AST 205. Lecture 22. December 3, 2003 Remote Sensing of Spectroscopic and Photometric Biomarkers !

- Your homework and mine (continental drift/plate tectonics history)
- The NASA Terrestrial Planet Finder (TPF) Mission
 - Goals and Status
 - Optical/NIR and Mid/thermal-IR wavelength options
- Spectroscopic Biomarkers & Atmospheric Characterization
- Light Curve Biomarkers & Surface Characterization
- The Red Edge of Vegetation
- Observing the Earth as a Prototype Extrasolar Planet
- Beyond TPF: Life Finder and Planet Imager
- Sumamry

Terrestrial Planet Finder (TPF) Goal: resolve an ancient/fundamental question.

There are infinite worlds, both like and unlike this world of ours. -Epicurus (341-270 BC)

There cannot be more worlds than one. -**Aristotle** (384-322 BC)

TPF Programatic Goals & Status

•DETECT: Search 150-300 nearby (5-15 pc distant) Sun-like stars for Earth-like planets. [150 --> 50 ?]
•CHARACTERIZE: Determine basic physical properties and measure "biomarkers".
•Key element of NASA's *Origins* science theme
•2014 launch? Five year mission duration?
•US\$1-2 billion budget? (Internat. mission? *Darwin*?)
•Preliminary mission architecture studies completed.
•Technology development projects in progress.
•TPF precursor mission(s) this decade (Kepler).

Gas	log(life/no_life)	Gas log(life/no_life)
• O ₂	5	• O ₂ 2
• N ₂ O	3	• N ₂ O 2
• CH ₄	5	• CH ₄ 3
• CO ₂	-3	• CO ₂ -3

	Visible	le Infrared	
CO ₂	Yes (if abundant)	Yes	
H ₂ O	Yes	Yes	
O ₂	Yes	No	
03	Yes	Yes	
CH ₄	Yes (if abundant)	Yes (if abundant)	
N ₂ O	No	Yes (if abundant)	
temperature	Yes (derived,surf.)	Yes (direct, strat.)	
pressure	Yes	No	
radius, mass	Yes (inferred)	Yes	
Red Edge	Yes	No	

Time to detect biomarkers on Earth at 10 pc

	O ₂ oxygen 21%	O ₃ ozone 6 ppm	H ₂ O water 0.8%	CO ₂ carbon dioxide 350 ppm
abundance				
wavelength	0.76 µm	0.59 μm	1.00 μm	2.00 μm
8-m coronagraph	9 days	3 days	1 day	50 days
wavelength		9.6 µm	7 or 28 μm	15.2 μm
infrared interferometer		7 days	3 days	2 days

Scattered light model of Earth

- 180 x 360 (one sq deg) pixel map of Earth
- Pixel classification by satellite imagery (6 types)
- BDRFs Bidirectional Reflectance Functions
- Single scattering, no elevation variations
- Gray cummulus clouds only
- Four broad wavelength bands: B, G, R, NIR

Details of Map

•Water with waves (specular & isotropic components)

•Permanent ice (strong backscattering)

•Seasonal/sea ice (80% dirty ice, 20% dirt)

•Bare ground (90% sand, 10% clay)

•Grass/brush land (67% dirt, 33% clover)

•Forested land (75% leaves, 25% peat)

•Cloud coverage from ISCCP database

Plants in visible versus near infrared light

Beyond TPF: Names/Dreams of Future Missions

- Life Finder: Carry out detailed, high signal-tonoise observations of nearby extrasolar planets discovered by TPF.
- Planet Imager: Resolve the images of nearby extrasolar planets into perhaps 100 or so pixels.
- Sometime after 2020?

Summary

- Detection and characterization of extrasolar terrestrial planets orbiting nearby stars is technically very difficult but is expected to be practical within the foreseeable future.
- Optical or mid/thermal-IR spectroscopy can reveal the presence of oxygen, water vapor, carbon dioxide and other major molecular constituents of such a planet's atmosphere.
- Diurnal light curves of extrasolar planets will be powerful characterization tools for surface properties: weather, climate, etc.
- Earthshine & spacecraft allow us to observe the Earth as if it were an extrasolar planet and thus check our theoretical expectations.
- The first direct detection extraterrestrial life might be due to the color of (dumb!) plants rather than signals from advanced technical civilizations!

