = B = C =
x2

2
(∆x)2 and ∆x =

1

2
ex

∂

∂x

[
e−x(∆x)2

]
. (10.27)

It remains only to compute (∆x)2. From energy and momentum conservation,

~∆ω = E − E′ ≈ p
2 − p′ 2

2m
≈ p · (p− p

′)

m
=

~p · (k′ − k)

m
= ~ve ·∆k ,

where ve ≡ p/m is the electron velocity. The square of this expression is already ∝ v2
e ; since the

electrons are non-relativistic, all other factors in the collision can be evaluated as if ve → 0. But if
the electrons were at rest, then ve and ∆k would be uncorrelated, whence

〈(ve ·∆k)2〉 ≈ 1

3
〈(ve)2〉〈(∆k)2〉 =

kBTe
m
〈(∆k)2〉 ,

since 〈cos2 θ〉 = 1/3. Neglecting electron recoil, |k′| = |k| when the electron is at rest, so (∆k)2 =
4k2 sin2(ψ/2) in terms of the scattering angle ψ, and the average of this with respect to the differential
cross section (10.3) is 2k2 = 2ω2/c2. The total collision rate per unit volume is of course NeσT c.
Putting these pieces together,

(∆x)2 ≈ 2NeσT c
kBTe
mec2

x2 , (10.28)

and the Kompaneets equation takes the form

∂n

∂y
=

1

4x2

∂

∂x

[
x4

(
∂n

∂x
+ n+ n2

)]
, (10.29)

in terms of a dimensionless time, the Compton y parameter:

y ≡ (4kBTe/mec
2)︸ ︷︷ ︸

〈∆ω/ω〉 per scatt.

× NeσT ct︸ ︷︷ ︸
# scatt.

. (10.30)

Notice that for a fixed time t or photon path length ct, y ∝ NekBTe, the electron pressure. We
will discuss two astrophysical applications of eq. (10.29): the Sunyaev-Zeldovich [SZ] effect, and
accretion-disk spectra.

The intergalactic gas in the most massive clusters of galaxies has kBTe ∼ 10 keV (T ∼ 108 K or
or kBTe/mec

2 ∼ 0.02), corresponding to line-of-sight virial velocities ∼ 103 km s−1. Optical depths
through the centers are

∫
NeσT dl . 10−2, so y ∼ 10−4 − 10−3. The “input” photon spectrum
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is the Cosmic Microwave Background [CMB], which is accurately isotropic and has a temperature
Tph ≈ 2.7 K, so the dimensionless temperature x ∼ 3Tph/Te ∼ 10−7. Since x and y are both small,
the solution of eq. (10.29) is adequately represented as

n− n0 ≈ y

4x2

∂

∂x

(
x4 ∂n0

∂x

)
,

= y x̂
∂n0

∂x̂

[
1 − x̂(ex̂ + 1)

4(ex̂ − 1)

]
where x̂ ≡ Te

Tph
x =

~ω
kBTph

, (10.31)

and n0 is the input blackbody:
n0(ω, Tph) = [ex̂ − 1]−1. (10.32)

The reason for writing n− n0 in the final factored form is that if one were to make a small change
δTph in the blackbody temperature, the corresponding change in n would be

n0(ω, Tph + δTph)− n0(ω, Tph) ≈ −δTph

Tph
× x̂

∂n0

∂x̂
(10.33)

because n0 depends on Tph and x through the combination x̂ ∝ x/Tph only. Therefore the solution
(10.31) can be interpreted as a frequency-dependent temperature shift:

δTph

Tph
= y

[
x̂(ex̂ + 1)

4(ex̂ − 1)
− 1

]
. (10.34)

In the Rayleigh-Jeans region x̂ � 1 (~ω � kBTph), where most ground-based observations are
made, δTph/Tph ≈ −y/2; whereas on the Wien side x̂ � 1, δTph/Tph ≈ +x̂ y/4. Thus there is
an apparent cooling at low frequencies and an heating at high ones; both effects are caused by a
migration of photons to higher frequencies, conserving their number. The temperature shift vanishes
at x̂ ≈ 3.83, corresponding to λ ≈ 1.4 mm for Tph = 2.7 K. By measuring y, one determines the
line-of-sight integral of the gas pressure; combining this with measurements of the X-ray brightness
(due to bremsstrahlung emission from the same gas), one can in principle measure the distance
to the cluster and other quantities of interest. After many years of effort and frustration, such
measurements have recently become reliable, and the subject holds great promise [cf. 9, for a recent
review].

Another important, if less cosmic, application is to the X-ray spectra of accretion disks, especially
the inner parts of disks accreting onto black-hole candidates. A typical spectrum for a bright X-ray
binary consists of an approximate blackbody at kBTph ∼ 1 keV, plus a power-law tail extending to
much larger energies (in the famous Galactic source Cygnus X-1, the tail may extend to ~ω & 1 MeV).
The ratio of fluxes in the soft (thermal) and hard (power-law) components often varies with time
and total flux. It is widely believed that the soft component is emission from the accretion disk,
while the hard component results as some of these soft photons are Compton-scattered by much
hotter—or possibly relativistic and nonthermal—electrons in a corona above the disk. Presumably
the corona has something to do with magnetic dissipation.

To see roughly how the hard component might arise, let us modify the righthand side of eq. (10.29)
by adding a source function S(x) at small x [i.e. S(x) is appreciable only at x . xs � 1], and a
sink function −n/yc. The motivation for the latter is that the corona has a finite optical depth

τc = yc ·
(

4kBTe
mec2

)−1

∼ 1 ;

in our spatially homogenous and isotropic model, we crudely represent this by arranging that the
photon has a fixed probability of escaping from the corona per unit “time” yc. Finally, we seek a



10.3. KOMPANEETS EQUATION 131

Figure 10.2: Spectrum of Cygnus X-1 measured by RXTE (Rossi X-ray Timing Explorer). Cygnus
X-1 is believed to be an accreting black hole with mass ≈ 4 − 5M� in a binary system with an
O-star companion. X-ray counts shown by points with error bars. Solid histograms show a model fit
consisting of a soft thermal component (kBT = 0.27 keV), a broken powerlaw (photons per energy
per time ∝ E−2.95 below 10.8 keV and E−1.95 above), and an exponential cutoff at 184 keV [13].

steady state, so ∂n/∂y = 0:

0 ≈=
1

4x2

∂

∂x

[
x4

(
∂n

∂x
+ n+ n2

)]
+ S(x) − n

yc
. (10.35)

We want to apply this to the high-energy tail, where it is likely that the photons are dilute: n� 1
whence n2 � n, so we drop the nonlinear term. Also, at x > xs we can ignore S(x) locally (although
globally it is crucial to maintain the supply of photons). We now have (with n′ ≡ dn/dx)[

x2n′′ + 4xn′ − 4

yc
n

]
+ [x(xn′ + 4n)] ≈ 0.

The relative scaling of the various terms with x is guesstimated by counting each derivative as a
factor of 1/x (which is roughly true if the solution resembles a power law, but not if it is exponential).
By this accounting, the terms in each set of square brackets scale together, and the second bracket
has an extra factor of x with respect to the first. At moderately low frequencies xs < x � 1, the
first bracket should dominate, and we seek a solution n ∝ x−α−2; observations are usually quoted
in terms of the power-law index of the number of photons per unit energy (∝ x2n), which is α:

α2 + α − 2− 4

yc
≈ 0 ⇒ α ≈ −1

2
+

3

2

√
1 +

(
4

3
√
yc

)2

,

since we need the positive root. Hence α > 1 so that the total number of photons converges. At
large x, ignoring the first bracket in favor of the second leads to n ∝ x−4: it can be shown that this
describes photons injected at high energy and cooling down toward equilibrium with the electrons
(the energy-space flux F < 0). If the source is at low energies, then the appropriate large-x behavior
is found by balancing the two terms with explicit x2 factors, leading to n ∝ e−x as expected for a
dilute photon gas in thermal equilibrium.



132 CHAPTER 10. COMPTON SCATTERING

Thus we are able to model spectra such as that shown in Figure 10.2. One imagines an accretion
disk injecting soft photons (hν ∼ kBTdisk . 1 keV) to a corona containing hot or even relativistic
electrons (Ēe & 100 keV). The soft photons are upscattered to form a powerlaw with photon index
α > 1 and a cutoff at energies of order Ēe.

To extend the photon power-law up to ∼ 1 MeV, one therefore needs electron energies of the same
order. There is no reason to believe solutions to the differential equation (10.29) when kBTph & mec

2,
since all of the approximations by which it was derived break down, and one must go back to the orig-
inal (integro-differential) kinetic equation. But it can be shown (e.g. by Monte-Carlo simulations)
that power-law solutions can result, provided there is a population of relativistic electrons.
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[24] T. Güver, F. Özel, and D. Psaltis. Systematic Uncertainties in the Spectroscopic Measurements
of Neutron-star Masses and Radii from Thermonuclear X-Ray Bursts. II. Eddington Limit.
ApJ, 747:77, March 2012.
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