Math 135: Intermediate Algebra

Worksheet 6

Nov 8, 2007

1. In class we said that a quadratic is anything for the form $a x^{2}+b x+c$, where a, b, and c are numbers. However, there is a more general definition of a quadratic. A quadratic can be anything of the form $a x^{2}+b x y+c y^{2}$, where now x and y can be any expression. For example, the expression $2 w^{4}+3 w^{2} z+4 z^{2}$ is a quadratic with $a=2, b=3, c=4, x=w^{2}$, and $y=z$. For each of the following expressions, determine if it is a quadratic. If it is, what are a, b, c, x, and y ?
(a) $x^{4}+2 x^{2}-15$
(b) $2 z^{6}+z^{2}+4$
(c) $2 w^{2}+w z^{2}-6 z^{4}$
(d) $4 f^{2}+8 f g^{2}-21 g^{4}$
(e) $h^{4}+h^{2} j+j^{4}$
(f) $6 x^{2} y^{4}-13 x y^{2} w z^{2}+6 w^{2} z^{4}$
2. Factor each of the expressions in problem 1 that is a quadratic.
3. As we'll discuss more in the next class, it is possible to use factoring to solve equations. Here we'll do some examples.
(a) Consider the equation $x^{2}+4 x-12=0$. Factor the left hand side.
(b) You should now have something of the form $(x+a)(x+b)=0$, where a and b are numbers. Notice that the left side consists of one number, $(x+a)$, multiplied by another number, $(x+b)$. The only way to multiply two numbers and get zero is if one of them is zero already. Thus, either $(x+a)$ or $(x+b)$ is 0 . Use this fact to find two possible values of x in the equation you just factored.
(c) Plug your two possible values for x into the equation from part (a) and verify that both of them work.
(d) Repeat the process of parts (a)-(c) for the equation $x^{2}-7+12=0$.
(e) Repeat the process for the equation $2 x^{2}+5 x-12=0$.
(f) Repeat the process for the equation $x^{2}-3 x=10$. (Hint: as a first step, rearrange the equation so it looks like the ones in parts (a), (c), and (d).)
