Optical Telescopes

Colin Hill Princeton Astrophysics

16 February 2011

Telescope Overview

• Two-Mirror Reflecting Telescopes

- Cassegrain

- Gregorian
- Ritchey-Chretien
- Auxiliary Optics & Correctors
- Catadioptric Telescopes/Cameras
 - Classical Schmidt
 - Schmidt-Cassegrain
- Examples: Subaru, Keck, APO

Optical Systems: Basics

- Focal length ←→ plate scale: angle imaged onto unit length
 Lick 3m: f_l=15.2m, P_s=14"/mm
- Energy per unit time onto single pixel:
- $E_p \longleftrightarrow$ "speed"

Bradt

- Notation: focal ratio = "f/R" (e.g., f/3 means focal ratio of 3)
- Slower optics: greater magnification, angular resolution
- Faster optics: shorter exposure time
 - better for wide-field surveys

 $E_{\rm p} \propto \left(\frac{d}{f_{\rm I}}\right)^2$

 \leftarrow

Important Quantities

- Diameter of primary mirror: light collecting power
- Telescope scale: $f_{eff} = f_1 m$
- Back focal distance

- Design parameters:
 - Radii of curvature of mirrors
 - Separation between mirrors
- f_1 limited by technology: choose *m* to get desired scale
- Mirror separation: compromise between longer/less blocked light vs. shorter/more blocked light
- How to focus: move secondary mirror

Other Quantities

- Beam: portion of sky observed at a time by a given pixel
- PSF: distribution of deposited energy in image plane in response to a point source (map of single-pixel beam shape)

Reflectors: Cassegrain

- Parabolic primary; hyperbolic secondary
- Correct for spherical aberration w/ secondary (classical)
- Dominated by coma (over astigmatism)
- Limited to small fields (O(<10') for 1" seeing)

Schroeder

Reflectors: Gregorian

- Parabolic primary; prolate ellipsoidal secondary
- Again, correct for spherical aberration w/ secondary
- Same coma and astigmatism as Cassegrain
- Only difference: smaller image surface curvature (negligible given small field size)

Schroeder

Reflectors: Ritchey-Chretien

- Aplanatic: optical system w/ zero spherical aberration and coma
- Ritchey-Chretien: aplanatic Cassegrain

- Choose shapes of primary+secondary to leave only astigmatism
 Two hyperbolic mirrors
 - Also, aplanatic Gregorian: two ellipsoidal mirrors
- RC: larger astigmatism compared to CC at same f/R
 AG: smaller than CG at same f/R
- Location of stop does not affect astigmatism
- RC: most popular choice today for big optical telescopes

• Cassegrain is significantly shorter for same primary mirror (Gregorian would need faster primary to have same physical length)

secondary-focal surface distance = mkf_1

- Cassegrain needs smaller secondary to get all light from primary
- Aplanatic Gregorian generally gives best optical quality
- Design considerations favor RC overall though
 - Symmetric images (astigmatism only)
 - Large field
 - Shorter than AG; obstructs less light

Reflectors: why RC?

- Center: on-axis (note Airy disk); others: outer edges of field
- PSF off-axis (at edge of 2 in. diameter field -- corresponds to 0.7162°)

Catadioptric Telescopes: Schmidt ← | →

- Catadioptric: full-aperture refracting element corrects spherical aberration
- Locate plate and aperature stop to give zero coma and astigmatism (to third order)
- Attain good wide-field imaging

Schmidt Telescopes/Cameras

• Key: aspheric plate

- To minimize chromatic effects: locate stop/exit pupil as near corrector as possible

- Otherwise need larger plate

- Why Schmidt?:
 - Relative simplicity: only two large optical elements
 - Good choice if aperture of >1m is required
 - Smaller chromatic aberration of apsheric corrector compared to other types
- Short focal length-> fast

Catadioptric: Schmidt-Cassegrain <□ | → </p>

- Aspheric corrector in collimated beam ahead of primary mirror
- Leaves free parameters for mirror design for other corrections
- Note shift of aperture stop from primary to corrector

Schmidt-Cassegrain

- Different stop location means secondary size changes
- SC types:
 - Flat-field anastigmatic SC: zero astigmatism/coma/spherical aber.
 - SC with spherical mirrors (including aplanatic SC)
 - Compact SC with spherical primary (popular for amateurs)
- Main issue: chromatic aberration (large compared to standard Schmidt)--displacing stop from corrector makes it worse

Schroeder

Auxiliary Optics

- Field lens: element placed at or near image plane
- Field-flattener: flattens a curved image surface
 Does change system aberrations slightly
- Ex.: Ritchey-Chretien w/ FF
- Can also use in Schmidt, but introduces larger aberrations

- Prime focus correctors (when needing smaller focal ratio)
 - Aspheric plates
 - Wynne triplets
- Cassegrain focus correctors
 - Aspheric plates (Gascoigne) -- remove astigmatism
 - Modified Ritchey-Chretien (e.g., Las Campanas I.0m, 2.5m)

Other Sources of Aberrations ←

- Misfigured or imperfect optics
- Misalignments: leads to constant coma over the field (dominates over astigmatism)
- Mechanical/support problems -- distortion of mirror shape, alignment of mirrors (one reason for alt-az mount)
- Chromatic aberration in cameras/spectrographs
- Seeing

4: Cassegrain Focus

http://www.subarut

• 8.2m primary (f/1.83)

- ~1.3m secondary
- Ritchey-Chretien
- Can place instruments at prime focus!
- Optical/IR

(c) MBTA Corporation Japan #150132 Drg/Introduction/telescope.html

띥

#750h Keck II Mirror 2007 January 29 © 2007 LaurieHatch.com / all rights reserved / photo credit requested / email: Ih@lauriehatch.com The Keck II 10-meter, 36-segment mirror is seen from a bird's eye view nearly 30 meters above.

- 10m primary (36 segments, f/1.75)
- Ritchey-Chretien + AO
- Optical/IR

20/22

Apache Point Observatory 2.5m < ↓ </p>

Gunn et al. (2006)

- Ritchey-Chretien
- 2.5m primary (f/5 tot.)
- 1.8m secondary
- Two corrector lenses: 3° distortion-free FOV
 - Gascoigne astigmatism corrector
 - Highly aspheric corrector
- CCD camera
- Fiber-fed double spectrographs

- Many ways to reduce different aberrations, increase FOV
- Most popular today: Ritchey-Chretien
 - Astigmatism-limited field
 - Smaller facilities required
 - Can modify further to reduce astigmatism, flatten image plane

n

References

Bradt, H. Astronomy Methods. Cambridge University Press, 2004. Gunn, J.E., et al. 2006, AJ 131 (4), 2332. Holtzman, J. AY535 Notes: Observational Techniques. 2010. http:// ganymede.nmsu.edu/holtz/a535/ay535notes/ Schroeder, D. Astronomical Optics. Academic Press, 2000. http://www.dreamscopes.com/pages/projects-04/ccvrc.htm http://www.subarutelescope.org/Introduction/telescope.html http://www.lbl.gov/Science-Articles/Archive/keck-telescope.html http://keckobservatory.org/gallery/album/C6 http://www.sdss.org/gallery/gal_photos.html