
Problem Set 5 Solutions, AST 205, Fall 2003

1. The angular size of the Einstien ring surrounding an object (called the lens) of mass M
that is a distance DOL from the observer is given by

θE =

√

4GM

DOLc2
.

The above equation uses the “contact lens” approximation described in the problem. To
make this “plug and chug” type problem easier, we introduce scaling factors so that

M = m MJup and DOL = d 10 ly.

The non-dimensional factors m and d give an answer which we can re-scale to avoid repeating
all the algebra:

θE = 7.9 × 10−9

√

m

d
radians

180 × 3600 arcsec

π radians
= 1.6 × 10−3

√

m

d
arcsec.

To get answers for Earth, Jupiter, and Solar mass objects we use m = 1/318, m = 1, and
m = 103, respectively. Similarly we use d = 1 and 103 for the distances to the observer. It’s
now easy to present the answers in tabular form.

Table 1: Einstien ring radius in arc seconds for lenses with the given masses and distances
from the observer.

MEarth MJup M�

10 ly 8.9 × 10−5 1.6 × 10−3 5.1 × 10−2

104 ly 2.8 × 10−6 5.1 × 10−5 1.6 × 10−3

2. The Einstien ring must be larger than the (angular) size of the lens for lensing effects
to be observed, i.e. θE > θR = R/DOL, where R is the radius of the lens. Solving this
inequality for DOL gives

DOL >
c2R2

4GM
.

We can use the same scaling techniques as in problem 1, if we define R = r RJup. Taking
the size ratios we find r = 1/11 for Earth and r = 9.9 for the Sun. This gives the distance
criterion as

DOL > 6000
r2

m
AU

. The minimum distance for strong lensing around

• an Earth-like object is 1.6 × 104 AU

• a Jupiter-like object is 6000 AU

• a solar-type star is 590 AU



3. a. We use Kepler’s law that P 2
∝ D3 for the period, P , and semi-major axis D of planets

around the same star. Thus we have:

DV = DE

(

PV

PE

)2/3

= 0.723 AU.

There are several ways to do parts b & c since the problem is using approximations. We

begin with the method which follows the way the problem was written.

b. Earth’s speed is vE = 2πDE/PE since it travels the circumference of the circle once per
period. To express Venus’s speed in terms of the here “unknown” DE = 1 AU we use our
knowledge of PV and part (a):

vV = 2π
DV

PV

= 2π
.723DE

.615PE

= 2π × 1.18
DE

PE

.

Now we can calculate the velocity difference between the two planets as:

δv = vV − vE = 2π × 0.18
DE

PE

= 1.13 AU/yr = 3.6 × 10−8 AU/sec.

c. Since the eclipse travels a distance d = 2RE = 12800 km in t = 1600 sec, we use δv = d/t
to calculate

AU = 2.2 × 108 km,

which is not too far from the actual value of 1.5 × 108 km.

Alternate method: A better way to do the problem is to think in terms of the angular
velocity of the planets, not the linear velocity, because they travel on curved tracks. The
difference in angular speed is just:

ΩV − ΩE = 2π
(

1

PV

−

1

PE

)

= 3.9
rad

yr
= 1.2 × 10−7 rad

sec
.

The angular distance that the eclipse travels relative to the Sun is just 2RE/AU in the small
angle approximation. We use the angular equivalent of (angular) velocity times time equals
distance (here the angle), namely:

(ΩV − ΩE)t =
2RE

AU
.

Solving for the earth-sun distance gives AU = 6.4 × 107 km. The point here is not which
of the two answers is correct, since the numbers in the problem are artificial, but to note
that we get a significantly different answer when we take into account that the curvature of
planetary orbits!


