
MASS – LUMINOSITY RELATION FOR MASSIVE STARS

Within the Eddington model β ≡ Pg/P = const, and a star is an n = 3 polytrope. Large
mass stars have small β, and hence are dominated by radiation pressure, and the opacity in them is
dominated by electron scattering. Let us consider the outer part of such a star assuming it is in a
radiative equilibrium. We have the equation of hydrostatic equilibrium:
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and the equation of radiative equilibrium
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Dividing these equations side by side we obtain
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Near the stellar surface we have Mr ≈ M and Lr ≈ L, and adopting κ ≈ κe = const, we may
integrate equation (s2.3) to obtain
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where Pr,0 = P0 = aT 4

eff/6 is the radiation pressure at the surface, i.e. at τ = 0, where the gas
pressure Pg = 0. At a modest depth below stellar surface pressure is much larger than P0, we may
neglect the integration constants in (s2.4) to obtain
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where LEdd is the Eddington luminosity.

Equation (s2.5) gives a relation between stellar mass, luminosity and β. The Eddington model
gives a relation between stellar mass and β :
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where µ is a mean molecular weight in units of mass of a hydrogen atom, µ−1 = 2X +0.75Y +0.5Z,
and X, Y, Z, are the hydrogen, helium, and heavy element abundance by mass fraction. Combining
equations (s2.5) and (s2.6) we obtain a mass luminosity relation
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For very massive stars this gives approximate relation
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For lower mass stars L ≪ LEdd, and (s2.7) gives
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, X = 0.7, Z = 0.02. (s2.9)
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It is remarkable that we obtained the mass luminosity relation without any reference to the stellar
energy sources. This can be understood in the following terms. Within our approximation the
opacity of matter is constant (per unit mass), the photons diffuse out at the rate they can, which is
independent on stellar temperature or density. So the heat losses are fixed by the constant opacity. If
there are no nuclear energy sources then the star will be losing energy, and it will have to contract,
to pump some gravitational energy into thermal energy. The temperature of a contracting star
rises, and at some point heat released in nuclear reactions may balance the radiative heat losses.
If this happens then stellar contraction stops, and the star radiates away the energy generated in
nuclear burning. Whenever nuclear fuel is exhausted the ever present heat losses will force farther
contraction of the star. Therefore, it is the stellar radius that depends on the presence or absence
of nuclear burning, while the luminosity is controlled by the opacity.

Notice, that luminosity depends on chemical composition not only through the opacity, but also
through the equation of hydrostatic equilibrium. This shows up in the equation (s2.9) through the
term µ4. The larger is the mean molecular weight, the higher is the luminosity. This has paradoxical
consequence. Imagine a main sequence star, i.e. a star that burns hydrogen at the rate required
to balance radiative heat losses. According to equation (s2.9) the luminosity depends on chemical
composition according to
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i.e. the less hydrogen there is the brighter is a hydrogen burning star!

In stars that are not dominated by radiation pressure there are other opacity sources that exceed
electron scattering. If the opacity is increased then the rate of photon diffusion is reduced, and
stellar luminosity is reduced as well. For this reason the mass luminosity relation (equations s2.7,
s2.8, and s2.9) gives un upper limit to the luminosity of stars approximated with the Eddington
model.
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