Problem Set 7 Solutions, AST 205, Fall 2003

1. (6 points total).

We are given the relationship between the mean speed of atoms of a given mass m at a given
temperature, so this is plug-and-chug. Room temperature is about 300 K. Let’s first do this
for Hydrogen:

1.7 x 1024

Let’s try this without a calculator. 3 x 300 = 900; that’s easy. I'll write that as 0.9 x 103.
0.9 x 1.4 = 1.25, roughly. 1.25/1.7 = 0.7. Gathering up all our factors of 10, we find:

(3kT>1/2 (3 % 1.4 x 10716 x 300)1/2
v = _ =
m

v=(0.7x 10—1<"’+3+24)1/2 = (7 1010)1/2 =926 x 10°

Doing it with a calculator gives me 2.7 x 10°, essentially the same. Actually, the calculator
formally gives me 2.70293951 x 103, but writing down the number to this precision is of
course meaningless.

I was a bit lazy on keeping the units straight here, but I was consistently using cgs, so the
units are cm/s. Hydrogen is zipping around at almost 3 kilometers per second! That’s almost
6000 miles per hour! Of course, the gas in the room isn’t travelling in bulk at those speeds;
each atom and molecule is bumping into all the others, all the time, and constantly changing
direction. It is the force of all these molecules bumping into a surface that is responsible for
atmospheric pressure.

The other two atoms to be considered, oxygen and neon, can be calculated directly from
these numbers. In particular, we can write for any atom of mass m:

(w) 1/2 g\ /2
v = _— = vg X <—) s
m m

scaling directly from the result from hydrogen. Of course, the ratio of the mass of a given
atom to hydrogen is just its atomic weight (12 for the case of carbon', and 20 in the case of
neon. So the speeds of carbon and neon atoms are down from that of hydrogen by factors
of 3.5 and 4.5 respectively, or 75,000 cm/s and 58,000 cm/s, respectively (and here I admit
I used a calculator).

Let’s now calculate the escape speed from the surface of the Earth. Again we plug and chug:

B (QGM)W _(2x2/3x 1077 x 6 x 1077
"Ur) T 6.4 x 10°

Again, let’s do this without a calculator. 6/6.4 ~ 1, and gathering 10’s, this gives us:
1/2
v=(1.3x10") ’” 1.1 x 10° cmsec.

The escape speed from the surface of the Earth is about 11 km/s, roughly 4 times the
average speed of hydrogen atoms in the Earth’s atmosphere, and quite a bit more than any

!Embarrassingly, the statement of the problem is incorrect; oxygen has 8 protons and 8 neutrons. Even
professors make elementary mistakes sometimes!



heavier species. So it seems that nothing can escape the Earth’s atmosphere. However, the
atomic speed that we’ve calculated is an average, while in fact different atoms are moving at
different speeds (the so-called Maxwell distribution). There is still a non-negligible fraction
of the atoms moving at 4 times the mean speed, although the number moving 10 times
faster is essentially negligible. So over a fairly short span of time, the high-speed piece of the
hydrogen gas will be lost to Earth (at least those atoms in the upper atmosphere). Collisions
will restore the Maxwell distribution, to give a new population of high-speed hydrogen atoms,
which get lost themselves, and so on. In not very much time at all, all the hydrogen gas
is lost. This is why the Earth’s atmosphere has essentially no hydrogen atoms or hydrogen
molecules in it, even though hydrogen is the most abundant element in the cosmos.

2. (3 points)
This is a straightforward calculation, but first let me take a moment to derive a simpler
version of the relationship for the equilibrium temperature of a planet. What you are familiar

with is the equation:
1/4
T — (1 - a)Lstar /
planet ]_67TD2O'

See the notes to Lecture 5. However, if the star is a black body of temperature T, and
radius R, we can write:
Lgtar = 47R2,, 0T,

star star

If we substitute this into the equation above, all sorts of stuff cancels, and we get the much
simpler:

Rstar > 1/2

2D

(You should check my algebra yourself). That’s the form I'll use for the solution set. Here
the star in question is the Sun, Ty, = 6000 K, Rger = 7 x 109 cm, and D = 1.5 x 103 cm,

or one astronomical unit.
OK, let’s calculate:

Tplanet = Tstar(1 - a)1/4 (

7 x 1010 /2
3 x 1013>

Typtanet = (1 — a)* x 6000 x (
We can simplify the thing in the parenthesis to /1/400 = 1/20, or

Tplanet = (1 - a)l/4 x 300 K.

Now let’s put in our two albedos. For the ocean-covered Earth, 1 — a = 0.8, the fourth root
of which is about 0.952. So for the ocean planet, the temperature is about 285 K, close to
the freezing point of water (give it a bit of greenhouse effect, and we’ll safely get above that
threshold).

For the snow-covered Earth, 1 —a = 0.2. Here I’ll use a calculator; the temperature of the
Earth is now roughly 2/3 of 300 K, or 200K, well below the freezing point of water. So
a snowball Earth will stay cold and frozen, unless somehow there is a massive greenhouse
effect.

2A cool mathematical trick to remember: if x < 1, then (1 + 2)" ~ 1 + nz. In this case, 2 = —0.2, and
n=1/4.



3. (6 points)
a. This is just a matter of scaling; we can write:

M,
Mg

0.6
&:R@x< ) = Ry x 1.4°°,

I can use the trick described on the footnote to write 1.4%% ~ 14-0.4%0.6 ~ 5/4. Multiplying
this by the solar radius of 7 x 10!° cm gives 9 x 10! cm.

b. If the quantity J = 2/5MR? x 27/P is conserved, and if M remains unchanged as the
star collapses, then the quantity R?/P must remain the same. This means that:

)

c. So let’s plug this in. One month (the original period of the star) is roughly 3 million

seconds, so:
2
15
Pns = 1 0 annt 0N
3 x 10 sec x (9007000>

where TI've put both radii in km. 15/900,000 ~ 1.6 x 107°; the square of this number is
2.5 x 10719, So the period of the neutron star is 7.5 x 10~ seconds, or three quarters of a
millisecond.

d. In fact, the fastest spinning neutron star known is about 1.6 milliseconds. This is
somewhat faster than that, but it is in the right ballpark.

However, 1.4 solar mass stars are not the progenitors of neutron stars; 1.4 solar mass stars
end their lives as white dwarfs. Neutron stars are formed in the supernova explosions of
much more massive stars, > 8My; most of the material of the star is thrown outward in the
explosion, leaving behind the neutron star of typically 1.4 solar masses.

Pns:P*x(



