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Physical optics and Kirchhoff Integral
Diffraction by an aperture
Fraunhofer diffraction

Fresnel diffraction

Image formation

Dealing with imperfections
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Kirchhoff integral

* Monochromatic scalar wave V¥ =v(x)e ™
with spatial part satisfying Helmholtz eqn:
VU 4+ k%Y =0

for free propagation, eg: one component of
E field in absence of polarization coupling

 Assume medium is homogeneous and non- |

dispersive so that k is constant

 Helmholtz eqgn is a linear, elliptic PDE, so
solution inside a volume is completely
determined by value of v (x) and its normal
derivative on the boundary. 3
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Kirchhoff integral (cont..) -

* Nice trick available! 1

+ Greens' theorem: for any two (reasonable) | | [

scalar functions P

/ WV — o VY)-dB = - / (W90 — Yo V*)dV
b V

oundary )

* Above intergrals = 0 if both functions

satisfy Helmholtz equation
. . eikfr
* By inspection vy = .

IS a solution




Kirchhoff integral (cont..) r J

/ (Vo — V) - dE = — /v (V20— poV2)V =0 [

‘boundary E
eikr

« With -5, have vV — oV — —(0)/r2 + O(1/r)f el
. So integral over S, becomes 4m/(P) = dryp L:

* Therefore aisii
1 rkr tkr i "’
Yp = — (¢Ve ¢ Vzb) A . ’
471 Js r r -. 3




Diffraction by an aperture

e Suppose we have an aperture, which is
big compared to the wavelength, but small
compared to the distance to P .lllumination
comes from a distant wave source.

» Characterize aperture by a complex
functiont |, such that the wave just after

passing through it 1o = t ¢/
» On the aperture have kr > 1 , so write
V(e™ /r) ~ —ikne™ /r , 1 pointing towards P
Vi ~ iktn'y’ | with n’ parallel to k




Diffraction by an aperture [ EE

Ll |

Can solve in two different regimes:

» Far field (Fraunhofer)

* Near field (Fresnel)
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Fraunhofer regime (far field) | 2t
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k Q_, Optic Axis LT
| P it
hlength =r= (p®> —2px -0+ 22?2~ p—x- 9+2—+ ]
P .
Condition for Fraunhofer is that we can IV

neglect the quadratic phase variation with [
posmon In the aperture plane T

l.e. k;2— <1 forallx,or a<+/Ap
P




Fraunhofer regime (far field)
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Path length =r = (p — 20X -0 +x )1f2_p X - 9+2_+
P
Neglecting the quadratic term:

Dp(8) o / RO (x)d%) = 1(8)

The amplitude of the Fraunhofer diffraction
pattern is given by the 2D Fourier transform of
the aperture function




Fraunhofer examples

 Diffraction by a single, finite slit

B o) = 1 |z <a/2
o) = Hile) = {O x| > a/2
2 g2
Yp(0) x Hp x / ™™ dx o sinc (3 kab)
Then i
F(0) o sinc® (3kad) .
Intensity
3\
~J | \28 n 6
?L ) > S11
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Fraunhofer examples
 Diffraction grating
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Fraunhofer examples

Diffraction grating 1—
A/Na .

p-th order beam deflected by 0 = np/ka = pA/2a

Consider beams for waves at A and A+ o\
Located at 0 = pA\/2a and p(\ + d)\)/2a
Separation 60 = pé)/2a

Can distinguish them if maximum of one
corresponds to first minimum of the other,
i.e.00 is at least \/2Na (Rayleigh criterion)

A

L AL

Corresponds to = < = np (chromatic resolving B
power) 0\ ,
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Fraunhofer examples e
- Diffraction by a circular apertur? s -
- Jl k':DQ 2 i -
h( 60 -zkx-@dz = %
¥E /Disk with diameter De % kDQ/Q E Dt
e _ ,-
1 - I ] —
* Most of the light from a distant .// . nT
source falls within the Airy disc ,,” | plusofhiy dic EJ
04 =1.22)\ / D /f H‘%.,I [
e Can use to calculate the i l.ézk/d sin 0 ; 1

diffraction limit of a lens/telescope N

* Two equally bright sources can be resolved only
if the radius of the Airy disk is less than their
separation, i.e if their angular separation is more

than Omin = 04 = 1.220/D
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Fraunhofer examples i
- Diffraction by a circular aperture( Pl
—ikx-0 Jl kDO /2 _ AN
i /Disk with diameter De e kDQ/Q bt
Ehe3 Airy Discs Mmix il al

) s
™
radius of Airy disc —{ UL

- (a) (b) (c) | imiE;
y
——————31n 0 . y
122 M/d |

Intensity Distributions

* Two equally bright sources can be resolved only
iIf the radius of the Airy disk is less than their
separation, i.e if their angular separation is more
than

Omin = 04 = 1.22)/D




Fresnel regime (near field) 1 i

 Now can't neglect quadratic phase variation

* Problem a bit harder. Consider special case in which £ VN
the source, the origin of coordinates and the AN

observation point are aligned

&
aperture E; 1T
wavefronts —__ Ay Ih

1 | | h

~— T Might seem

--------- : uninteresting, but

can make a lot of

progress by moving

- | the origin! :
< 7 1-}|?-1 5 > P g
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Fresnel regime (near field)

ri+ry = Va+a? +y2+ /0 + a4y
— a+b- :1:2+y2 . $2+y2
22 2b

+ higher order terms
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Fresnel regime (near field)

ri4re = Va4 224+ 12+ /02 + 22492
r? + ’y2 n r? + ’y2

2a 2b
+ higher order terms

= a+ b+

72 +y2

: 1 1 1 .
S _ >+ then  optical path = const. +
write =t p p R

wpoc/t(a: Y) exp ?lkmg v dy
’ 2R

17

Ly
L




Separable aperture

If the aperture function is separable (e.qg.

rectangular aperture), it is convenient to rewrite in jl "
terms of Fresnel integrals.

: | 2 | 2
Change variablesto u==x N ATAY-

Define Fresnel integral

w

.
/e}{p (W; ) du = C(w) + iS(w)
0

Plotting C vs S, obtain the
Cornu spiral

C'(o0) =0.5 S(oo) =0.5

S(w)

0.8+
0.6
0.4

0.2-

—Y r 1 1~ 11
- 02 04 06 08

C(w)




Separable aperture

If the aperture function is separable (e.qg.
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Diffraction from straight edge

TX screen
|
d
C
S = B %=
d
O geometrical
i shadow
7 ikz? 1 imu’
Up oc/exp(—)dx oc/exp( )du
2R
T un
= C(QUQ) — C(wl) + Z(S(’lﬂg) — S(wl))
a To=00 11 =u, >0
b 29=00 1 =2, =0 the geometrical edge
C To=00 11 =2o,<0
d 9 =00 77 =124 wg~ —1.26 maximum [ p|

20

-




Qo0 T
=]
b

Diffraction from straight edge
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=g =1 the geometrical edge
=gz

Ty = xg; wg ~ —1.26 maximum |¢p|
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INVESTIGATION OF THE RADIO SOURCE 3C 273 BY THE METHOD OF

LUNAR OCCULTATIONS

By C. HAZARD, M. B. MACKEY and A. J. SHIMMINS
C.5.LR.O. Division of Radiophysics, University Grounds, Sydney

* Use the Fresnel pattern from lunar
occultation of the powerful 3C 273 radio

source to determine its position accurately

- o

v —

t__

r - b " W
1 r — !
- : —-— IR A
~ |iminute || - - |-
- —& H *




Diffraction by circular aperture =
e Consider circular aperture w/ radius D

Retain the obliquity factor K
Using polar coordinates:

p=D

K ikp

o | G A ( 2R ) R

p=0

Use the substitution ¢’ =s; 2pdp=ds

S:D2
/ K r
L e (a2 + 8)12(52 + 5)1/2 <P
=

1S

AR

) T ds

Note: only valid on axis!

oh 2

I




Diffraction by circular aperture '

S:D2

s=0

Y / il ex ik 7 ds
PE ] @rere a2 P\AR) T

b

» Evaluate graphically

Going around in a &I

circle

Spiralling in

24




Diffraction by circular aperture

and Fresnel Zones a» i
For finite apertures, the diffraction integral varies L1
considerably ¢ =2n~ p° = 2nAr = =0 |

d=02n+1)m pPP=0C2n+ 1D\ = ¢~ 2,

Define Fresnel zones as
concentric rings in the

aperture plane over

which the phase varies at i
the observation point )
varies by 7T S )

1%t zone: 0<¢(p) < il
p® < AR. j

Nth zone: (n— 17 <¢(p) <nrm
V(n—1AR < p < ViAR.

25

Note: Area of each zone is the same = (p, — p,_,) = TAR.




Diffraction by circular aperture —

and Fresnel Zones

For finite apertures, the diffraction integral varies

considerably ¢ =2nr P> = 2n\r = 0
db=0Cn+ 11 pPP=02n+1DI\r = =2,

Define Fresnel zones as
concentric rings in the
aperture plane over
which the phase varies at
the observation point
varies by 7T

1%t zone: 0<op) <7
p® < AR.

Nth zone: (—1)7<¢(p) <nm
V(n—1AR < p < VnAR.

Note: Area of each zone is the same = (p, —p,_,) = TAR. 2

f_




Diffraction by circular aperture ==
and Fresnel Zones Sl

For finite apertures, the diffraction integral varies
p* = 2n\r = =0
d=02n+1)m pPP=0C2n+ 1D\ = ¢~ 2,

considerably ¢ =2nr

Odd numbered zones add

to, and

from the overall amplitude at P.

even numbered zones subtract

So, for an observation point P on the optic axis of a circular

aperture of radius a, the aperture includes N zones, given by

a’> = n\R.

N ODD: bright spot at P; ¢ ~ 24,; [ ~ 41,

N EVEN: dark spot at P: 1) ~0; I ~ 0




Zone

plate

A Fresnel zone plate is an aperture that blocks
alternates half-period zones.

* Eg: block the odd ones

Fresnel Zones Zone plate

zone 10 \ Yo
zone & Yy
\ /
zone 6 Y
Y
zone 4 W,
\ 4
zone 2 \ 2 Y, R

Ll |

wavefronts _ L
> : l j{,— =
3 3 I.
oo L7 b
P . zone 1 ¥
hl P I
:/\ o i-"-. [
Ih‘“ zone 2 1l LL |
. [ mia
Net amplitude at P 3
¢p2¢2—|—¢4—|—¢6—|—... h
=1 |

~ 2N,
Intensity Ip ~ 4N?I,

Incident wave brought to focus at P!

Acts like a lens of focal length

,_it_s

A nA

28




b
Zone plate (cont..) R
» f o 1/)\ — highly chromatic lens f

. Focuses different wavelengths in different §——
foci i

* Works for any frequency (including X-rays) i i

» Maximum resolution depends onsmallest
zone width .




Image formation (thin lens)
Field at distance Z along the optical axis: Q,Dj (X)

Vector x is perpendicular to the optic axis

Yo (X2) = /P21(X23X1)d21¢1

P_, is the propagator or Point Spread Function (PSF)

For a linear system

s

-----




Image formation (thin lens)

Field at distance z along the optical axis: gbj (X) 1—

Vector x is perpendicular to the optic axis =

For a linear system '
¢2(X2) — P21(X2,X1)d21¢1 ]
=
P, is the propagator or Point Spread Function (PSF) £
Free propagation through d = 29 — 21
—ik . ?;k(Xl — X2)2 1|
Py = — e ex B 1D
T R ( 2d -_
Thin lens: phase shift depends quadratically on the

distance from optic axis x|

2f

ik 2
Pglexp< : ‘Xl‘ )5(X2—X1)




Image formation (thin lens)

{ L' v=fu/(u—f)

Soprce Lichs Foeal Impge
plage_ o gage_ . _pl;_lne plane
- — — o —— - - - ——— — — — = =

 Propagating to the focal plane:

PFS — /PFL’dEL’PL’LdELLPLS

2f
—ik ik (Zk(XL — XS)Q)

xd. [, ——e"" exp >
u

2mu
. _—'-Bk' ik(f+u) B Zki{:%‘ _?J:ifXF - Xg
= 2~;Tf€ exp O exp 7 :

Y ' Je _ )2 ik 2
— / %Etk}r exp (?, (XF XL) ) dELF(s(XL! o XL) exp ( (4 ‘XL‘
s

2f

)

L
=T

i
N




Image formation (thin lens)

* Propagating from source to the focal plane:

k ika? ikxp - X5\ =
Ppg = L oik(+u) oy ( F )er ( F 5) ==mia
2mf 2(v — f) f =

 Amplitude given by QPF XF prgd25¢5(Xs

- ik u ks 7
ﬂ;F(XF) - _Qﬂ'fe e )er (_2(@ _Ff)) F".—""f’S(XF/f) : | =SS S

* | Therefore the amplitude in the focal plane is
proportional to the Fourier transform of the field in [ 7=
the source plane

* Focal plane can be used for spatial filtering, i.e.

processing the image by altering its Fourier
transform




Image formation (thin lens)
* Finally, free propagation from focal plane

to image plane

;= | PrrdXpip

- u ik(u+v
Yr(Xr) = — (;) )

7 T2
ks

v— f)

) Vs(xs = —Xqu/v) .

* Apart from a phase factor, the field in the

Image plane is just a magnified version of

the original field, with the correct

magnification

* Theory due to E. Abbe (1873)




Dealing with imperfections...

So far only considered perfect lenses/mirrors and
uniform propagation medium

When any of the above assumptions fail, the image
quality is degraded

Useful to define the Strehl ratio as the ratio
between the peak amplitude of the actual PSF and
the peak amplitude expected in the presence of
diffraction only

Looking through the atmosphere, the Strehl ratio will
be very low, even with good optics (due to
atmospheric turbulence).

In presence of Adaptive Optics systems, can get
very close to 1 (diffraction limited)

35
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Dealing with imperfections... [} -
e Can treat aberrations and imperfections in

the physical optics language (but it's a E—

hard problem, see Born & Wolf) 1T
. Can relate rms imperfection in the optics ~ © ||

with actual intensity in the focal plane

Ip = I {1 - (2)7;?)2 (AD)?

 For example, in order to have 1,/1o~ 0.8

WEIneed AD| < \/14
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