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Stellar Magnetohydrodynamics

Magnetohydrodynamics (MHD) is the generalization of hydrodynamics to electrically
conducting fluids. Major astrophysical applications include stellar interiors, accretion disks,
and the interstellar medium.

Derivation of the MHD Equations

MHD makes use of Maxwell’s Equations to relate the electrical currents to the electromag-
netic fields,

∇ × B =
4π

c
J +

1

c

∂E

∂t
∇ · B = 0

∇ × E = −1

c

∂B

∂t
∇ · E = 4πρq (1)

but with some simplifying assumptions and with the addition of Ohm’s Law, as described
below. We have just made the simplification of replacing the dialectric constant and the
permeability by their vacuum values ǫ0 = µ0 = 1 (in gaussian units). The charge density
has been written ρq to distinguish it from the mass density, ρ.

The basic physical approximation of MHD is that the conductivity is high enough so
that ρq is negligible. To make this quantitative, in a partially or fully ionized plasma,
separation between the positive ions and the negative electrons leads to oscillations at the
plasma frequency

ωpe =

(

4πe2ne

me

)1/2

≈ 2π × 104
( ne

1 cm−3

)1/2
s−1, (2)

where ne is the mean density of electrons, until these oscillations damp. MHD should
be used only when the macroscopic timescales of interest are ≫ ω−1

pe , in which case these
oscillations are not excited and the plasma is approximately electrically neutral.

Nevertheless, the plasma can carry a significant current. Suppose there are N ≥ 2
charge species (e.g., e−, p, He+, He++, . . .) with particle charges qi, masses mi, number
densities ni, and mean1 velocities vi; then the current density is

J =
N

∑

i=1

qinivi. (3)

Here each species is weighted by charge. The plasma velocity is weighted by mass:

v ≡ ρ−1
N

∑

i=1

minivi, ρ ≡
N

∑

i=1

mini. (4)

Ohm’s Law

J = σ
(

E +
v

c
×B

)

, (5)

σ =

N
∑

i=1

q2
i ni

mi
tcoll,i . (6)

1each species has an approximately Maxwellian distribution of velocities, of which vi is the mean
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relates the current density to the electric and magnetic fields, where σ is the conductivity.
The model for the conductivity is that the charge carriers move ballistically under the
influence of the Lorentz force until they “collide” with another particle. The collisions tend
to isotropize the charge velocities on the timescale tcoll,i (different for different species) in a
frame comoving with the mean velocity v. The (nonrelativistic) model equation is

dvi

dt
+

vi − v

tcoll,i
=

qi

mi

(

E +
vi

c
×B

)

. (7)

Two approximations are then made in order to obtain (5) from (7). First, macroscopic
timescales are presumed ≫ tcoll,i so that the first term on the lefthand side of (7) can be
neglected. Second, the cyclotron frequency Ωi ≡ qiB/mic is presumed small compared to
t−1
coll,i: then it can be shown that vi can be replaced by v in the v ×B term. In very dilute

or very strongly magnetized plasmas where the second assumption fails but the first still
holds, the conductivity becomes a tensor rather than a scalar. Electrons normally dominate
the conductivity because they are so much lighter than all other species, σ ≈ ω2

petcoll,e/4π.
In cold and dense media such as molecular clouds or protostellar disks, however, there may
be so few free electrons that metal ions or charged dust grains dominate. Notice that the
conductivity has units [time]−1.

The free flow of charge tends to neutralize ∇ · E but cannot eliminate E altogether, if
only because electric fields transform between two Lorentz frames O and O′ with relative
velocity βc according to

E′ = (1 − β2)−1/2(E + β × B). (8)

Thus, if the electric field were to vanish exactly in the local rest frame of the plasma, we
would have E → −(v/c)×B in the “lab” frame. More generally, in MHD electric fields are
O(v/c) ≪ 1 compared to magnetic ones. Therefore, the “displacement current” c−1∂E/∂t in
the first of Maxwell’s equations is small compared to ∇×B. In fact, if L is a characteristic
lengthscale and T a characteristic timescale for the flow, then ∇ × E ∼ O(B/L) and
c−1∂E/∂t ∼ O(E/cT ), so the ratio of the latter to the former is ∼ O(E/B) ·O(L/cT ) Since
L/T ∼ O(v), it follows that the displacement current is smaller than the other two terms
in its equation by O((v/c)2). Therefore, MHD neglects the displacement current and takes

J =
c

4π
∇ × B. (9)

This implies ∇ · J = 0, which is consistent with ρq ≈ 0. Next, using (9) to eliminate J

from Ohm’s Law (5) leads to

cE = η∇ × B − v × B, η ≡ c2

4πσ
. (10)

The quantity η, called the “magnetic diffusivity,” has units of a diffusion coefficient: [length]2[time]−1.
Using (10) to eliminate E from Faraday’s Law—the second equation in (1) that contains a
time derivative—leads to the “induction equation”

∂B

∂t
− ∇ × (v × B) = −∇ × (η∇ × B). (11)

Eq. (11) tells us how the magnetic field evolves under the influence of the velocity
field. To complete the MHD equations, we have to see how the magnetic field modifies the
evolution of v by exerting a force on the plasma. By summing over particle species, it is
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easy to show that the Lorentz force per unit volume is ρqE + c−1J × B. Since ρq ≈ 0, the
first term is negligible. Hence the equation of motion for v becomes

∂v

∂t
+ v · ∇v = −B × (∇ × B)

4πρ
− ρ−1

∇P − ∇V. (12)

Equations (11) and (12), supplemented by an equation of state P = P (ρ, S) for the pressure
and Poisson’s equation ∇2V = 4πGρ for the gravitational potential, form a complete, closed
system: there is normally no need to consider E or J directly, though sometimes this is
conceptually useful (and sometimes unavoidable in posing boundary conditions).

In astrophysics, the dimensionless combination ηT/L2 is usually extremely small—not
because plasmas are perfect conductors (a typical conductivity is comparable to that of cop-
per) but because lengthscales are so large. In this case, the righthand side of the induction
equation (11) can be neglected, except in “current sheets” where B is almost discontinous
and magnetic reconnection occurs. (This is analogous to saying that viscosity is negligible
except in shocks). For η → 0, (11) implies that magnetic field lines are “frozen” into the
plasma, in the following sense: let Σ be a finite two-dimensional surface that moves with the
plasma and is bounded by a closed curve Γ. Then the magnetic flux through this surface is
independent of time. To see this, let Σ and Σ′ be the positions of this surface at two times
t and t′ = t + ∆t, and let B and B′ be used as abbreviations for the vector fields B(r, t)
and B(r, t′), respectively. Then

∫∫

Σ′

B′
· dS −

∫∫

Σ

B · dS = ∆t

∫∫

Σ

∂B

∂t
· dS −

∫∫

∆Σ

B · dS + O(∆t2), (13)

where ∆Σ is a ribbon of width v∆t that connects Γ to Γ′, so that Σ′ − Σ + ∆Σ forms
a complete closed surface; the minus sign in front of Σ indicates that its normal must be
reversed in order to point “outward.” We have made use of the fact that the flux of B

through a closed surface vanishes (since ∇ · B = 0) in order to write the second term on
the righthand side of (13) as the change in flux due to the motion of the surface alone. If
dl is an element of arc along the bounding curve Γ, then the outward-pointing area element
along ∆Σ is dS = ∆t (dl × v)+ O(∆t2). Using this in the second integral on the right side
of (13), and using (11) in the first integral, the flux difference becomes

∆t

∫∫

Σ

∇ × (v × B) · dS − ∆t

∫

Γ

B · (dl × v) + O(∆t2). (14)

Stokes Theorem shows that the first integral in (14) cancels with the second. QED.

Magnetorotational Instability

One of the most important consequences of adding magnetic fields to the equations of
motion is that it becomes possible for angular momentum to be transferred between fluid
elements in an axisymmetric configuration. Without the field, and without significant true
viscosity, the only collective interactions between fluid elements involve the pressure and
potential gradients. In axisymmetry, ∂P/∂φ = ∂V/∂φ = 0, so every fluid element conserves
its angular momentum.

Imagine a virtual exchange between two axisymmetric rings of fluid, identified by their
masses ∆M1 & ∆M2, a rotating barytropic disk or star, i.e. P = P (ρ) and therefore
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∂Ω/∂z = 0 in hydrostatic equilibrium2, where Ω is the angular velocity, and we are using
cylindrical coordinates (r, φ, z). Let the initial radii of the rings be r1 & r2 with r1 < r2,
and suppose that the rings are initially corotating with their original surroundings, so
that their specific angular momenta are ji = r2

i Ω(ri), i ∈ {1, 2}. In keplerian rotation,
j ≈

√
GM∗r, where M∗ is the mass of the central object, so dj/dr > 0 even though

dΩ/dr < 0. Hence j1 < j2. Assume that when the two rings switch position (r1 ↔ r2),
they conserve their specific angular momenta, and that they come to pressure equilibrium
with their new surroundings. Since we have assumed a barytropic equation of state, they
also come to the same densities as their surroundings. So the pressure and density fields
are unperturbed in the eulerian sense. However, the outwardly displaced ring has smaller
specific angular momentum than its new surroundings and therefore feels less centrifugal
acceleration. Hence the radial forces on the ring are out of balance, and the ring ∆M1 feels
a net inward acceleration until it falls back to its original position. Similarly, the inwardly
displaced element feels a net outward force and “wants” to return to its equilibrium position.
We conclude that a barytropic star with a radially increasing angular momentum profile
d(r2Ω)/dr > 0 is stable to axisymmetric perturbations in the absence of magnetic field.3

Adding magnetic field changes the situation because even in axisymmetry, the J × B

force can have a nonzero φ component, since

(∇ × B) × B = B · ∇B − ∇(1
2B2) (15)

êφ · (B · ∇B) =

(

Br
∂

∂r
− Br

r
+ Bz

∂

∂z
+

Bφ

r

∂

∂φ

)

Bφ , (16)

and the latter needn’t vanish when ∂φ → 0. Thus, it is possible for fluid elements to
exchange angular momentum through the magnetic field.

Before plunging into an MHD linear stability analysis, it is helpful to consider the follow-
ing thought experiment, due to Alar Toomre: Consider two orbiting spacecraft connected by
an elastic tether. (This is a proxy for two fluid elements connected by magnetic field). If the
tether is strong, then it holds the spacecraft together and they orbit at the angular velocity
determined by the position of their center of mass. In the opposite limit that the tether
has zero strength (e.g., if it breaks), then they orbit independently; if they have different
altitudes, then the lower one has the larger angular velocity. Consider the intermediate
case of a weak, easily stretched tether. The spacecraft at lower altitude moves ahead of
its companion; this stretches the tether, so that the lower craft loses angular momentum
to the higher. Since the forces are weak, we may suppose that everything happens slowly
and that the orbits remain approximately circular. In this case, each craft moves toward
the orbital radius appropriate to its angular momentum. So as the lower craft loses angular
momentum, it drifts toward even lower altitude since dj/dr < 0, and the upper craft, which
gains angular momentum, drifts upward. Since, however, dΩ/dj < 0 on circular orbits,
this causes the difference in their angular velocities to increase, which further stretches the
tether. This is a runaway situation, and it can be shown that the radial and azimuthal
separations between the spacecraft increase exponentially at a rate ≈ |rdΩ/dr| provided
that the spring constant of the tether < 3µΩ2, where µ = M1M2/(M1 + M2) is the reduced
mass of the two spacecraft. The paradoxical conclusion is that a sufficiently weak attractive

azimuthal force between orbiting bodies (or fluid elements) causes them to separate; it can
be shown that a weak repulsive azimuthal force causes them to stay together.

2recall that ∂Ω/∂z = 0 follows from P = P (ρ) by taking the curl of ρ−1
∇P + ∇V = −rΩ2êr

3We assume implicitly that Ω > 0. More generally, the stability condition becomes d(r2Ω)2/dr > 0.
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Now for the MHD analysis. To minimize the algebra, consider an axisymmetric equilib-

rium state in which the magnetic field has only a vertical component, B(0) = B
(0)
z êz, and

let this component be constant. Then J (0) = 0 so the field exerts no force. The equilibrium

velocity field v(0) = rΩ(r)êφ, so (v×B)(0) = rΩB
(0)
z êr is purely radial and varies only with

radius, hence its curl vanishes, whence ∂tB = 0 by (11). We are assuming here that η is
negligible.

It happens that the most rapidly growing instabilities of this equilibrium are those in

which v
(1)
z = 0 and v

(1)
r and v

(1)
φ are approximately independent of r as well as φ. More

precisely, ∇ · (ρ(0)v(1)) ≈ 0 so that the eulerian density perturbation vanishes. Assuming
a barytropic disk, the eulerian pressure perturbation also vanishes, so the only perturbed
forces that we need to worry about are magnetic and centrifugal:

∂

∂t
v(1) − 2Ωv

(1)
φ êr +

1

r

dj

dr
v(1)
r êφ ≈ 1

4πρ
(B · ∇B)(1) =

B
(0)
z

4πρ

∂

∂z
B(1). (17)

The terms involving Ω and j ≡ r2Ω come from evaluating (v · ∇v)(1) in cylindrical coordi-
nates. With the identity

−∇ × (v × B) = v · ∇B − B · ∇v + B∇ · v,

the perturbed induction equation becomes

∂

∂t
B(1) ≈ r

dΩ

dr
B(1)

r êφ + B(0)
z

∂

∂z
v(1) − êzB

(0)
z ∇ · v(1) . (18)

It’s useful to develop some intuition for the magnetic terms. In (17), the sign of the right-
hand side is such that a sinusoidal undulation in the initially straight and vertical field lines
gives rise to horizontal forces that oppose the displacements of the line. In (18), which
encodes the fact that the field lines are “frozen” into the flow, the second term on the
right says that vertical shear in the perturbed velocities produces horizontal field out of the
initially vertical lines, while the first term says that any resulting radial field gets sheared
out into the azimuthal direction by the background differential rotation. The last term in

(18) is negligible because v
(1)
z ≈ 0 and v

(1)
r depends mainly on z rather than r.

To go further, we assume a (t, z) dependence exp(−iωt + ikz) for the perturbations.
This leads to the following linear system for the horizontal perturbations:













−iω −2Ω − ikB
(0)
z

4πρ 0

dj
dr −iω 0 − ikB

(0)
z

4πρ

−ikB
(0)
z 0 −iω 0

0 −ikB
(0)
z −r dΩ

dr −iω





















vr

vφ

Br

Bφ









(1)

= 0.

The determinant must vanish to allow a nontrivial solution for the perturbations in
the column vector. Evaluating the determinant (e.g. by expanding along the last column)
yields, after some algebra,

ω4 − (κ2 + 2k2V 2
A)ω2 + k2V 2

A

(

k2V 2
A + r

dΩ2

dr

)

= 0 , (19)

where

κ2 ≡ 1

r3

dj2

dr
, VA ≡ B(0)

√
4πρ

. (20)

5



κ is called epicyclic frequency because if j2 = R3dV/dR is the orbital angular momentum
of free particles on circular orbits in gravitational potential V (R), then near-circular orbits
oscillate radially at this frequency. VA has dimensions of [length][time]−1 and is called
Alfvén velocity. In a nonrotating magnetized fluid, transverse waves propagate along B(0)

with group velocity VA. Equation (19) is a quadratic equation in ω2. The discriminant
is positive if κ2 ≥ 0 and dΩ2/dr ≤ 0, as is almost always the case in disks, so ω2 is real.
However, if 0 < (kVA)2 < rdΩ2/dr, then the roots are of opposite signs, meaning that
one of the four roots for ω is positive imaginary. Since we assumed the time dependence
exp(−iωt), this corresponds to an exponentially growing mode. By minimizing ω2 with
respect to k2, one can show that the fastest growing mode is

(−iω)max =
4Ω2 − κ2

4|Ω| , (21)

where we have made use of rd(Ω2)/dr = κ2 − 4Ω2. This growth rate is achieved when

(kVA)2 =
(4Ω2)2 − κ4

(4Ω)2
. (22)

Notice that the maximum growth rate is independent of the field strength, in principle:
for an arbitrarily small but nonzero VA, we can choose k large enough (i.e. a wavelength
small enough) so that (22) is satisfied. Thus, very weak fields always give instability; the
weaker the field, the smaller the wavelength on which instability occurs. Actually, had we
included a finite diffusivity η, we would have found that sufficiently weak fields (V 2

A . ηΩ)
become stable, assuming κ2 > 0. On the other hand, the largest possible wavelength is of
order the the thickness of the disk, since the instability operates by having fluid at one z
slide inward (vr < 0) while fluid at another altitude on the same field lines slides outward,
and this requires a node within the thickness of the disk. This implies a minimum value
for k, and hence (22) cannot be satisfied if the field is sufficiently strong. Since hydrostatic
equilibrium implies that the thickness of the disk is z0 ≈ Vs/Ω, where Vs is the sound speed,
it works out that the disk is stable if VA & Vs. For a more careful and general linear stability
analysis, see the original paper by Balbus & Hawley[1].

Nonlinear 3D magnetohydrodynamic simulations show that when η is sufficiently small,
just about any weak seed field, no matter what its geometry, leads to self-sustaining tur-
bulence, and the effective viscosity is in the range ν ≈ (10−3 − 10−1)Ωz2

0 : the larger values
occur when there is a net vertical flux threading the disk. This is in satisfactory agreement
with observations when the disk temperature and accretion rate can be determined.
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