Math 135: Intermediate Algebra
 Worksheet 5
 Nov 1, 2007

1. One often needs to multiply polynomials in problems involving areas and volumes.
(a) The length of a rectangular field is 10 meters more than twice the width. Let w be the width. What is the area of the field?
(b) A triangular roof panel has a height half as long as its base. If the base has length b, what is the area of the roof panel.
(c) A rectangular block has a width 5 meters shorter than three times its length. The height is 3 times the length. If the width of the block is w, what is its volume?
(d) A silo is in the shape of a cylinder with a hemispherical top. The radius of the silo is one third of its height. If the height is h, find the volume of the silo.
2. Bill Gates goes insane and offers you that on the first day of the month he will give you 1 dollar, on the second day f dollars, and the third day f^{2} dollars, on the fourth day f^{3} dollars, and so on, increasing by a factor of f every day until the end of the month.
(a) The amount of money you have collected after d days is given by the formula

$$
\begin{equation*}
\frac{1-f^{d}}{1-f} \tag{1}
\end{equation*}
$$

Verify that this formula works after 2 days, 4 days, and 6 days using $f=2$, i.e. assuming that the amount he gives you doubles every day.
(b) Use synthetic division to rewrite the formula for $d=4$ days. Check that your result agrees with your answer to part (a) for $f=2$.
(c) Use synthetic diffision to rewrite the formula for $d=6$. Again, check against your answer to part (a).
3. A box has a length 10 cm less than twice its width. If the width is $w \mathrm{~cm}$ and the volume of the box is $2 w^{3}-20 w^{2}+50 w \mathrm{~cm}^{3}$, then:
(a) Use synthetic division to find the height of the box in terms of w.
(b) What is the area of the base of the box?
(c) What are the areas of the box sides?
(d) Find the the volume of a box whose with the same length and width, but twice the height.

