
TRANSFER OF RADIATION

Under LTE (Local Thermodynamic Equilibrium) condition radiation has a Planck (black body)
distribution. Radiation energy density is given as

Ur,νdν =
8πh

c3

ν3dν

ehν/kT
− 1

, (LTE), (tr.1)

and the intensity of radiation (measured in ergs per unit area per second per unit solid angle, i.e.
per steradian) is

Iν = Bν (T ) =
c

4π
Ur,ν , (LTE). (tr.2)

The integrals of Ur,ν and Bν(T ) over all frequencies are given as

Ur =

∞
∫

0

Ur,νdν = aT 4, (LTE), (tr.3a)
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where Pr = aT 4/3 is the radiation pressure.

Inside a star conditions are very close to LTE, but there must be some anisotropy of the radiation
field if there is a net flow of radiation from the deep interior towards the surface. We shall consider
intensity of radiation as a function of radiation frequency, position inside a star, and a direction
in which the photons are moving. We shall consider a spherical star only, so the dependence on
the position is just a dependence on the radius r, i.e. the distance from the center. The angular
dependence is reduced to the dependence on the angle between the light ray and the outward radial
direction, which we shall call the polar angle θ. The intensity becomes Iν(r, θ).

Let us consider a change in the intensity of radiation in the direction θ at the radial distance r
when we move along the beam by a small distance dl = dr/ cos θ. The intensity will be reduced by
the amount proportional to the opacity per unit volume, κνρ multiplied by dl, where ρ is density of
matter and κν is monochromatic opacity in units cm 2 g−1. Also, the intensity will increase by the
amount proportional to the emissivity of gas. Under nearly LTE condition the emissivity per unit
volume is given given as a product κνρBν(T ). The equation of monochromatic radiation transfer is
written as

∂Iν(θ, r)

∂l
= cos θ

∂Iν(θ, r)

∂r
= −κν(ρ, T, X)ρIν(θ, r) + κν(ρ, T, X)ρBν(T ), (tr.4)

where the dependence of the coefficient of opacity on photon frequency, as well as on the density,
temperature, and chemical composition of gas has been written as κν(ρ, T, X). From now on we
shall write it as κν .

Monochromatic radiation energy density may be calculated as

Ur,ν =
1

c

∫

4π

Iν (θ, r) dω, (tr.5)

where the integration is extended over the whole 4π solid angle. Because of azimuthal symmetry
this integral may be written as
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Ur,ν =
2π

c

π
∫

0

Iν (θ, r) sin θdθ. (tr.6)

The total radiation energy density is given as

Ur =

∞
∫

0

Ur,νdν. (tr.7)

Monochromatic flux of radiation in the direction r may be calculated as

Fν =

∫

4π

Iν (θ, r) cos θdω = 2π

π
∫

0

Iν (θ, r) cos θ sin θdθ, (tr.8)

and the total flux of radiation, measured in erg cm−2 s −1, is given as

F =

∞
∫

0

Fνdν. (tr.9)

We shall look for a solution in a form of a power series

Iν (θ, r) =

∞
∑

n=0

Iν,n (r) cosn θ. (tr.10)

Now we insert this expansion into the equation of radiation transfer (tr.4) , integrate all terms over
all angles, and we compare the terms with the same power of cos θ. This allows us to replace the
partial differential equation (tr.4) with an infinite number of ordinary differential equations

Iν,0 (r) = Bν (T ) , Iν,n (r) = −

1

κνρ

∂Iν,n−1 (r)

∂r
, (tr.11)

in which the coefficients Iν,n do not depend on the angle θ. In a typical stellar interior we may
have ρ ≈ 1 g cm−3, κν ≈ 1 cm 2 g−1, and r ≈ 1011 cm . Therefore Iν,n(r) ≈ −Iν,n−1(r)/κνρ ≈

−Iν,n−1(r)/1011, and the series rapidly converges. The physical interpretation is simple: deep inside
a star the radiation field is almost isotropic.

The first of the equations (tr.11) tells us that the intensity of radiation averaged over all angles
is equal to the Planck function. The second of those equations, combined with equation (tr.8) gives
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π
∫
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π
∫

0

Iν,1 (r) cos2 θ sin θdθ =
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3
Iν,1 = (tr.12)
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The total radiative energy flux is an integral of Fν over all frequencies (cf. eq. 9) , i.e
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, (tr.13)

where the Rosseland mean opacity is defined as
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Of course, the Rosseland mean opacity is a function of density, temperature and chemical composi-
tion, κ(ρ, T, X).

The equation (tr.13) may be written as

Lr

4πr2
= F = −

c

3κρ

dUr

dr
= −

(

4acT 3

3κρ

)

dT

dr
= −λ

dT

dr
, (tr.15)

where Lr = 4πr2F is stellar luminosity at a radius r, i.e. the total amount of radiation energy
flowing across a spherical surface with a radius r, and Ur is the radiation energy density. The last
equation looks just like the equation for heat diffusion, with the coefficient of thermal conductivity
λ related to the coefficient of opacity with a relation

λ =
4acT 3

3κρ
. (tr.16)

As heat may be transferred not only by photons, but also by electrons, it may be safer to write the
last equation as

λrad =
4acT 3

3κradρ
, (tr.17)

where λrad and κrad are explicitly related to radiation. We may write a similar relation for electrons:

λel =
4acT 3

3κelρ
, (tr.18)

where λel and κel are the coefficients of thermal conductivity and ”opacity” for the electrons. While
it is reasonable to think of the coefficient of thermal conductivity for photons, it is somewhat funny to
use a term ”opacity” in reference to the heat transferred by electrons. Nevertheless, both relations
(tr.17) and (tr.18) may be treated as a definition of one quantity (e.g opacity) when the other
quantity (e.g. coefficient of thermal conductivity) is given.

In general, we may have some heat transferred by photons, and some by electrons. As the
two means of heat transport are additive, the combined coefficient of thermal conductivity may by
calculated as

λ = λrad + λel, (tr.19)

or equivalently, we may write a formula for the combined coefficient of opacity as

1

κ
=

1

κrad
+

1

κel
. (tr.20)

Notice, that if there are two independent carriers of a heat flow, e.g. photons and electrons, then the
combined coefficient of thermal conductivity is larger, while the combined coefficient of opacity is
smaller than the corresponding coefficients for either of the carriers. In most cases there is no need
to be very careful with the subscripts ”rad” and ”el”, because the heat transport is dominated by
photons when gas is not degenerate, and it is dominated by electrons when electron gas is degenerate.
The transition between the two regimes is very rapid.

We shall consider now radiation transport in stellar envelopes and atmospheres, where electrons
do not contribute to heat conduction. Therefore, we shall use the coefficient of opacity without
any subscript, with an understanding that it refers to the Rosseland mean opacity as defined by
equation (tr.14) . It is perhaps surprising, that the equation (tr.15) , which was derived under
the assumption that radiation field is almost isotropic, holds very well all the way to the stellar
surface, where radiation pressure is no longer well defined as the radiation field becomes highly
anisotropic. At the stellar surface itself one hemisphere, towards the star is bright, while the other
hemisphere, facing the outer space, is dark. Under these conditions radiation energy density may
still be calculated according to equation (tr.7) , and we may estimate temperature from the radiation
energy density using the LTE relation (tr.3a) .

Near the stellar surface the luminosity and radius can be taken as L and R, and the radiation
energy flux is F = L/4πR2. Let us define optical depth τ as
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dτ ≡ −κρdr, τ = 0 at r = R. (tr.21)

Now, we may write the equation (tr.15) as

dT 4

dτ
=

3F

ac
≈ const, (tr.22)

and therefore

T 4 = T 4
0 +

3F

ac
τ, (tr.23)

where T0 is the temperature at the stellar surface.

Consider now a surface radiating as a black body with a temperature T. At a point just above
the surface the radiation comes from one hemisphere only, and we may use equations (tr.7), (tr.6),
and (tr.2) to calculate

Ur =

∞
∫

0





2π

c

π
∫

0

Iν (θ) sin θdθ



 dν = (tr.24)
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
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2π

c
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2
aT 4.

We obtained only one half of the radiation energy density expected under LTE conditions for the
temperature T , because radiation was comming from one hemisphere only. The radiative energy
flux may be calculated for our case using equations (tr.9) and (tr.8)
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πB (T ) =
ac

4
T 4 = σT 4.

We shall define the effective temperature of a star with a relation

L

4πR2
= F ≡ σT 4

eff . (tr.26)

This is a temperature that a black body would have if it radiated just as much energy per unit area
as the star does. The radiation energy density at the surface of a black body is half of the LTE
energy density corresponding to the temperature T . We shall adopt an approximation that at the
stellar surface, i.e. at τ = 0 the radiation energy density is aT 4

eff/2, by analogy with a black body
case. Combining this with the equation (tr.23) we find that

T 4
0 =

1

2
T 4

eff , (tr.27)

and the temperature distribution close to the stellar surface is given as

T 4 =
1

2
T 4

eff +
3F

ac
τ = T 4

eff

(

1

2
+

3

4
τ

)

. (tr.28)

Therefore, we have T = Teff at τ = 2/3. The optical depth 2/3 corresponds to a photosphere,
which is defined as

The diffusion approximation to the transfer of radiation near the stellar surface, and the approx-

imation according to which at the very surface the temperature is 21/4 times lower than the effective
temperature (cf. equations tr.27 and tr.28) is known as the Eddington approximation. This
equation (tr.28) may be written as (cf. equation tr.13)
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dPr

dr
= −

κρ

c
F = −

κρ

c

Lr

4πr2
. (tr.29)

This may be combined with the equation of hydrostatic equilibrium to obtain

dPg

dr
=

dP

dr
−

dPr

dr
= −

GMr

r2
ρ +

κρ

4πc

Lr

r2
= (tr.30)

−

GMr

r2
ρ

(

1 −

κLr

4πcGMr

)

.

Near the stellar surface we have Lr = L, and Mr = M . We shall find later on that when luminosity is
very high then density in a stellar atmosphere is very low, and the opacity is dominated by scattering
of photons on free electrons. For a fully ionized gas the electron scattering opacity is given as

κe =
ne

ρ
σe = 0.2 (1 + X) , [ cm 2 g−1], (tr.31)

where X is hydrogen content by mass fraction, ne is number of electrons per cubic centimeter, and
σe is equal to the Thompson scattering cross-section for scattering photons on electrons

σe =
8π

3
r2
e =

8π

3

(

e2

mc2

)2

= 0.665× 10−24 cm 2. (tr.32)

Putting the electron scattering opacity into the equation (tr.30) we obtain near the stellar surface

dPg

dr
= −

GM

r2
ρ

(

1 −

κeL

4πcGM

)

, (tr.33)

while the gradient of the total pressure P is given as

dP

dr
= −

GM

r2
ρ. (tr.34)

Dividing the last two equations side by side we obtain

dPg

dP
= 1 −

κeL

4πcGM
= const. (tr.35)

This may be integrated to obtain

Pg = (P − P0)

(

1 −

κeL

4πcGM

)

, (tr.36)

where P0 = Pr,(τ=0) = 2F/3c is a very small radiation pressure at the stellar surface. It is clear, that
at a modest depth below the stellar surface the pressure is very much larger than at the surface,
and therefore, the equation (tr.36) gives

β ≡

Pg

P
=

(

1 −

κeL

4πcGM

)

. (tr.37)

It is obvious that 0 < β < 1, and therefore

0 < L < LEdd ≡

4πcGM

κe
=

4πcG

0.2 (1 + X)
M =

1.256× 105 erg s −1

1 + X
M = (tr.38)

2.50 × 1038 erg s −1

1 + X

M

M⊙

=
65300L⊙

1 + X

M

M⊙

,

where LEdd is the Eddington luminosity. For a normal hydrogen abundance, X = 0.7 we have
LEdd/L⊙ = 4 × 104 M/M⊙.

tr — 5


