
NUMERICAL INTEGRATIONS

In most cases of any interest the equations of stellar structure cannot be integrated analytically.
Instead, the integrations have to be performed numerically. With fast and inexpensive computers
this is and easy thing to do. You may consult a book NUMERICAL RECIPES by W. Press et
al. for many practical and accurate numerical integration techniques. Here, a very rudimentary
description will be provided. In many cases this may be all you will need.

1) One equation, explicit method

Consider a first order, ordinary differential equation

dy

dx
= f (x, y) , (ni.1a)

with the initial condition

y = y0 at x = x0. (ni.1b)

The simplest numerical integration technique is as follows. Choose an integration step ∆x. Calculate
the derivative at the starting point, f(x0, y0), and calculate the change in variables x and y over the
integration step:

x1 = x0 + ∆x, (ni.2)

y1 = y0 + f (x0, y0) × ∆x.

We may repeat this procedure as many times as we wish. Suppose we already know the values of
x and y after ”k” integration steps, i.e. we know xk and yk. We may calculate xk+1 and yk+1

according to

xk+1 = xk + ∆x, (ni.3)

yk+1 = yk + f (xk, yk) × ∆x.

This is the simplest integration scheme possible. It is not very accurate but if the step size ∆x
is made sufficiently small then we may achieve as high accuracy as we wish, at least in principle.
In practice this will not be very efficient, as the number of steps may be prohibitively large if they
are very small. The accuracy may be estimated as follows. The second of the two equations (ni.3)
would be exact if the derivative f(x, y) were calculated at the proper point between xk and xk+1.
However, we do not know the location of this point; instead we expand the solution in a Taylor
series at the point (xk, yk), and we retain the first two terms only. The largest term neglected is of
the order (∆x)2. A more accurate technique should allow for that term. This may be done in many
ways. The simplest one is the second order Runge - Kutta method, according to which we calculate
the derivative f(x, y) twice while calculating one integration step. First, we make half a step:

xk+1/2 = xk + 0.5 × ∆x, (ni.4a)

yk+1/2 = yk + 0.5 × f (xk, yk) × ∆x.

Next, we calculate the derivative at the middle of the step, and we make the full step:
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xk+1 = xk + ∆x, (ni.4b)

yk+1 = yk + f
(

xk+1/2, yk+1/2

)

× ∆x.

In this method the error is of the order (∆x)3, i.e. it is much smaller than in the first technique.

There are many other, more accurate methods. One of them is the fourth order Runge - Kutta
method, in which the derivative f(x, y) is calculated 4 times at every integration step, and error
is of the order (∆x)5. There are also many ways to estimate the accuracy of any method. The
simplest way is to make the integrations with two different step sizes. The difference in the results
is approximately equal to the error. If you want to have more accurate results, you may have to use
a smaller integration step ∆x, or a higher order integration scheme.
Sometimes the results are numerically unstable, and taking smaller step size does not help. This
usually happens when the derivative f(x, y) is a difference of two large and nearly equal terms.
This may physically mean that the two terms describe opposite reaction rates, like ionization and
recombination, and the two are nearly equal, i.e. we are close to equilibrium. If some parameter,
e.g. temperature changes slowly, the equilibrium changes slowly as well, while the two reactions
may proceed very rapidly in two opposite directions. It does not make any sense to use a very small
time step in this case, yet a long time step combined with integration scheme like the one given with
equation (ni.4) may be unstable. In this technique we calculate the derivatives at the beginning
and/or in the middle of the step. This is called an explicit method. It turns out that instead we
may have to use an implicit method, in which we calculate the derivative at the end of the step.

2) One equation, implicit method

Here is a simple example of an implicit numerical integration. First, we calculate the derivative
at the beginning of the step, and estimate the values of the variables at the end of the step:

xk+1 = xk + ∆x, (ni.5)

yk+1,old = yk + f (xk, yk) × ∆x.

Of course, xk+1 is just what we want, but yk+1,old is only an estimate. We want yk+1 to satisfy the
following equation:

yk+1 = yk + f (xk+1, yk+1) × ∆x. (ni.6)

Notice, that the quantity we are looking for, yk+1, is on the left hand as well as on the right hand
side of the equation (ni.6) . However, if the function f(x, y) is nonlinear, then in general we cannot
solve this equation analytically. Instead, we shall use the numerical Newton - Raphson technique.
We shall write our equation in a form

F (yk+1) ≡ yk+1 − yk − f (xk+1, yk+1) × ∆x = 0. (ni.7)

Our first approximation is yk+1 ≈ yk+1,old. We put it into the equation (ni.7) , and of course we
shall find that F (yk+1,old) is not equal to zero. Therefore, we expand it in a Taylor series and retain
the first two terms to obtain

F (yk+1,old) +

(

∂F

∂y

)

k+1,old

δy = 0, (ni.8)

and we may find a new, corrected value of yk+1 according to

yk+1,new = yk+1,old + δy = yk+1,old − F (yk+1,old) /

(

∂F

∂y

)

k+1,old

, (ni.9)

where

(

∂F

∂y

)

k+1,old

= 1 −

(

∂f

∂y

)

k+1,old

∆x. (ni.10)
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The new value of yk+1,new may be used to calculate the value of F (y), and to see how close it is
to zero. In general, we may want to repeat the iteration as may times as necessary, to make F = 0
to the desired accuracy. Once this is accomplished, the integration step number ”k+1” has been
completed. The implicit integration scheme is complicated, slow, and only first order, i.e. the errors
are of the order (∆x)2. It should not be used, unless the explicit method does not work.

3) Many equations, explicit method

In general, we may have more then one ordinary differential equation, or we may have higher
order differential equations. Any high order equation may be always replaced by a set of first order
equations, so we shall restrict ourselves to this case only. Imagine, that we have n first order,
non-linear differential equations, which we shall write in a form

dxi

dx1

= fi (xj) , i = 2, 3, 4, ....n, n + 1, j = 1, 2, 3, ....n, n + 1, (ni.11)

fi (xj) ≡ fi (x1, x2, x3, ...., xn, xn + 1) .

Notice, that there are n+1 equations (ni.11), because we treat the independent variable x1 the same
way as the n dependent variables, x2, x2, ... , xn, xn+1; this is convenient from numerical point of
view.

We may want to choose the integration step so, that none of the variables xi varies by more than
∆i,max. The selection of the step size can be made at the beginning of every integration step by
calculating all the derivatives, and calculating ∆x1 according to

∆x1 ≤ ∆1,max, (ni.12)

∆xi = fi × ∆x1 ≤ ∆i,max, i = 2, 3, 4, ....n, n + 1,

i.e.

∆x1 = min

[

∆1,max,
∆i,max

fi

]

, i = 2, 3, 4, ....n, n + 1. (ni.13)

Now, that the integration step has been selected, we may use the second order Runge - Kutta
method to make an integration step. We shall use a subscript ”k” to indicate the values of all variables
at the beginning of the step, a subscript ”k+1/2” for the middle of the step, and a subscript ”k+1”
for the end of the step. It will be convenient to define

f1 ≡
dx1

dx1

= 1. (ni.14)

We make an integration step as follows:

xi,k+1/2 = xi,k + 0.5 × fi,k × ∆x1, i = 1, 2, 3, ....n, n + 1, (ni.15)

xi,k+1 = xi,k + fi,k+1/2 × ∆x1, i = 1, 2, 3, ....n, n + 1, (ni.16)

where

fi,k = fi (xj,k) , fi,k+1/2 = fi

(

xj,k+1/2

)

, i, j = 1, 2, 3, ....n, n + 1. (ni.17)

In this way the integration step has been completed and we may proceed to the selection of the next
step size, according to equation (ni.13) , with the subscript ”k” replaced by ”k+1”.
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4) Many equations, implicit method.

If we have to use an implicit method then the selection of the integration step size may be done
in the same way as it was done for the explicit scheme, i.e. with the equation (ni.13) . Given the
step size, ∆x1, we make an estimate of all variables at the end of the step

xi,k+1,old = xi,k + fi,k × ∆x1, i = 1, 2, 3, ....n, n + 1. (ni.18)

We define

Fi ≡ xi,k+1 − xi,k − fi,k+1 × ∆x1, i = 2, 3, ....n, n + 1, (ni.19)

where

fi,k+1 = fi,k+1 (xj,k+1) , i, j = 1, 2, 3, ....n, n + 1, (ni.20)

are the derivatives (i.e. right hand sides of differential equations) calculated at the end of the
integration step. We do not have to include f1, in these considerations, as it is constant, f1 = 1,
and F1 ≡ 0.

Of course, we would like to have Fi = 0, and of course this will not be achieved with the first
guess as provided with equations (ni.18) . Therefore, we expand Fi in a Taylor series, and we retain
only linear terms. In general fi depend on all variables xj , and we have

Fi +

n+1
∑

j=2

∂Fi

∂xj,k+1

δxj = 0, i = 2, 3, ....n, n + 1, (ni.21a)

∂Fi

∂xj,k+1

= δi,j −
∂fi,k+1

∂xj,k+1

∆x1, i, j = 2, 3, ....n, n + 1, (ni.21b)

δi,j = 1 for i = j, δi,j = 0 for i 6= j. (ni.21c)

These are n linear equations with n unknowns, so they can be solved using standard matrix inversion
techniques, and we may calculate the corrected values of all variables at the end of integration step

xi,k+1,new = xi,k+1,old + δxi, i = 2, 3, ....n, n + 1. (ni.22)

Using these new values we may calculate new values of Fi, and compare them to zero. If they are
too different from zero then we have to repeat the iteration, calculate the new corrections, and so
on, until all Fi and all the corrections δxi are sufficiently close to zero.

The iterative process may converge, or may not converge. There are many ways to modify the
technique if the iterations in the implicit integration scheme do not converge. Sometimes we may
have to take larger or smaller integration step. Sometimes we may have to reduce all the corrections
δxi by the same factor. This may be interpreted as follows. We are looking for a solution of n
equations Fi = 0 in n dimensional space. We have a guess for a solution, the n coordinates xi,k+1,old.
The vector of corrections δxi points towards the solution we seek, but if we apply its whole magnitude
we may ”overshoot”. In such case we reduce the length of the correction vector, while keeping its
direction. We accomplish this be dividing all corrections by the same factor. This will slow down
the convergence process, but may increase the range over which the iterations converge. Sometimes,
instead of using a fixed reducing factor we may require that none of the corrections should exceed
some maximum value, δxi,max, and we reduce all the corrections by the same factor selected so that
no correction exceeds its allowed limit. This is similar to the method used for selecting the size of
the integration step.
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5) Simple stellar models - white dwarfs.

Some stellar models, for example polytropes and white dwarfs, are described with two ordinary
differential equations that may be written in dimensionless form. The equations have one free
parameter: ploytropic index n, and dimensionless Fermi energy at the center, respectively. If we
choose the value of any of those parameters then the conditions at the center can be treated as the
initial conditions for the integrations to be carried out all the way from the center to the surface,
the surface defined to be at a radius where density vanishes. As an example we may take the case
of white dwarfs, which have a structure described with equations

dx2

dx1

= x2
1 (x3 − 1)

1.5
, (ni.23a)

dx3

dx1

= −
x2

x2
1

x
1/2

3 . (ni.23b)

Dimensionless variables x1, x2, and x3, are defined with:

r ≡ αrx1, Mr ≡ αmx2, 1 + x2 ≡ x3. (ni.24)

where Mr is mass within shell with radius r, and x = pF /mc is dimensionless Fermi momentum.
The two scaling parameters are

αr =

(

B

8πG

)1/2
1

Aµe
= 5.455 × 108µ−1

e ( cm ) = 0.00784 R⊙µ−1
e , (ni.25a)

αm =
1

(2π)
1/2

(

B

G

)1.5
1

(2Aµe)
2

= 2.00 × 1033µ−2
e ( g ) = 1.005 M⊙µ−2

e . (ni.25b)

The boundary conditions are

x3 = x3,c, x2 = 0, at x1 = 0, (inner boundary conditions), (ni.26a)

x3 = 1, x2 = x2,s, at x1 = x1,s, (outer boundary condition), (ni.26b)

where x3,c is the central value of x3, and x2,s and x1,s are the surface values of dimensionless mass
and radius, respectively. The central density, the total mass and radius of a white dwarf are given
as

ρc = 0.981× 106µe (x3,c − 1)1.5 ( g cm−3), M = αmx2,s, R = αrx1,s, (ni.27)

where µe = 2/(1 + X) is the mean number of nucleons per electron, and X is hydrogen abundance
by mass fraction.

Let us choose x3,c as a free parameter, and let us use the inner boundary conditions (ni.26a) as the
initial conditions. There is one technical problem at the center: x1 = 0 and x2 = 0 simultaneously,
and the right hand side of the equation (ni.23b) cannot be calculated. This is a typical problem:
we cannot begin numerical integrations right at the center. We have to expand the solution of the
differential equations in a power series, and calculate analytically values of all variables near the
center, at a small but finite radius. The first two terms in the expansion are:

x2 =
1

3
x3

cx
3
1 −

1

20
x

1/2

3,c x4
cx

5
1, (ni.28a)

x3 = x3,c −
1

6
x

1/2

3,c x3
cx

2
1, (ni.28b)

where

x2
c ≡ x3,c − 1, ρc = Aµex

3
c = 0.981 × 106 µex

3
c ( g cm−3), (ni.29)
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and ρc is the central density. You should verify this solution by inserting equations (ni.28) into
(ni.23) .

For the expansion to be accurate we require the second term to be much smaller than the first
term in both equations (ni.28) . This may be used as a criterion for the choice of x1 in the expansion,
i.e. how big should be the radius of the innermost sphere covered with analytical expansion. When
a choice of x1 is made we may use equations (ni.28) to calculate x2 and x3. Now we may begin
numerical integrations from that point. We shall continue the integrations until x3 becomes less
than 1 at the end of some integration step. We may interpolate between the beginning and the end
of that step to find the location at which x3 = 1, i.e. we can find the location of the white dwarf
surface. Equations (ni.27) may now be used to calculate stellar mass and radius, as well as central
density, in physical units.

6) Initial conditions, boundary conditions.

Suppose now that instead of choosing the central value of x3, which is equivalent to choosing
central density ρc, we have chosen the total stellar mass M , or the total stellar radius R as a free
parameter, fixed its value, and tried to solve the structure equations (ni.23) . This time we would
not know what should be the value of x3,c or ρc, and we would have to leave x3,c as an adjustable
parameter in the inner boundary condition, while another condition, e.g. fixed M , would be given
at the surface, i.e. as the outer boundary condition. This time it would be very much more difficult
to find the solution, as it would have to satisfy two boundary conditions at the two opposite ends
of integration interval. A simple, one way integration which was possible when we had the initial
conditions given at the center would not be sufficient. A number of trial integrations would be
necessary.

In many cases we are not interested in one stellar model with some specific value of mass or
central density, but rather in a series of models covering a large range of these parameters. In such
a case it is not important which parameter, total mass M , or central density ρc is chosen as a
parameter that labels the models. We should choose the one that is more convenient. In our case
it is clearly more convenient to choose central density of a white dwarf. In this case we are solving
the initial value problem, and the whole structure, and the total mass of every model come out
from a single numerical integration. If instead the total mass is chosen as the parameter that selects
models of white dwarfs then for each model we have to solve the boundary value problem, which
requires many iterative integrations for every model.

7) Zero age main sequence stars (ZAMS) - a fittting method.

Zero age main sequence stars are defined as stars that have already ignited hydrogen, hydrogen
burning produces as much energy as is radiated from the surface, but there is no reduction of the
original hydrogen content. These stars are in thermal and hydrostatic equilibria, they are chemically
homogeneous, and have the original chemical composition of the interstellar matter from which they
have just formed. Of course, these requirements cannot be rigorously met, all at the same time, but
it is convenient to use them to define a simplified but useful type of stellar models.

Our problem is posed as follows. We define the chemical composition. In the simplest case we
choose just two parameters: X and Z. X is hydrogen abundance, and Z is heavy element abundance
by mass fraction. Helium abundance is Y = 1−X−Z. We want to find a solution of the four stellar
structure equations for a given total stellar mass M . The four equations may be written as

dT

dMr
=

T

P
∇T

dP

dMr
, (ni.30a)

dρ

dMr
=

ρ

P
∇ρ

dP

dMr
, (ni.30b)

dr

dMr
=

1

4πr2ρ
, (ni.30c)

dLr

dMr
= ǫ, (ni.30d)
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where

dP

dMr
= −

GMr

4πr4
. (ni.31a)

∇T = min [∇rad,∇ad] , (ni.31b)

∇rad ≡
κLr

16πcGMr

3P

aT 4
, (ni.31c)

∇ad ≡

(

∂ lnT

∂ lnP

)

S

(ni.31d)

∇ρ ≡
d ln ρ

d lnP
=

[

1 −

(

∂ lnP

∂ lnT

)

ρ

∇T

]

/

(

∂ lnP

∂ ln ρ

)

T

. (ni.31e)

and ǫ, κ, P , ∇ad, are all assumed to be known functions of temperature, density, and chemical
composition.

The four equations (ni.30) have to be supplemented with the boundary conditions. These may
be written as:

ρ = 10−12
(

g cm−3
)

, T =

(

L

8πR2σ

)1/4

(K ) , at Mr = M, (ni.32a)

and

r = 0, Lr = 0, at Mr = 0. (ni.32b)

These are the outer boundary conditions (ni.32a) and the inner boundary conditions (ni.32b) . We
have two adjustable parameters at the surface: stellar radius and luminosity, R and L, and two
adjustable parameters at the center: central temperature and density, Tc and ρc.

This is a truly boundary value problem, which cannot be reduced by any trick to any initial
value problem. It has to be solved by integrating the four stellar structure equations from the
surface inwards, to some fitting point at Mr = Mf , and integrating the same equations from the
center to Mf , and finally trying to match the two sets of integrations at the fitting point. At the
center the stellar structure equations suffer from the same problem as the equations for the white
dwarf case: the right hand side of the equations (ni.30a) , (ni.30b) and (ni.31a) is of the 0/0 type
at the center. Therefore, we have to make an analytical expansion there in order to start numerical
integrations. The general approach to the fitting procedure is as follows.

Let us consider a stellar model in a hydrostatic and thermal equilibria, with the total mass M ,
and the profile of chemical composition X(Mr), specified. The four differential equations describing
stellar structure may be written in a form

dxi

dxo
= yi, i = 1, 2, 3, 4, (ni.33)

where xo is the independent space-like variable, usually Mr, and xi are the four dependent variables,
like T , ρ, r, and Lr. The boundary conditions have two adjustable parameters at the center, z1 and
z2, and two parameters at the surface, z3 and z4. We may have for example: z1 = ρc, z2 = Tc,
z3 = R, z4 = L.

The equations of stellar structure are integrated from the surface inwards, down to the fitting
point at Mr = Mf , and from the center outwards to the same fitting point. The results of the
envelope integrations at the fitting point may be written as

xi,e = xi,e (z3, z4) , i = 1, 2, 3, 4, (ni.34)

and the results of the core integrations as

xi,c = xi,c (z1, z2) , i = 1, 2, 3, 4. (ni.35)
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At the fitting point the differences between the core and envelope integrations are calculated

∆xi ≡ xi,c − xi,e, i = 1, 2, 3, 4. (ni.36)

The model is found when ∆xi = 0. In general, this is not so when wrong values of the boundary
parameters are used. The iterative process of finding the correct values is based on the linearized
equation

∆xi +

4
∑

j=1

cijδzj = 0, i = 1, 2, 3, 4, (ni.37a)

where

cij ≡
∂∆xi

∂zj
i, j = 1, 2, 3, 4, (ni.37b)

These equations are solved to find the corrections to the boundary parameters, δzj , and the new
values of the boundary parameters, zj +δzj. In order to solve the equations (ni.37a) the determinant
of the matrix |cij | has to be calculated. We are basically using a Newton - Raphson technique to
find the solution of the four non-linear equations (ni.36) . When the iterations converge, i.e. when
∆xi and δzj are sufficiently small, the zero age main sequence model has been found.
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