Math 135 - Intermediate Algebra

Homework 1 - Solutions
October 2, 2007
All problems are from section 2.1 of Akst \& Bragg.

Problems 1 to 9

Determine whether the given value is a solution of the equation.

1. Equation: $2 x-1=5$ and Value: 2

$$
\begin{aligned}
2(2)-1 & \stackrel{?}{=} 5 \\
4-1 & \stackrel{?}{=} 5 \\
3 & \stackrel{?}{=} 5
\end{aligned}
$$

Since $3 \neq 5,2$ is not a solution of the equation $2 x-1=5$.
3. Equation: $1-\frac{t}{4}=-2$ and Value: -4

$$
\begin{array}{rll}
1-\frac{-4}{4} & \stackrel{?}{=} & -2 \\
1+\frac{4}{4} & \stackrel{?}{=} & -2 \\
1+1 & \stackrel{?}{=} & -2 \\
2 & \stackrel{?}{=} & -2
\end{array}
$$

Since $2 \neq-2,-4$ is not a solution of the equation $1-\frac{t}{4}=-2$.
5. Equation: $5 y-6=7 y-5$ and Value: $-\frac{1}{2}$

$$
\begin{aligned}
5\left(-\frac{1}{2}\right)-6 & \stackrel{?}{=} 7\left(-\frac{1}{2}\right)-5 \\
-\frac{5}{2}-6 & \stackrel{?}{=}-\frac{7}{2}-5 \\
\frac{5}{2}+6 & \stackrel{?}{=} \frac{7}{2}+5 \\
\frac{5}{2}+\frac{12}{2} & \stackrel{?}{=} \frac{7}{2}+\frac{10}{2} \\
\frac{17}{2} & \stackrel{?}{=} \frac{17}{2}
\end{aligned}
$$

Since $\frac{17}{2}=\frac{17}{2},-\frac{1}{2}$ is a solution of the equation $5 y-6=7 y-5$.
7. Equation: $2 n-10=4(3 n-15)$ and Value: 7

$$
\begin{array}{rll}
2(7)-10 & \stackrel{?}{=} 4(3(7)-15) \\
14-10 & \stackrel{?}{=} 4(21-15) \\
4 & \stackrel{?}{=} 4(6) \\
4 & \stackrel{?}{=} 24
\end{array}
$$

Since $4 \neq 24,7$ is not a solution of the equation $2 n-10=4(3 n-15)$.
9. Equation: $\frac{1}{2}\left(9-\frac{x}{4}\right)+x=\frac{x}{3}-2$ and Value: -12

$$
\begin{aligned}
\frac{1}{2}\left(9-\frac{-12}{4}\right)+(-12) & \stackrel{?}{=} \frac{-12}{3}-2 \\
\frac{1}{2}\left(9+\frac{12}{4}\right)-12 & \stackrel{?}{=}-4-2 \\
\frac{1}{2}(9+3)-12 & \stackrel{?}{=}-6 \\
\frac{1}{2}(12)-12 & \stackrel{?}{=}-6 \\
6-12 & \stackrel{?}{=}-6 \\
-6 & \stackrel{?}{=}-6
\end{aligned}
$$

Since $-6=-6,-12$ is a solution of the equation $\frac{1}{2}\left(9-\frac{x}{4}\right)+x=\frac{x}{3}-2$.

Problems 11 to 31

Solve and check.
11. Equation: $x+4=2$

$$
\begin{aligned}
x+4 & =2 \\
x & =2-4 \\
x & =-2
\end{aligned}
$$

13. Equation: $x-3.7=-2$

$$
\begin{aligned}
x-3.7 & =-2 \\
x & =-2+3.7 \\
x & =1.7
\end{aligned}
$$

15. Equation: $\frac{3}{4}+y=-\frac{5}{8}$

$$
\begin{aligned}
\frac{3}{4}+y & =-\frac{5}{8} \\
y & =-\frac{5}{8}-\frac{3}{4} \\
y & =-\frac{5}{8}-\frac{6}{8} \\
y & =-\frac{11}{8}
\end{aligned}
$$

17. Equation: $\frac{n}{5}=-1$

$$
\begin{aligned}
\frac{n}{5} & =-1 \\
n & =-5
\end{aligned}
$$

19. Equation: $16-4 y=0$

$$
\begin{aligned}
16-4 y & =0 \\
16 & =4 y \\
\frac{16}{4} & =y \\
4 & =y \\
y & =4
\end{aligned}
$$

21. Equation: $\frac{2}{3} n=\frac{4}{9}$

$$
\begin{aligned}
\frac{2}{3} n & =\frac{4}{9} \\
n & =\frac{4}{9} \frac{3}{2} \\
n & =\frac{12}{18} \\
n & =\frac{2}{3}
\end{aligned}
$$

23. Equation: $-8.1=0.9 a$

$$
\begin{aligned}
& \frac{-8.1}{}=0.9 a \\
& \frac{-8.1}{0.9}=a \\
& \frac{-81}{9}=a \\
& a=-9
\end{aligned}
$$

25. Equation: $5 x+1=-4$

$$
\begin{aligned}
5 x+1 & =-4 \\
5 x & =-4-1 \\
5 x & =-5 \\
x & =-1
\end{aligned}
$$

27. Equation: $12-x=-10$

$$
\begin{aligned}
12-x & =-10 \\
-x & =-10-12 \\
-x & =-22 \\
x & =22
\end{aligned}
$$

29. Equation: $-4 n-6=10$

$$
\begin{aligned}
-4 n-6 & =10 \\
-4 n & =10+6 \\
-4 n & =16 \\
n & =\frac{16}{-4} \\
n & =-4
\end{aligned}
$$

31. Equation: $9+8 n=9$

$$
\begin{aligned}
9+8 n & =9 \\
8 n & =9-9 \\
8 n & =0 \\
n & =0
\end{aligned}
$$

Problems 39 to 53

Solve and check.
39. Equation: $8 y=y$

$$
\begin{aligned}
8 y & =y \\
8 y-y & =0 \\
7 y & =0 \\
y & =0
\end{aligned}
$$

41. Equation: $10-5 x=x+18$

$$
\begin{aligned}
10-5 x & =x+18 \\
-5 x-x & =18-10 \\
-6 x & =8 \\
x & =-\frac{8}{6} \\
x & =-\frac{4}{3}
\end{aligned}
$$

43. Equation: $7 y-8=12 y-8$

$$
\begin{aligned}
7 y-8 & =12 y-8 \\
7 y-12 y & =-8+8 \\
-5 y & =0 \\
y & =0
\end{aligned}
$$

45. Equation: $8 a-3-5 a=15$

$$
\begin{aligned}
8 a-3-5 a & =15 \\
3 a & =15+3 \\
3 a & =18 \\
a & =\frac{18}{3} \\
a & =6
\end{aligned}
$$

47. Equation: $16 n=7 n-15-6 n$

$$
\begin{aligned}
16 n & =7 n-15-6 n \\
16 n & =n-15 \\
16 n-n & =-15 \\
15 n & =-15 \\
n & =-1
\end{aligned}
$$

49. Equation: $2.4-0.6 x+3.3=1.3 x$

$$
\begin{aligned}
2.4-0.6 x+3.3 & =1.3 x \\
5.7-0.6 x & =1.3 x \\
-0.6 x-1.3 x & =-5.7 \\
0.6 x+1.3 x & =5.7 \\
1.9 x & =5.7 \\
x & =\frac{5.7}{1.9} \\
x & =3
\end{aligned}
$$

51. Equation: $18-12 n=16+3 n-11$

$$
\begin{aligned}
18-12 n & =16+3 n-11 \\
18-12 n & =5+3 n \\
-12 n-3 n & =5-18 \\
-15 n & =-13 \\
15 n & =13 \\
n & =\frac{13}{15}
\end{aligned}
$$

53. Equation: $23 t+11-15 t=6 t-18+7$

$$
\begin{aligned}
23 t+11-15 t & =6 t-18+7 \\
8 t+11 & =6 t-11 \\
8 t-6 t & =-11-11 \\
2 t & =-22 \\
t & =\frac{-22}{2} \\
t & =-11
\end{aligned}
$$

Problems 59 to 69

Solve and check.
59. Equation: $-2(x-6)=4$

$$
\begin{aligned}
-2(x-6) & =4 \\
-2 x+12 & =4 \\
-2 x & =4-12 \\
-2 x & =-8 \\
2 x & =8 \\
x & =\frac{8}{2} \\
x & =4
\end{aligned}
$$

61. Equation: $7-(3 n-8)=-6$

$$
\begin{aligned}
7-(3 n-8) & =-6 \\
7-3 n+8 & =-6 \\
15-3 n & =-6 \\
-3 n & =-6-15 \\
-3 n & =-21 \\
3 n & =21 \\
n & =\frac{21}{3} \\
n & =7
\end{aligned}
$$

63. Equation: $-4(7+3 x)=-5(2 x+8)$

$$
\begin{aligned}
-4(7+3 x) & =-5(2 x+8) \\
-28-12 x & =-10 x-40 \\
-12 x+10 x & =-40+28 \\
-2 x & =-12 \\
2 x & =12 \\
x & =\frac{12}{2} \\
x & =6
\end{aligned}
$$

65. Equation: $\frac{1}{2}(16 n-12)=9 n+11$

$$
\begin{aligned}
\frac{1}{2}(16 n-12) & =9 n+11 \\
\frac{16 n}{2}-\frac{12}{2} & =9 n+11 \\
8 n-6 & =9 n+11 \\
8 n-9 n & =11+6 \\
-n & =17 \\
n & =-17
\end{aligned}
$$

67. Equation: $5 x-2(x+6)=6(x-1)-8$

$$
\begin{aligned}
5 x-2(x+6) & =6(x-1)-8 \\
5 x-2 x-12 & =6 x-6-8 \\
3 x-12 & =6 x-14 \\
3 x-6 x & =-14+12 \\
-3 x & =-2 \\
3 x & =2 \\
x & =\frac{2}{3}
\end{aligned}
$$

69. Equation: $13-9(2 n+3)=4(6 n+1)-15 n$

$$
\begin{aligned}
13-9(2 n+3) & =4(6 n+1)-15 n \\
13-18 n-27 & =24 n+4-15 n \\
-14-18 n & =9 n+4 \\
-14-4 & =9 n+18 n \\
-18 & =27 n \\
\frac{-18}{27} & =n \\
-\frac{2}{3} & =n \\
n & =-\frac{2}{3}
\end{aligned}
$$

Problem 81

The cost of a book at an online discount book retailer is 20% less than the list price of the book. The total cost to purchase the book online is $\$ 33.59$, which includes a shipping fee of $\$ 3.99$.
a. What is the original list price of the book?

Let L be the original L ist price of the book. We can write the equation:

$$
\left(1-\frac{20}{100}\right) L+3.99=33.59
$$

which we can solve to find L :

$$
\begin{aligned}
\left(1-\frac{20}{100}\right) L+3.99 & =33.59 \\
\frac{80}{100} L & =33.59-3.99 \\
\frac{4}{5} L & =29.6 \\
L & =\frac{5}{4} 29.6 \\
L & =37
\end{aligned}
$$

The original list price of the book is $\$ 37$.
b. Excluding the shipping fee, how much money was saved purchasing the book online?

Let A be the A mount of money saved by purchasing the book online, S the S hipping fee and T the Total cost to purchase the book online. We have:

$$
A=L-(T-S)
$$

which we can rewrite:

$$
\begin{aligned}
A & =37-(33.59-3.99) \\
A & =37-29.6 \\
A & =7.4
\end{aligned}
$$

$\$ 7.40$ were saved purchasing the book online.
c. If the shipping fee is included, what was the actual percent discount off the original list price?

Let D be the actual percent D iscount when the shipping fee is included.

$$
\begin{aligned}
37(1-D) & =33.59 \\
1-D & =\frac{33.59}{37} \\
1-D & \simeq 0.91 \\
-D & \simeq-0.09 \\
D & \simeq 0.09
\end{aligned}
$$

When the shipping fee is taken into account, the actual discount is only about 9%.

Problem 83

There are 10 equally spaced hurdles in the women's 400-meter hurdle track event. The distance from the starting line to the first hurdle is 45 m and the distance from the last hurdle to the finish line is 40 m . What is the distance between the hurdles?

Let d be the d istance between the hurdles. As there are 10 equally spaced hurdles, the distance between the first one and the last one is $9 d$. Thus,

$$
45+9 d+40=400
$$

which we can solve to find d :

$$
\begin{aligned}
45+9 d+40 & =400 \\
85+9 d & =400 \\
9 d & =400-85 \\
9 d & =315 \\
d & =\frac{315}{9} \\
d & =35
\end{aligned}
$$

Problem 85

A telephone company offers two plans for local and long-distance calling. Plan A costs a flat fee of $\$ 39.95$ per month for unlimited local and long-distance calling. Plan B costs $\$ 14.95$ for unlimited local calling and $\$ 4$ plus an additional $\$ 0.07$ per minute for long-distance calling per month. For what number of minutes will the monthly cost of Plan B be the same as the monthly cost of Plan A?

Let m be the number of minutes for which the monthly costs of Plan A and Plan B are the same. We have:

$$
14.95+4+0.07 m=39.95
$$

which we can solve to find m :

$$
\begin{aligned}
14.95+4+0.07 m & =39.95 \\
18.95+0.07 m & =39.95 \\
0.07 m & =39.95-18.95 \\
0.07 m & =21 \\
m & =\frac{21}{0.07} \\
m & =\frac{2100}{7} \\
m & =300
\end{aligned}
$$

The cost of Plan A and Plan B will be the same for 300 min of long-distance calls.

Problem 87

An interior designer has small and large throw pillows made for a family room. The small pillows require $1 / 2$ sq yd of fabric and the large pillows require 2 sq yd of fabric. If 18 sq yd of fabric are used to make 18 pillows, how many of each type of pillow are made for the family room?

Let s be the number of s mall pillows and ℓ the number of large pillows that were made for the family room. 18 pillows were made, therefore $s=18-\ell$. Moreover, 18 sq yd of fabric were used, which yields:

$$
\frac{1}{2} s+2 \ell=18
$$

Using the relation between s and ℓ given above, this can be written:

$$
\begin{aligned}
\frac{1}{2}(18-\ell)+2 \ell & =18 \\
\frac{18}{2}-\frac{\ell}{2}+2 \ell & =18 \\
9-\frac{\ell}{2}+\frac{4 \ell}{2} & =18 \\
9+\frac{3 \ell}{2} & =18 \\
\frac{3 \ell}{2} & =18-9 \\
\frac{3 \ell}{2} & =9 \\
\ell & =9 \frac{2}{3} \\
\ell & =6
\end{aligned}
$$

As $s=18-\ell, 12$ small pillows and 6 large ones were made for the family room.

Problem 95

The AIDS Walk is an annual 10-km walkathon held in various cities throughout the United States. If a participant walks at an average of 4 km per hour, how long will it take her to finish the walkathon?

Let t be the time the participant needs to walk 10 km at 4 km per hour. It comes:

$$
\begin{aligned}
4 t & =10 \\
t & =\frac{10}{4} \\
t & =2.5
\end{aligned}
$$

It will take 2 and a half hours for the participant to finish the walkathon.

Problem 97

Fifteen minutes after a boy left for school on his bike, his mother noticed that he had left his term paper on the kitchen table. His mother left home, driving at a rate of 32 mph , to catch up with him. If he had been bicycling at a rate of 8 mph , how long did it take his mother to catch up with him?

Let t be the time the boy's mother needed to catch up with him. Noticing that 15 minutes is $1 / 4$ of an hour, we have:

$$
\begin{aligned}
32 t & =8\left(\frac{1}{4}+t\right) \\
32 t & =\frac{8}{4}+8 t \\
32 t-8 t & =2 \\
24 t & =2 \\
t & =\frac{2}{24} \\
t & =\frac{1}{12}
\end{aligned}
$$

$$
t \text { is therefore } 1 / 12 \text { of an hour, or } 5 \mathrm{~min} \text {. }
$$

Problem 103

A sales representative invests his \$12,000 bonus in two mutual funds. After 1 year, one fund made a 7\% profit and the other lost 9\%. If the total profit on the investments was $\$ 200$, how much did he invest in each mutual fund?

Let a be the a mount the sales representative invested in the profitable mutual fund. It comes:

$$
\begin{aligned}
\frac{7}{100} a-\frac{9}{100}(12000-a) & =200 \\
\frac{7+9}{100} a-12000 \frac{9}{100} & =200 \\
\frac{4}{25} a-1080 & =200 \\
\frac{4}{25} a & =200+1080 \\
\frac{4}{25} a & =1280 \\
a & =1280 \frac{25}{4} \\
a & =8000
\end{aligned}
$$

The sales representative invested $\$ 8,000$ in the profitable fund and $\$ 12,000-\$ 8,000=\$ 4,000$ in the other one.

