AST 205. Lecture 17. November 17, 2003 Biochemical Basis of Life: Nucleic Acids & Proteins

- Context
- Importance of carbon
- Four major classes of biological compounds
 - Proteins
 - Nucleic acids
 - Carbohydrates/polysaccharides
 - Lipids
- General features of terrestrial biochemistry
- Implications for extraterrestrial life

$N = f(p)n(e)f(1)f(i)f(c)R_*L$

- Radial velocity techniques have provided first direct clues about f(p), ≥ 5 -10%
- No direct information on n(e) yet
- R* measured by astronomical observations
- f(l) depends on complex biochemistry
- Detailed knowledge of one & only one case
- But/thus no first principles general theory
- "Life as we know it" is the practical option

Convergence or Divergence of Cosmic and Biological Evolution? (How similar to here?)

- Large/coarse scales -> convergence
- But on some small/fine scales -> divergence
- Divergence *might* begin on the scale of planetary systems since known extrasolar systems are unlike the Solar System
- However it *might* not occur until far finer levels of detail <- assumption!

Solar	(%)	Terrestrial Mar	ntle (%)
Hydrogen	70.7	Oxygen	48.9
Helium	27.4	Silicon*	26.3
Oxygen	0.96	Aluminum*	7.7
Carbon	0.31	Iron	4.7
Neon	0.17	Calcium	3.4
Iron	0.14	Sodium	2.7
Nitrogen	0.11	Potassium	2.4
Silicon	0.07	Magnesium	2.0
Magnesium	0.06	(Hydrogen)	0.74
Sulfur	0.04	(Carbon)	0.02

Carbon (C) is a unique element, "da man" of organic chemistry & molecular biology

- Strong C-C bonds provide the structural support for very large 3D molecules
- C can simultaneously form strong bonds with H and O thus allowing large and complex molecules
- CO₂ is a gas allowing easy C transport and interactions
- Organic (C structured) compounds are 50x more numerous than inorganic ones
- Not particularly abundant in the Earth's mantle

Amino acids are the "lego" building block components of proteins

- 13 to 27 atoms of C, O, N, H & S
- A COOH (carboxy) end that loses a H⁺ ion
- A NH₂ (amino) end that takes a H⁺ ion
- More than 170 known, but only 20 are coded by nucleic acids & "used" to make proteins
- 19 are l-chiral (left-handed) & one is symmetric
- Carboxy & amino ends "plug" together to form a peptide bond and thus make long chains:
- $H_3N^+ + COO^- -> OC-NH + H_2O$

Protein structure Peptide bond chains of 100s of amino acids Chain winds to form an α-helix or folds to form a β-sheet stabilized by H bonds Fold into specific 3D shapes set by disulfide bonds and hydrophobic interactions Also such proteins may combine as subunits to form a larger and more complex protein

Protein functions = many and diverse

- Structure
- Enzymes
- Hormones
- Transportation
- Protection
- Sensors
- Toxins
- Gates
- Movement

Proteins comprise >50% of the mass of many cells (the rest being largely water). More than 10⁴ human proteins are known. Genetic information specifies proteins and nothing else.

- Very long chains (again) of nucleotides
- Each nucleotide is made of a phosphoric acid, a sugar and a base
- Sugar is d-ribose in RNA & deoxy-d-ribose in DNA
- RNA bases are Cytosine, Uracil, Adenine & Guanine; DNA bases = C, A, G & Thymine

DNA structure & replication

- Consists of two nucleotide chains/strands wrapped around each other in a spiral helix
- A on one strand matches T on the other
- Similarly G and C pair between strands
- When the strands are separated, they can each regenerate their partner & thus copy the information they encode
- A *codon* consists of 3 sequential bases and specifies one amino acid (or start/stop)

Lipids

- Composed of fatty acid subcomponents
- Relatively simple/repetitive structures
- Insoluble in water
- Soluble in organic solvents
- Many have hydrophobic properties
- Energy storage
- Cell membranes (essential feature of life!)

General Characteristics of the Molecular Biology of Terrestrial Life

- Extraordinarily complex & inter-connected chemical processes, vastly richer than any other known chemical systems
- Basic biochemistry shared by all known terrestrial organisms as well as many of its details
- Carbon based and water dependent
- Hierarchically structured (using much simpler subcomponents), polymerized macromolecules
- Few (4) general classes of compounds but many individual ones with highly specialized and specific biological functions

