
STARS IN HYDROSTATIC EQUILIBRIUM

Gravitational energy and hydrostatic equilibrium

We shall consider stars in a hydrostatic equilibrium, but not necessarily in a thermal equilibrium.
Let us define some terms:

U = kinetic, or in general internal energy density [ erg cm−3], (eql.1a)

u ≡
U

ρ

[

erg g −1
]

, (eql.1b)

Eth ≡

R
∫

0

U4πr2dr =

M
∫

0

u dMr = thermal energy of a star, [ erg ], (eql.1c)

Ω = −

M
∫

0

GMrdMr

r
= gravitational energy of a star, [ erg ], (eql.1d)

Etot = Eth + Ω = total energy of a star , [ erg ] . (eql.1e)

We shall use the equation of hydrostatic equilibrium

dP

dr
= −

GMr

r
ρ, (eql.2)

and the relation between the mass and radius

dMr

dr
= 4πr2ρ, (eql.3)

to find a relations between thermal and gravitational energy of a star. As we shall be changing
variables many times we shall adopt a convention of using ”c” as a symbol of a stellar center and the
lower limit of an integral, and ”s” as a symbol of a stellar surface and the upper limit of an integral.
We shall be transforming an integral formula (eql.1d) so, as to relate it to (eql.1c) :

Ω = −

s
∫

c

GMrdMr

r
= −

s
∫

c

GMr

r
4πr2ρdr = −

s
∫

c

GMrρ

r2
4πr3dr = (eql.4)

s
∫

c

dP

dr
4πr3dr =

s
∫

c

4πr3dP = 4πr3P
∣

∣

∣

s

c
−

s
∫

c

12πr2Pdr =

−3

s
∫

c

P4πr2dr = Ω.

Our final result: gravitational energy of a star in a hydrostatic equilibrium is equal to three times
the integral of pressure within the star over its entire volume.
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Now, we shall use a relation between pressure and energy density in two limits. First, in a
non-relativistic limit (NR) we have U = 1.5P , and hence:

Ω = −2

s
∫

c

U4πr2dr = −2Eth, (NR), (eql.5a)

and in the ultra-relativistic limit (UR) we have U = 3P , and

Ω = −

s
∫

c

U4πr2dr = −Eth, (UR), (eql.5b)

These equations also give

Etot = Ω + Eth =
1

2
Ω < 0 (NR), (eql.6a)

Etot = 0 (UR). (eql.6b)

The non-relativistic case is equivalent to the well known virial theorem. The ultra-relativistic
results is somewhat paradoxical, with the total energy of a star being zero. This result is only
approximate, as it relates to the case when all particles within the star are moving with the speed
of light. This limit is never quite reached, and our result just indicates that close to that limit the
total stellar energy is close to zero.

Heat balance in a star

Let us consider now the equation of heat balance for a star. It may be written as

(

∂Lr

∂Mr

)

t

= ǫn − ǫν − T

(

∂S

∂t

)

Mr

, (eql.7)

where ǫn and ǫν are the heat generation and heat loss rates in nuclear reactions and in thermal
neutrino emission, respectively [ erg g−1 s −1], and S is entropy per gram. We shall define nuclear,
neutrino, and ”gravitational” luminosities of a star as

Ln =

s
∫

c

ǫndMr, (eql.8a)

Lν =

s
∫

c

ǫνdMr, (eql.8b)

Lg = −

s
∫

c

T

(

∂S

∂t

)

Mr

dMr, (eql.8c)

and the total stellar luminosity is given as

L = Ln − Lν + Lg. (eql.9)

According to the first law of thermodynamics we have

TdS = d

(

U

ρ

)

−
P

ρ2
dρ = du + Pd

(

1

ρ

)

. (eql.10)
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It is convenient to write ”gravitational” luminosity as a sum of two terms, Lg = Lg1 + Lg2, with

Lg1 = −

s
∫

c

(

∂u

∂t

)

Mr

dMr = −
d

dt





s
∫

c

u dMr



 = −
dEth

dt
, (eql.11)

Lg2 =

s
∫

c

P

ρ2

(

∂ρ

∂t

)

Mr

dMr = −

s
∫

c

P

[

∂ (1/ρ)

∂t

]

Mr

dMr. (eql.12)

In order to modify the last integral we should note the relation

1

ρ
=

4π

3

(

∂r3

∂Mr

)

t

. (eql.13)

Combining equations (eql.12) and (eql.13) we obtain

Lg2 = −
4π

3

s
∫

c

P
∂

∂t

(

∂r3

∂Mr

)

dMr = −
4π

3

s
∫

c

P
∂

∂Mr

(

∂r3

∂t

)

dMr = (eql.14)

[

−
4π

3
P

∂r3

∂t

]s

c

+
4π

3

s
∫

c

∂P

∂Mr

∂r3

∂t
dMr =

−
4π

3

s
∫

c

GMr

4πr4
3r2 ∂r

∂t
dMr = −

s
∫

c

GMr

r2

∂r

∂t
dMr =

d

dt





s
∫

c

GMrdMr

r



 = −
dΩ

dt
.

Combining equations (eql.11) and (eql.14) we obtain

Lg = −
dEth

dt
−

dΩ

dt
= −

dEtot

dt
. (eql.15)

Thermal stability of the Eddington model

Let us apply the results of the last two sections to the Eddington model of a massive star.
Throughout the stellar model we assume β ≡ Pg/P = const., and we can combine the eqs. (eql.1c)
and (eql.4) to obtain

Eth ≡

∫ R

0

U4πr2dr =

∫ R

0

(3Pr + 1.5Pg) 4πr2dr = (3 − 1.5β)

∫ R

0

P4πr2dr =

−(1 − 0.5β)Ω. (eql.16)

The Eddington model is a polytrope with the index n = 3, for which there is a simple analytical
formula for the gravitational potential energy (cf. eqs. [poly.18] and [eql.1d])

Ω = −1.5
GM2

R
, (eql.17)

and the total energy of the star may be calculated according to
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Etot = Eth + Ω = 0.5β Ω = −0.75 β
GM2

R
. (eql.18)

Combining the eqs. (eql.15) and (eql.18) the “gravitational” luminosity of the stars is expressed as

Lg = −
dEtot

dt
= −0.75β

GM2

R2

dR

dt
. (eql.19)

We know that the luminosity radiated away from the stellar surface depends on its mass only (as
long as the Eddington model applies), and it is given with the eq. (s2.7) as

M

M⊙

=
18.1

µ2

(L/LEdd)
1/2

(1 − L/LEdd)2
, LEdd ≡

4πcGM

κe
. (eql.20)

The nuclear luminosity is given with the eq. (eql.8a). Adopting ǫ = ǫ0ρT ν, with ν = 16 we obtain

Ln =

∫ R

0

ǫ0ρT νdMr ∼ R−(ν+3), (eql.21)

for a star with a fixed mass. The star is said to be on the Main Sequence when its luminosity
(radiative energy losses) is balanced by the heat source due to hydrogen burning. Therefore, we may
write

Ln = L

(

R
MS

R

)ν+3

, (eql.22)

where R
MS

is the main sequence radius of the star (it may be calculated numerically evaluating the
integral given with the eq. [eql.8a]).

Combining the equations (eql.9, 19, 22) (and neglecting neutrino luminosity which is never im-
portant for main sequence stars) we obtain the differential equation for the time variation of the
stellar radius:

dx

dt
= C

(

1 − xν+3
)

, x ≡
R

MS

R
. C ≡

(

4LR
MS

3GM2β

)

, (eql.23)

where the constant C depends on the stellar mass and chemical composition, but not on stellar
radius. The constant C has a dimension of [s−1]. It is customary to define the Kelvin - Helmholtz
(thermal) time scale of a star as

τ
K−H

≡
GM2

RL
. (eql.24)

Apart from dimensionless factor of the order unity the constant C is of the order of τ−1
K−H

.

Clearly, there is an asymptotic solution of the differential equation (eql.23): x = 1, i.e. R = R
MS

,
i.e. the stellar radius is equal to its main sequence value. Now we may ask a question: is the main
sequence star thermally stable? If we make a small perturbation, making a star slightly smaller or
slightly larger, will this perturbation grow, or will it decrease with time? Let at some time t0 the
dimensionless stellar radius be x0 = 1 + ∆x0, with |∆x0| ≪ 1. The eq. (eql.23) may be written as

dx

dt
=

d∆x

dt
=

4

3τ
K−H

β

[

1 − (1 + ∆x)
ν+3

]

≈ −
4

3τ
K−H

β
(ν + 3)∆x. (eql.25)

This equation has the solution

R
MS

R
= 1 + ∆x = 1 + ∆x0exp

[

−

(

4(ν + 3)

3τ
K−H

β

)

(t − t0)

]

. (eql.26)

We find that the initial disturbance ∆x0 decreases exponentially with time, i.e. the Eddington model
of a main sequence star is thermally stable, and the characteristic time scale on which the thermal
equilibrium is restored is the Kelvin Helmholtz time scale.
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