Astro 402 Problem Set #2 March 8 2005; due March 25 2005

- 1. Suppose there is a cluster of galaxies containing pure hydrogen gas at a temperature of 10^8 K and with density 3×10^{-3} cm⁻³. If the cluster diameter is 1 Mpc, calculate the bremmstrahlung spectrum of the cluster and the total luminosity. Estimate the cooling time. Comments?
- 2. An HII region forms in an infinite cloud of hydrogen and dust of (gas) density 10^3 cm⁻³. Suppose the dust and gas are well mixed and have the interstellar value of $N_{\rm H}/A_{\rm V} = 2 \times 10^{21} {\rm cm}^{-2} {\rm mag}^{-1}$ and that the central star has a Lyman luminosity of 5×10^{49} photons s⁻¹. Estimate the radius of the HII region. (Assume that the dust absorbs only; neglect scattering. The recombination coefficient at $T_e = 10^4$ K is 2×10^{-13} cm³s⁻¹).
- 3. Derive the equation of radiative transfer through a slab of optical depth τ and temperature T (include 'background' radiation of temperature T_o and intensity I_o).
- 4. Give one or two-sentence (and/or one or two formula) definitions of: albedo specific intensity optical depth HII region PAH forbidden line
- **5.** Why is hydrogen atomic in the diffuse interstellar medium?
- **6.** Describe the physical properties of the phases of the ISM with approximate numerical values for the temperature, density and volume filling factor. Describe how each phase is observed.
- 7. Why is interstellar dust warmer than the equilibrium temperature of interstellar space?
- **8.** What is the electron-scattering optical depth of an HII region of density $n_e=10^5~\rm cm^{-3}$ and radius 2 pc?
- 9. The ionization threshold of H, E_o , is 13.6 eV, and the ionization cross section is $6 \times 10^{-18} (E/E_o)^{-3}$ cm². Consider a cloud of H of density 1 cm⁻³ at temperature 10 K at a distance of 10 pc from an X-ray source emitting photons of energy 300 eV at a rate of $N_x = 3 \times 10^{49}$ photons s⁻¹. Estimate the fractional ionization n_e/n_H of the cloud. The recombination coefficient is $\alpha = 2 \times 10^{-11} T_e^{-0.5}$ cm³ s⁻¹. If the electrons have sufficient kinetic energy they can collisionally ionize further H atoms. Taking this into account, what is the fractional ionization of the cloud?