Problem Set 7 Due: Nov. 19, 2003

- 1. (a) Estimate the average velocity of atomic hydrogen atoms (1 proton), oxygen atoms (6 protons and 6 neutrons) and neon atoms (10 protons and 10 neutrons) in a gas at room temperature. Use $v^2 = 3kT/m$ where $k = 1.38 \times 10^{-16}$ erg/K, T is temperature (in degrees Kelvin) and m is the mass of the nucleus. The mass of the proton and neutron are almost the same: 1.7×10^{-24} g
 - (b) compare these velocities to the escape velocity from the Earth's surface, $v_{esc}^2 = 2GM/R$, where M and R are the mass and radius of the Earth
- 2. Compute the equilbrium temperature for an ice covered Earth (albedo = 0.8) and for an ocean covered Earth (albedo = 0.2). Assume the Sun has its current luminsoty, $L_{\odot} = 4 \times 10^{33}$ ergs/s. Ignore the effects of the Earth's atmosphere, i.e. assume no greenhouse effect.

3. Angular Momentum and Neutron Stars

- (a) First, what is the radius, R_{\star} , of a main sequence star with mass $M=1.4~{\rm M}_{\odot}$? Assume that $R_{\star} \propto M^{3/5}$ on the main sequence. Hint: the Sun is a main sequence star with $R_{\star}=R_{\odot}=7\times 10^{10}~{\rm cm}$.
- (b) Assume that the star mentioned in (a) has a rotational period, $P_{\star} = 1$ month, similar to the Sun. Furthermore assume that this star collapses to a neutron star with the same mass and a radius $R_{\rm ns} = 15$ km and that spin angular momentum, J, is conserved. Use $J = (2/5)MR^2\omega$ (strictly true for uniform spheres) and the relation between angular frequency and period, $\omega = 2\pi/P$. Derive an algebraic expression (in terms of $R_{\rm ns}$, R_{\star} , and P_{\star}) for the spin period of the neutron star, $P_{\rm ns}$.
- (c) Give a numerical value for $P_{\rm ns}$ in seconds.
- (d) Interpret your answer, answering the following questions. Is this a reasonable value for the spin period of a neutron star? Do 1.4 ${\rm M}_{\odot}$ main sequence stars collapse to form neutron stars, and if not what is their eventual fate? What objects are the progenitors of neutron stars?