
Neutron stars and black holes

Like white dwarfs, neutron stars are strongly degenerate compact objects of roughly one solar
mass. But whereas white dwarfs are supported against gravity by the zero-point motion of electrons
(electron degeneracy pressure), neutron stars, as the name suggests, consist mostly of neutrons and
are supported by the zero-point motion and interactions among the latter particles. The existence of
neutron stars was hypothesized by Lev Landau and by Walter Baade and Fritz Zwicky shortly after
the discovery of the neutron by Chadwick in 1932—Baade and Zwicky even proposed that neutron
stars might form in supernovae, as is now believed. However, the observational history of neutron
stars began only in 1967 with the discovery of radio pulsars by Jocelyn Bell and her Ph.D. advisor
A. Hewish. In the meantime, the properties of such stars had been elucidated by a few important
theorists, including J. R. Oppenheimer and E. Salpeter. For more historical and physical detail than
can be fit into this lecture, see the book by Shapiro and Teukolsky.

We have seen that white dwarfs have a maximum mass

MCh = 3.1
(~c/G)3/2

(µemp)2
≈ 1.4(2/µe)

2M⊙. (1)

It is significant that the electron mass does not appear in this formula. One might therefore guess
that an object supported by neutron degeneracy could have a similar maximum mass. This would
be a shrewd guess, although the full story is more complicated. The electron mass does however
appear in the mass-radius relation of white dwarfs; when the electrons at the center are marginally
relativistic, xF (0) ≡ pF (0)/mec = 1, the mass M ≈ 0.5(2/µe)

2M⊙, the central density ρc ≈
2 × 106(µe/2) g cm−3, and the radius

RxF (0)=1 ≈ 3.8
(~3/cG)1/2

µempme
≈ 0.021(2/µe)R⊙.

For xF (0) ≫ 1, the radius decreases as xF (0)−1, and the mass approaches (1).
While electrons supply the pressure, the mass is dominated by nuclei of atomic weight A and

atomic number Z ≈ A/2. When the Fermi energy εF =
√

(pF c)2 + (mec2)2 of the electrons is large
enough, it becomes energetically favorable for nuclei to undergo inverse beta decay,

(A, Z) + e− → (A, Z − 1) + νe, (2)

thereby lowering the energy of the electron gas. The threshold for this reaction is

ǫF ≥ M(A, Z − 1) − M(A, Z).

For example, at normal densities, the stablest of all nuclei is 56Fe: (A, Z) = (56, 26). The threshold
for (2) is then 3.695 MeV, which is reached at xF (0) = 7.174, M ≈ 1.33M⊙. (Observed white dwarfs
are probably made of lighter elements—He, C, O, Mg—for which the threshold is higher. But the
progenitors of neutron stars are the degenerate iron cores of evolved massive stars.) With increasing
density, nuclei of higher and higher A/Z are favored. Eventually, the nuclei become so neutron rich
that the reaction

M(A′, Z ′) → M(A′ − 1, Z ′) + n

is favored. This is “neutron drip,” and in low-temperature equilibrium conditions, it begins at
ρnd ≈ 4 × 1011 g cm−3. Nuclei dissolve completely at ρnuc/2, where

ρnuc ≈ 2.8 × 1014 g cm−3 (3)

is the density of nuclear matter: ρnuc corresponds to a volume ≈ (4π/3) × (1.1 fm)3 per nucleon.
Ordinary nuclei have radii ≈ 1.1A1/3 fm, where 1 fm ≡ 1 Fermi ≡ 10−13 cm is a convenient unit of
length.

Nuclear matter is somewhat analogous to a liquid (such as water) in that there is an attraction
between neighboring constituent particles, but also a strong resistance to compression; the density
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increases more slowly with pressure than for an ideal gas. Nevertheless, for the moment, suppose
that the star were an ideal gas of neutrons. Then under nonrelativistic conditions, the equation of
state (henceforth EOS) would be

P =
1

5

(

3

8π

)2/3

h2m−8/3
n ρ5/3 ≡ Kρ5/3,

where mn is the neutron mass, and the corresponding stellar parameters would be

M ≈ 3.03

(

K

G

)3/2

ρ(0)1/2 ≈ 0.6

(

ρ(0)

ρnuc

)1/2

M⊙

R ≈ 1.63

(

K

G

)1/2

ρ(0)−1/6 ≈ 18

(

ρ(0)

ρnuc

)−1/6

km

2GM

Rc2
≈ 3.72

K

c2
ρ(0)2/3 ≈ 0.0965

(

ρ(0)

ρnuc

)2/3

.

The last of these quantities is (vesc/c)2, vesc being the escape velocity from the stellar surface. It is
clear that relativistic effects are important for these objects, whereas the formulae above are based on
a nonrelativistic approximation to the EOS and newtonian gravity. Nevertheless, these formulae give
the correct orders of magnitude for neutron-star properties. Let us boldly estimate the maximum
neutron-star mass by setting vesc = c above: this implies ρ(0) ≈ 33.4ρnuc and Mmax ≈ 3.4M⊙.

The exact general-relativistic equations of hydrostatic equilbrium were derived by Oppenheimer
and Volkov (1939):

dP

dr
= −

(

ρ +
P

c2

) (

GMr

r2
+

4πGP

c2
r

) (

1 − 2GMr

c2r

)−1

dMr

dr
= 4π

r
∫

0

ρ(r̄)r̄2dr̄. (4)

Here ρ 6= mnnn, which would be the density of rest-mass, but rather ρ ≡ U/c2, where U is the
internal energy per unit volume including rest mass. For a relativistic ideal gas of neutrons,

U → 8π

h3

∫ pF

0

p2
√

(pc)2 + (mnc2)2 dp =
8π

3
λ−3

n mnc2

∫ xF

0

x2
√

x2 + 1 dx

P → 8π

3
λ−3

n mnc2

∫ xF

0

x4 dx√
x2 + 1

nn → 8π

3
λ−3

n x3
F , (5)

in which λn ≡ h/mnc is the neutron Compton wavelength. Notice that as xF → ∞, P → U/3 =
ρ/3c2 rather than P → Kρ4/3: thus a relativistic ideal gas of nucleons is not an n = 3 polytrope,
and there is no direct counterpart to the Chandrasekhar mass (1) in newtonian gravity for such
a star. This is because the particles supplying the pressure are the same as those supplying the
gravitating mass. On the other hand, general-relativistic gravity as embodied in eqs. (4) does imply
a maximum mass for the EOS (5). By integrating the above equations, Oppenheimer and Volkov
found Mmax ≈ 0.7M⊙, and a corresponding radius 9.6 km.

Observed neutron-star masses are clearly larger than Oppenheimer & Volkov’s value. Well-
determined masses come from binary systems, especially those containing a pulsar; less accurate
mass estimates are sometimes possible for X-ray binaries, which involve a neutron star accreting from
a less compact companion. In favorable cases, very precise pulsar timing allows one to detect subtle
general-relativistic effects in the binary orbit and thereby constrain more of the system parameters
than would be possible in a strictly newtonian world. Remarkably, all well-determined neutron-star
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Figure 1: Measured masses of pulsars in binary systems, and of their companions when those are
also believed to be neutron stars. From Thorsett & Chakrabarty (1999, ApJ 512, 288).

3



masses are consistent with a very narrow range: Mns = 1.35 ± 0.04M⊙ (Fig. 1). This presents
a puzzle, since it is believed that the shortest-period pulsars, which have pulse/rotation periods
< 10 ms, have been “recycled” after spinning down to a long period by accreting ∼ 0.1M⊙ of
high-angular-momentum material from an accretion disk fed by the companion.

In any case, the observed masses indicate that the EOS must be stiffer than an ideal gas at
ρ & ρnuc. This is indeed what nuclear theorists expect, but a consensus as to the correct EOS in this
regime has not been reached. Currently plausible choices, when substituted into eqs. (4), predict
maximum masses between 1.4M⊙ and 2.5M⊙. Further constraints on the EOS may be available from
neutron-star cooling (Yakovlev & Pethick, 2004, ARA&A, 42, 169): although the discussion here
supposes negligible entropy, neutron stars are born at high temperatures in supernova explosions, and
their subsequent cooling depends upon their heat capacity, which is a function of the EOS. Because
of hydrostatic support by degeneracy and nuclear forces, and efficient cooling by neutrino emission
when kT ≫ 1 MeV, cooling has little influence on the mass-radius relation after the first few seconds
of the neutron-star’s birth, but the surface temperature is measurable by X-ray satellites in favorable
cases. Although the data have been improving rapidly, as of this writing their interpretation has
been hampered by a poor understanding of neutron-star atmospheres, which may be very exotic
because of strong magnetic fields, etc.

Before leaving the subject, let us briefly consider the limit of an equation of state so stiff that
ρ =constant. Now, this is not physically realistic: since the entropy has negligible influence on the
pressure in any realistic EOS for neutron-stars,

dρ/dr

dP/dr
≈

(

∂ρ

∂P

)

S

=
1

c2
s

where cs is the sound speed. One requires c2
s > 0 (else sound waves would be unstable), so dρ/dP > 0.

Furthermore, c2
s < c2 else sound waves would move faster than light, so dρ/dP > c−2. Since

(4) ensures dP/dr < 0, it follows that dρ/dr < 0. Nevertheless, equations (4) are easily solved
for ρ =constant and lead to an interesting upper bound on GM/R: For ρ =constant we have
Mr = (4πρ/3)r3, and the first of eqs. (4) can be rearranged as

dP

(ρ + c−2P )(ρ + 3c−2P )
= − 4πG

3

rdr

1 − (4πGρ/3c2)r2
(6)

The integrals are elementary, and with the boundary condition P = 0 at r = R, one has

2GM

c2R
= 1 −

(

P (0) + ρc2

3P (0) + ρc2

)2

Thus, for any finite value of the central pressure P (0),

2GM

c2R
<

8

9
, (7)

which means that the star is at least 9/8 times larger than its Schwarzschild radius

Rs(M) ≡ 2GM

c2
≈ 3.0

(

M

M⊙

)

km. (8)

It is not difficult to prove that the limit (7) applies to any star for which dρ/dP > 0.1 It follows
that

Mmax < 6.8

(

ρ̄

ρnuc

)−1/2

M⊙. (9)

1Replace ρ with ρ̄r ≡ 3Mr/4πr3 in (6) and use the fact that ρ̄r ≥ ρ̄ ≡ ρ̄(R) to set bounds on the two integrals.
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Black holes

A black hole is a mass so concentrated that nothing escapes from it, even particles moving at
the speed of light2. The theoretical possibility of such objects was raised as far back as the eigh-
teenth century, when Laplace and others postulated the existence of an object whose escape velocity
2GM/R > c2. However, these early scientists knew only newtonian gravity, which is not applicable
at such large velocities and strong fields. The first exact black-hole solution was found by Karl
Schwarzschild in 1916, only months after Einstein published his theory of General Relativity; in
fact, the Schwarzschild solution was the first exact solution of Einstein’s field equations other than
Minkowski space. Any detailed discussion of black hole physics requires general relativity, which is
beyond the scope of this course, so we content ourselves with a brief discussion of the observational
evidence for their existence.

The properties of black holes are so extreme that astrophysicists struggled for years to establish
that such things really exist. This argument has now subsided, due in part to well-established
lower bounds to the masses of some X-ray binaries (Fig. 2). Black holes themselves are dark, of
course, but gas in orbit around them can dissipate its orbital energy and release the resulting heat
as luminous radiation. The sources listed in Fig. 2 are bright—with peak luminosities comparable
to the Eddington limit for a solar mass—and emit most of this energy in X-rays (the characteristic
photon energy is listed in the penultimate column), indicating a deep potential well, and therefore
an object too compact to be a normal (nondegenerate) star. The gas in this disk is supplied by the
companion, which usually is a normal star. This star is often observable, and its orbital period (P )
and radial velocity semi-amplitude (K) measurable. Using standard newtonian equations for the
two-body problem, these observed quantities can be combined to yield a constraint on the masses,

(M1 sin i)3

(M1 + M2)2
=

PK3

2πG
, (10)

in which M1 is the mass of the accreting (usually the heavier) star, M2 is that of the visible compan-
ion, and i is the inclination of the orbital angular momentum to the line of sight (i = 90◦ if the orbit
is seen edge-on, which maximizes K for a given intrinsic orbital velocity). The lefthand side of (10)
is called the mass function. It is an absolute lower bound on M1 since M2 > 0 and sin i ≤ 1. This
quantity is given in the second column of Fig. 2. Sometimes other information is available, such as
a light curve showing tidal distortion of the secondary star, that allows one to put some constraints
on sin i and thereby obtain a more accurate estimate for M1. Clearly, many of these X-ray sources
are well above the maximum mass of a neutron star or white dwarf, so a black hole is implicated.

Additional evidence for the black-hole nature of these sources comes from their extraordinary
variations in X-ray luminosity (LX). At the peak, as already noted, LX ∼ LEdd(M) in many cases.
But these sources also go through intervals of quiescence when LX is extremely small—for example,
LX,min/LX,max ∼ 10−8 in 0620-003. This ratio is much smaller than in X-ray binaries where the
primary is believed to be a neutron star, and it has been argued that faintness of the quiescent state
is a signature of the existence of an event horizon (e.g. Garcia, McClintock, & Narayan 2001, ApJ
553, L47). The argument goes as follows: (i) the accretion rate of the disk is unlikely to vary by
so large a factor; (ii) an accretion rate Ṁ onto the surface of a neutron star inevitably produces
a luminosity L = GMnsṀ/Rns; (iii) gas may in principle, however, fall into a black hole without
radiating much of its energy, since there is no solid surface to settle on; (iv) and in fact plausible
mechanisms exist by which a modest reduction of Ṁ greatly reduces the density and therefore the
radiative efficiency of the accreting flow, consonant with point (iii).

Finally, after four decades of theoretical effort, no physically plausible model has been advanced
for quasars and QSOs that does not involve black holes. But in contrast to the black holes in X-
ray binaries, where M ∼ 10M⊙, the Eddington limit (as well as more indirect evidence) points to
M & 109M⊙ in the brightest quasars.

2barring quantum-mechanical effects, i.e. Hawking radiation
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Figure 2: Mass measurements for black-hole candidates in X-ray binary systems. From McClintock
& Remillard (2004, “Black Hole Binaries,” in Compact X-ray Sources, W.H.G. Lewin & M. van der
Klis, Cambridge; astro-ph/0306213.
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