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19 HELIOSEISMOLOGY I: The Wave Mechanics of Solar Sound

Geophysicists have learned much of what they know about the deep interior of the Earth by studying waves
that travel in rock. These waves are usually produced by earthquakes, and the branch of geophysics that
deals with the waves and what can be learned from them is called seismology. Helioseismology is the study
of the oscillations of the Sun, and asteroseismology the corresponding study of other stars. For the Sun at
least, the data are now of such quality as to permit quantitative measurements of the radial sound-speed
profile, the depth of the convection zone, and the internal differential rotation; the gradient of molecular
weight in the core; and interesting constraints on the internal magnetic field. An extensive set of lecture
notes on the theory of solar and stellar oscillations by one of the leading experts in the field is available on
the Web at [1].

Solar oscillations are detected as motions of the solar photosphere. They were discovered in the 1960’s
[2, 3], and the growth of the field since then can be seen in recent conference proceedings [4, 5, 6]. Observations
are now carried out by a world-wide groundbased network (GONG) and from space (SOHO) [7, 8]. The
motions are measured by very small Doppler shifts in selected photospheric absorption lines. Most of the
observed periods are between 3 and 6 minutes, so these motions are often called five-minute oscillations.
Typical root-mean-square velocities averaged within a single resolution element are ≈ 0.4 km sec−1. With
measurements of sufficiently high precision and long time span, the motions can be decomposed into a
superposition of periodic oscillations, which are interpreted as normal modes of the Sun. The velocity
amplitude in a single mode is typically ∼ 15 mm sec−1, so the total r.m.s. velocity cited above represents
the incoherent sum of ∼ (4 × 104mm sec−1/15 mm sec−1)2 ∼ 107 modes!

The modes observed in the Sun are of two basic types. The p-modes are essentially sound waves; pressure
is the main restoring force that makes them possible. The f -modes are more akin to the waves seen on the
surface of the ocean. At least when their wavelengths are substantially shorter than the solar radius, the
f -modes involve very little compression of the fluid. Their main restoring force is the gravitational field,
which resists wrinkling of the solar surface. The “f” stands for “fundamental” and will be explained below.

In addition to the p and f modes, stars can support a third type of wave called a g-mode. Like the short-
wavelength f -modes, the g-modes are essentially incompressible disturbances relying upon gravity as their
restoring force. (“g” stands for “gravity.”) Analogous waves occur in the ocean below the surface and are
called internal waves. g-modes are possible when displaced fluid elements feel buoyant forces that oppose the
displacement. In the ocean, for example, water becomes saltier, colder, and therefore denser with increasing
depth. An element of seawater displaced upwards is denser than its environment and therefore tends to
sink; one displaced downwards tends to rise. In such a situation the fluid is said to be stably stratified.
Radiative zones of stars are stably stratified by entropy and sometimes composition gradients; convective
zones are always unstably stratified. Unlike the f -modes, the g-modes produce very little vertical motion
of the surface and are largely excluded from convection zones. Thus in the Sun and main-sequence stars of
later spectral type, g-modes are confined to the radiative core, which makes them difficult to observe. There
are no generally-accepted detections of g-modes in the Sun. However, g modes are seen in a class of white
dwarfs, the ZZ Ceti stars.

19.1 The wave equation for p and f modes

You have already been introduced to the fluid-dynamical form of ~F = m~a,

d2~r

dt2
= −ρ−1~∇P − ~∇V. (1)
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Here ~r(t) is the position of some fluid element. In this course, we normally assume that the righthand side
of (1) vanishes, i.e., we assume hydrostatic equilibrium. Stellar oscillations involve small departures from
hydrostatic equilibrium.

It is convenient to introduce the velocity field ~v(~r, t). Its value is the velocity of the fluid element that
happens to be passing through position ~r at time t:

d~r

dt
≡ ~v(~r, t). (2)

The acceleration of the fluid element at ~r is

d2~r

dt2
=

d

dt
~v(~r, t) =

∂~v

∂t
+
d~r

dt
· ~∇~v =

∂~v

∂t
+ ~v · ~∇~v. (3)

The first term on the rightmost side is the time derivative of ~v at a fixed position. But even if the velocity
field is steady, fluid elements can be accelerated as they travel with the flow, and the second term accounts
for that.

Equation (1) becomes
∂~v

∂t
+ ~v · ~∇~v = −ρ−1~∇P − ~∇V. (4)

Equations (1) and (4) are called the “Lagrangian” and “Eulerian” forms of the equations of motion, after
the different approaches to fluid mechanics pioneered by these two 18th-century mathematicians. The two
forms are equivalent, but the Lagrangian form deals with conditions experienced by a moving fluid element,
whereas the Eulerian form describes changes in the fluid properties at fixed positions.

In the Eulerian approach, it is necessary to constrain ρ and ~v by an equation that guarantees conservation
of mass:

∂ρ

∂t
+ ~∇ · (ρ~v) = 0. (5)

Using Gauss’s Theorem, one can show that this equation is equivalent to the statement that the rate of
change of the mass within an arbitrary volume V (not to be confused with the gravitational potential) is
balanced by the flux of mass through its surface S:

d

dt

∫

V

ρdV = −
∮

S

ρ~v · d~S. (6)

Small oscillations can be described by linear partial differential equations. The first step in deriving these
equations is to write every fluid variable as the sum of a time-independent zeroth-order part that satisfies
hydrostatic equilibrium and a time-dependent first-order perturbation that is small:

~v = ~v0(~r) + ~v1(~r, t),

V = V0(~r) + V1(~r, t),

ρ = ρ0(~r) + ρ1(~r, t),

P = P0(~r) + P1(~r, t). (7)

We assume ~v0 = 0 (thus ignoring rotation) and take the equilibrium star to be spherical. When we substitute
these expansions into (4) and (5) and expand, we get three types of terms. First, there are terms that involve
only the zeroth-order quantities. These terms must cancel one another because the the zeroth-order state
is itself a solution of equations (4) and (5). Next, there are terms that contain one of the perturbations
{~v1, V1, . . .}, possibly differentiated, raised to the first power. These terms we keep. Finally, there are terms
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involving cross products and higher powers of the perturbations. These we discard because they are much
smaller than the first-order terms if the perturbations are small. The resulting equations are linear in the
perturbations:

∂~v1
∂t

= −
~∇P1

ρ0
+
ρ1

ρ2
0

~∇P0 − ~∇V1, (8)

∂ρ1

∂t
+ ~∇ · (ρ0~v1) = 0, (9)

∇2V1 = 4πGρ1. (10)

Formula (10) is the first-order form of Poisson’s equation.
The discussion becomes a great deal easier with the following two approximations, both of which are very

accurate for the observed modes of the Sun.
The first approximation is to neglect V1, on the grounds that the modes of interest have wavelengths λ≪

R⊙. Since ρ1 averages to zero over the star (mass is conserved), the local perturbation in the gravitational
potential depends on the fluctuation in the mass within one wavelength: V1 ∼ G(ρ1λ

3)/λ = Gρ1λ
2.1 Hence

V1

V0
∼ Gρ1λ

2

GM⊙/R⊙

∼
(

λ

R⊙

)2(
ρ0

ρ̄

)(

ρ1

ρ0

)

, (11)

in which ρ̄ ≡ 3M⊙/4πR
3
⊙ is the mean density of the sun. One sees from (11) that V1/V0 ≪ ρ1/ρ0 not only

because λ ≪ R⊙ but also because the observed modes are concentrated in the outer part of the Sun where
ρ0 ≪ ρ̄. However, V1 should not be neglected when one studies low-order radial pulsations of variable stars
because these are very long-wavelength modes that involve the entire star.

The second approximation is that the entropy and chemical composition of the fluid are uniform in
the equilibrium star. This is very nearly true in convection zones (r & 0.7R⊙ in the Sun) because the
convection keeps the fluid well mixed, and the entropy gradient required to sustain the convection is normally
extremely small. These things being uniform, the density becomes a function of pressure only: ρ = ρ(P )
instead of ρ = ρ(P, S, {Xi}). Since the perturbations are small and rapid, we can assume that the functional
relationship between density and pressure is unchanged by the perturbations, i.e. each fluid element preserves
its entropy and composition when it is displaced. To the extent that this is true, the perturbations are said
to be adiabatic. Nonadiabatic effects are very important in exciting the large-amplitude pulsations of many
variable stars, but they are of secondary importance for solar modes, which seem to be excited by convection.

The enthalpy of a chemically homogeneous gas is a thermodynamic function of state defined in general
by H ≡ U + (P/ρ), where U is the internal energy per unit mass, whence from the First Law,

dH = TdS +
dP

ρ
. (12)

When the entropy is uniform, as it very nearly is throughout convection zones (as for r ≥ 0.71R⊙ in the
Sun), we may write (neglecting a constant of integration)

H ≡
P
∫

0

dP ′

ρ(P ′)
and dH = v2

s

dρ

ρ
, (13)

where

v2
s ≡

(

∂P

∂ρ

)

S

, (14)

1The same result follows more formally in the WKBJ approximation where all perturbed quantities ∝ exp(i~k · ~r). It then
follows from (10) that −k2V1 ≈ 4πGρ1, whence V1 ≈ −Gρ1λ2/π since k = 2π/λ.
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is the square of the sound speed. For an isentropic ideal gas, P ∝ ρΓ1 and the enthalpy is a constant multiple
of the temperature:

H =
Γ1

Γ1 − 1

P

ρ
=

Γ1

Γ1 − 1

kB

µmH

T =
v2

s

Γ1 − 1
,

where µ is the molecular weight, and in this lecture the mass of the hydrogen atom is denoted mH to avoid
confusion with the enthalpy. It follows directly from (13) that

ρ−1~∇P = ~∇H, (15)

and that
H1 = v2

s,0

ρ1

ρ0
. (16)

Because of (15), the terms involving ρ1 and P1 in (8) collapse into −~∇H1, and with V1 neglected the
equation becomes

∂~v1
∂t

= −~∇H1. (17)

Using (16) to eliminate ρ1 from (9) in favor of H1, we have

∂H1

∂t
= −v

2
s

ρ
~∇ · (ρ~v1), or equivalently,

∂H1

∂t
+ ~v1 · ~∇H = −v2

s
~∇ · ~v1. (18)

Here and henceforth, the subscript “0” has been omitted from equilibrium quantities such as ρ,H (≡ ρ0, H0)
above. We differentiate (18) with respect to t and eliminate ∂~v1/∂t using (17):

∂2H1

∂t2
− v2

s

ρ
~∇ · (ρ~∇H1) = 0. (19)

This is very similar to the standard wave equation and would reduce to it if ρ and v2
s were independent

of position. To bring the equation closer to the standard form, we introduce the “wave function”

Ψ ≡ H1
√
ρ. (20)

One can (and should) check that this satisfies

∂2Ψ

∂t2
− v2

s∇2Ψ = −
(

v2
s∇2√ρ
√
ρ

)

Ψ. (21)

The righthand side of (21) is normally neglegible, being smaller than the second term on the left by
∼ (λ/R⊙)2, except near the surface of the star where the density scale height becomes much smaller than
R⊙. If the density were to vanish at the surface, then the coefficient of Ψ on the righthand side would become
infinite there.2 Hence the only hope for a well-behaved solution is to demand Ψ ∝ √

ρ→ 0 as r → R. While
this is true, a better representation of the boundary condition can be obtained in terms of the enthalpy.
Insofar as the “surface” of the star can be approximated as having zero pressure, temperature, and enthalpy,
evaluation of the second form of (18) at the position of the unperturbed surface yields

∂H1

∂t
+ ~v1 · ~∇H0 = 0 at r = R. (22)

2This isn’t obvious because v2
s
→ 0. In a hydrostatic equilibrium with P ∝ ρΓ1 and ρ = 0 at r = R, one can show that

v2
s
(∇2

√
ρ)/

√
ρ ∝ (R − r)−1 as r → R.
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Note that although H0 vanishes at the unperturbed surface, its radial gradient does not, so the second
term on the lefthand side is nonzero. The lefthand side of (22) is the first-order form of the lagragian time
derivative dH/dt = 0, i.e. the derivative following the fluid motion. The interpretation is that the enthalpy
remains constant on the perturbed boundary, but the boundary is displaced from its unperturbed position
by the wave. Applying ∂/∂t to (22) and using (17) to eliminate ∂~v1/∂t, we have

∂2H1

∂t2
− ~∇H1 · ~∇H0 = 0.

In a spherical star, hydrostatic equilibrium of the unperturbed state implies

∇H0 =
1

ρ0

~∇P0 → −GMr

r2
~er.

Since (22) is already linearized, we may evaluate the final term above at r = R. Thus we arrive at an
alternate form of the boundary condition in terms of H1 alone,

∂2H1

∂t2
+ g

∂H1

∂r
= 0 at r=R, (23)

where g ≡ GM/R2 is the surface gravity.
In fact the zero-pressure free boundary condition (22) or (23) is only approximate, and its breakdown

is responsible for the fact that we do not see modes with periods shorter than about 3 minutes. Modes of
shorter period (higher frequency) “leak” through the photosphere into the corona.

19.2 Quantum numbers

Equation (21) is similar to the Schrödinger equation for a particle of mass M moving in a potential U :

~

i

∂Ψ

∂t
− ~

2

2M
∇2Ψ + UΨ = 0. (24)

The main difference between the two is that (24) is first-order in time whereas (21) is second order. However,
the same mathematical approach that is used to solve for the wavefunctions of the hydrogen atom can be
applied here.

First, since eqs. (21) & (24) are linear and all functions appearing in them except Ψ itself are time-
independent, there can be stationary states:

Ψ(~r, t) = e−iωtψ(~r). (25)

Here ω is the angular frequency of solution; the period of oscillation will be 2π/ω. Of course, we are not really
doing quantum mechanics, so we should remember that the physical Ψ is really the real part of (25). As
long as we deal only with formulae that are linear in Ψ, however, we can postpone taking the real part until
the end of our calculations. Thus, ψ(~r) is a complex function that encodes not only the spatial dependence
of the mode but also its initial phase. Substituting (25) into (21), we find that ψ must satisfy

∇2ψ +
ω2 − U

v2
s

ψ = 0, (26)

where

U(~r) ≡ v2
s√
ρ
∇2√ρ. (27)
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Next, since U and v2
s depend only on the radial part of ~r, we write out (26) in spherical polar coordinates

(r, θ, φ):

0 =
1

r2
∂

∂r

(

r2
∂ψ

∂r

)

+
ω2 − U(r)

v2
s(r)

ψ

+
1

r2

[

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

]

ψ.

The operator in square brackets should be familiar to you. It is the angular part of ∇2, and its eigen-
functions are the spherical harmonics Yℓm(θ, φ):

[

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

]

Yℓm = −ℓ(ℓ+ 1)Yℓm, (28)

where the degree ℓ is a nonnegative integer. The order m is also an integer, and −ℓ ≤ m ≤ +ℓ. We put

ψ(r, θ, φ) = ψ̂(r)Yℓm(θ, φ), (29)

so that ψ̂ is analogous to the radial wavefunction of the hydrogen atom. ψ̂ satisfies the radial wave equation,

1

r2
d

dr

(

r2
dψ̂

dr

)

+

[

ω2 − U(r)

v2
s(r)

− ℓ(ℓ+ 1)

r2

]

ψ̂ = 0. (30)

The solutions of the ordinary differential equation (30) have to satisfy two boundary conditions. At

r = R⊙, ψ = 0 [eqn. (23)], hence ψ̂ = 0 too. As r → 0, the only potentially singular terms in (30) are the

ones proportional to r−2. By the Method of Frobenius, one can show that the two possible behaviors for ψ̂(r)

as r → 0 are ∼ r−(ℓ+1) and ∼ rℓ. Only the second is physically acceptable, since ψ̂ ∝ r−ℓ−1 would imply an
infinite enthalpy perturbation and therefore an infinite acceleration as r → 0. The boundary condition at
the surface is found by expressing (23) in terms of the radial part ĥ = ψ̂/

√
ρ of the enthalpy perturbation.

Hence

ψ̂(r) ≡ √
ρ ĥ(r) ∝ rℓ as r → 0;

g
∂ĥ

∂r
− ω2ĥ → 0 as r → R. (31)

With these boundary conditions, an equation such as (30) has nonzero solutions only for discrete values

of ω2. These solutions can be distinguished by their number of radial nodes, i.e. radii at which ψ̂ = 0. Since
we don’t count the nodes at r = 0 and R⊙, n ∈ {0, 1, 2, 3, . . .}. Thus, every elementary solution of (21) or
(26) is uniquely identified by three integer-valued “quantum numbers” (ℓ,m, n). We label the corresponding

frequencies and radial wavefunctions accordingly: ω2
ℓn, ψ̂ℓn(r). Arbitrary nonsingular solutions of (21) can

be expanded as sums of these elementary solutions. All this is analogous to our experience with the hydrogen
atom.

Notice that we have omitted m from the subscripts above. Because m doesn’t enter the radial equation
(30) or the boundary conditions (31), it has no influence on ω2 or ψ̂. As you know, this is a consequence of
spherical symmetry. If we rotate our coordinate axes, Yℓm’s of different m but the same ℓ are transformed
into one another (unless we rotate around the z axis only), but since this has no affect on the background
spherical star, it can’t affect the frequencies or the number and placement of the radial nodes.

We close this section with some miscellaneous remarks.
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At a given ℓ, the frequency increases with n. The n = 0 mode therefore has the lowest frequency and is
called the fundamental by analogy with musical instruments. Thus there is one f -mode for each choice of ℓ
and m, but many p modes.

In the hydrogen atom, ~ℓ and ~m are interpreted physically as the total orbital angular momentum and
its z component. In the helioseismological case, the interpretation of ℓ is less direct. Still, we see from the
boundary condition (31) that modes with large ℓ must have very small amplitudes near r = 0, and we see
that ℓ enters the radial equation (30) through a term that looks like a centrifugal potential. So, like particles
with large angular momenta, stellar oscillations of large ℓ avoid the center of symmetry.

One qualitative difference between the hydrogen atom and helioseismology is that in the former case, the
frequencies (or energies E = ~ω) are independent of ℓ as well as m. This is not a consequence of spherical
symmetry but an accident of keplerian/coulomb potentials, i.e. U(r) ∝ r−1.

Finally, in quantum mechanics we interpret |Ψ(~r, t)|2 as the probability per unit volume of finding the
particle near ~r. How should we interpret this quantity in helioseismology (or acoustic problems generally)?
The answer is that |Ψ|2/2v2

s is the energy per unit volume in the mode.
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