
THERMAL STABILITY OF LOW MASS STARS

Let us consider a star in a hydrostatic equilibrium, i.e. we have d2r/dt2 = 0. Let the star be also in
a thermal equilibrium, i.e. we have dS/dt = 0. Now we shall make a perturbation that is so slow that
is does not disturb hydrostatic equilibrium but it disturbs thermal equilibrium, i.e. now dS/dt 6= 0.
The question is: will the perturbation grow or decay? If it grows then the star is thermally unstable.
If it decays then the star is thermally stable against this particular perturbation. Of course, there
may be many other perturbations, and the full analysis is very complicated. However, thermal
stability analysis is very simple for lower main sequence stars, because they are fully convective,
i.e. the specific entropy is the same throughout the whole star. This means that the gravitational

luminosity Lg (cf. notes on STARS IN A HYDROSTATIC EQUILIBRIUM ) may be written as
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The nuclear luminosity Ln is given as
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ǫndMr, (ts.2)

and the surface luminosity is
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eff . (ts.3)

A model in a thermal equilibrium satisfies the equation:

L = Ln + Lg, Lg = 0, (thermal equilibrium), (ts.4)

while in a perturbed model we have
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The important simplicity of a low mass star is the efficient convection which forces the interior
to be iso-entropic. Any change in entropy in one part of a star is redistributed throughout the whole
star on a time scale only slightly longer than dynamical, i.e. very much shorter than overall thermal
time scale. This implies that there is only one thermal mode within fully convective star, the mode
which changes specific entropy uniformly. Therefore, we have to analyze only this one mode to find
if the star is thermally stable or unstable. The perturbed luminosities satisfy the equations
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A lower main sequence star may be considered to be a polytrope with an index n = 1.5 (cf.
notes on LOW MASS STARS ). To make our analysis as simple as possible we shall neglect electron
degeneracy, and adopt the simple equation of state:
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We shall also adopt a simple formula for heat generation rate in the proton-proton reaction:
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Thermally perturbed polytropic star remains polytropic, just density and temperature through-
out the convective interior change according to
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Notice, the perturbation of temperature described with equation (ts.12) does not apply to Teff , as
that is governed by outer boundary condition, i.e. model atmosphere that is not a part of polytropic
stellar interior. Combining equations (ts.9) and (ts.12) we obtain for the variation of entropy
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For a non-degenerate polytropic ( n = 1.5 ) star we also have
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(cf. notes on STARS IN A HYDROSTATIC EQUILIBRIUM and on POLYTROPES ). Combining
equations (ts.8), (ts.13) and (ts.14) we obtain
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Notice, that the results expressed with equation (ts.15) could be obtained directly from the equation
(eql.15) of STARS IN A HYDROSTATIC EQUILIBRIUM , for any star supported by pressure of
non-relativistic gas. In particular, the equation (ts.15) is valid even if electron gas is partially or
fully degenerate, as long as it is non-relativistic, i.e. as long as the star has a small mass.

We shall look for time variability of the type eσt, where σ is the eigen-value of the problem. With
δR ∼ eσt we have
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Combining equations (ts.15) and (ts.16) we get
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Combining equations (ts.7), (ts.11) and (ts.12) we find
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because in the equilibrium model Ln = L (cf. eq. ts.4).
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Lower main sequence stars are on the Hayashi line (i.e. they are fully convective), and their
effective temperatures are almost constant (this will be justified in a lecture on the HAYASHI

LIMIT ). For the purpose of this analysis we shall adopt δTeff = 0, and this makes (cf. eq. ts.6)
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This way we expressed all perturbations in terms of δR/R. Combining equations (ts.5), (ts.17),
(ts.18), and (ts.19) we find
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With δR/R in every term of equation (ts.20) we may obtain for σ
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The eigen-value σ is negative, i.e. the model is thermally stable.

Let us consider now even lower mass stars, for which electron gas may be partly degenerate, but
non-relativistic. Such stars are still fully convective, and well described by an n = 1.5 polytrope, but
the central temperature is no longer proportional to R−1. Instead, according to equation (lms.7)
(cf. notes on Low Mass Stars ) we have
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Let us now consider the differences in density and temperature between stars with slightly different
masses and radii. We have
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We shall consider first a sequence of models which are in a thermal equilibrium, i.e. for which
L = Ln, and Lg = 0 (cf. equation ts.4). Just as before we shall adopt the following relations:
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Combining equations (ts.23) – (ts.26) we obtain
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Along the sequence of thermal equilibrium models we require that δ(Ln − L) = 0. Therefore, the
equation (ts.27) gives a differential mass – radius relation which may be written in a form
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When stars are non degenerate, i.e. when R ≫ Rmin, the mass – radius relation (ts.28) gives
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This well describes the relation for low mass main sequence stars. When mass is lowered, the mass –
radius relation (ts.29) implies ρc ∼ M/R3 ∼ M−4/5, Tc ∼ M/R ∼ M2/3, and the ratio of degenerate

to non – degenerate pressure Pd/Pnd ∼ ρ
2/3

c /Tc ∼ M−14/15. Therefore, for stars with lower mass
electron degeneracy is more important. Increase of degeneracy implies that the ratio R/Rmin is
reduced, and ultimately may approach 1, but cannot be less than 1. Therefore, the denominator of
the right hand side of equation (ts.28) is always positive, but the numerator may become negative
while the ratio Rmin/R increases. In particular, the numerator vanishes, and we reach a minimum
mass when
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= 1.51/2 ≈ 1.225.

The sequence of stars in thermal equilibrium may be extended beyond the point defined with
equation (ts.30). However, while the stellar radius may still decrease, the stellar mass will increase.
Therefore, for masses somewhat above the minimum mass there are two different equilibrium models:
one on the so called normal branch of the main sequence, along which stellar mass and radius
increase together, and a second model on the so called high density branch, along which stellar
radius decreases, while the stellar mass increases. This branch is only crudely described with our
simplified outer boundary condition, Teff = const. At some point, when the interior of the star
becomes more and more degenerate, the surface temperature must drop as well. However, even this
crude outer boundary condition allows to demonstrate that there is a minimum mass for hydrogen
burning models in thermal equilibrium. Numerical computations show that the minimum mass is
0.08M⊙.

Let us consider now thermal stability of models near the minimum mass. The relations (ts.15) and
(ts.17) hold for any non-relativistic star described with an n = 1.5 polytrope. We have L = Ln +Lg,
and δ(Ln − L) = −δLg. Combining equations (ts.17) and (ts.27), and keeping δM = 0 we obtain
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In the limit of R ≫ Rmin the equation (ts.31) gives the same result as the equation (ts.21). However,
the equation (ts.31) provides the eigenvalue σ also for partly degenerate stars. It is clear that σ < 0
when R > 1.225Rmin, i.e. on the normal branch of the main sequence, σ = 0 when the minimum
mass is reached, and σ > 0 for models on the high density branch of the main sequence. Therefore,
the normal main sequence stars are thermally stable, while models on the high density branch are
thermally unstable. The transition from stability to instability coincides with the turning point
of the main sequence, where a minimum mass is reached. This is just as expected from a general
relation between linear series of stellar models and stellar stability.

Similar technique can be used to analyze thermal stability of very massive stars, which are also
fully convective. In that case we may use as a very good approximation the Eddington model and
approximate stellar structure with n = 3 polytrope. In that case not only gas pressure, but also
radiation pressure has to be allowed for, and a thermal perturbation does not change the surface
stellar luminosity, as the luminosity depends on the stellar mass only.
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