Math 135 – Intermediate Algebra

Homework 1 – Solutions

October 2, 2007

All problems are from section 2.1 of Akst & Bragg.

Problems 1 to 9

Determine whether the given value is a solution of the equation.

1. Equation: 2x - 1 = 5 and Value: 2

$$2(2) - 1 \stackrel{?}{=} 5$$

$$4 - 1 \stackrel{?}{=} 5$$

$$3 \stackrel{?}{=} 5$$

Since $3 \neq 5$, 2 is not a solution of the equation 2x - 1 = 5.

3. Equation: $1 - \frac{t}{4} = -2$ and Value: -4

$$1 - \frac{-4}{4} \stackrel{?}{=} -2$$

$$1 + \frac{4}{4} \stackrel{?}{=} -2$$

$$1 + 1 \stackrel{?}{=} -2$$

$$2 \stackrel{?}{=} -2$$

Since $2 \neq -2$, -4 is not a solution of the equation $1 - \frac{t}{4} = -2$.

5. Equation: 5y - 6 = 7y - 5 and Value: $-\frac{1}{2}$

$$5\left(-\frac{1}{2}\right) - 6 \stackrel{?}{=} 7\left(-\frac{1}{2}\right) - 5$$

$$-\frac{5}{2} - 6 \stackrel{?}{=} -\frac{7}{2} - 5$$

$$\frac{5}{2} + 6 \stackrel{?}{=} \frac{7}{2} + 5$$

$$\frac{5}{2} + \frac{12}{2} \stackrel{?}{=} \frac{7}{2} + \frac{10}{2}$$

$$\frac{17}{2} \stackrel{?}{=} \frac{17}{2}$$

Since $\frac{17}{2} = \frac{17}{2}$, $-\frac{1}{2}$ is a solution of the equation 5y - 6 = 7y - 5.

7. Equation: 2n - 10 = 4(3n - 15) and Value: 7

$$2(7) - 10 \stackrel{?}{=} 4(3(7) - 15)$$

$$14 - 10 \stackrel{?}{=} 4(21 - 15)$$

$$4 \stackrel{?}{=} 4(6)$$

$$4 \stackrel{?}{=} 24$$

Since $4 \neq 24$, 7 is not a solution of the equation 2n - 10 = 4(3n - 15).

9. Equation:
$$\frac{1}{2} \left(9 - \frac{x}{4} \right) + x = \frac{x}{3} - 2$$
 and Value: -12

$$\frac{1}{2}\left(9 - \frac{-12}{4}\right) + (-12) \stackrel{?}{=} \frac{-12}{3} - 2$$

$$\frac{1}{2}\left(9 + \frac{12}{4}\right) - 12 \stackrel{?}{=} -4 - 2$$

$$\frac{1}{2}\left(9 + 3\right) - 12 \stackrel{?}{=} -6$$

$$\frac{1}{2}\left(12\right) - 12 \stackrel{?}{=} -6$$

$$6 - 12 \stackrel{?}{=} -6$$

$$-6 \stackrel{?}{=} -6$$

Since -6 = -6, -12 is a solution of the equation $\frac{1}{2} \left(9 - \frac{x}{4}\right) + x = \frac{x}{3} - 2$.

Problems 11 to 31

Solve and check.

11. Equation:
$$x + 4 = 2$$

$$x+4 = 2$$

$$x = 2-4$$

$$x = -2$$

13. Equation:
$$x - 3.7 = -2$$

$$x - 3.7 = -2$$

 $x = -2 + 3.7$
 $x = 1.7$

15. Equation:
$$\frac{3}{4} + y = -\frac{5}{8}$$

$$\frac{3}{4} + y = -\frac{5}{8}$$

$$y = -\frac{5}{8} - \frac{3}{4}$$

$$y = -\frac{5}{8} - \frac{6}{8}$$

$$y = -\frac{11}{8}$$

17. Equation:
$$\frac{n}{5} = -1$$

$$\begin{array}{rcl} \frac{n}{5} & = & -1\\ n & = & -5 \end{array}$$

19. Equation:
$$16 - 4y = 0$$

$$16 - 4y = 0$$

$$16 = 4y$$

$$\frac{16}{4} = y$$

$$4 = y$$

$$y = 4$$

21. Equation:
$$\frac{2}{3}n = \frac{4}{9}$$

$$\frac{2}{3}n = \frac{4}{9}$$

$$n = \frac{4}{9}\frac{3}{2}$$

$$n = \frac{12}{18}$$

$$n = \frac{2}{3}$$

23. Equation:
$$-8.1 = 0.9a$$

$$\begin{array}{rcl}
-8.1 & = & 0.9a \\
\hline
-8.1 & = & a \\
\hline
0.9 & = & a \\
\hline
\frac{-81}{9} & = & a \\
a & = & -9
\end{array}$$

25. Equation:
$$5x + 1 = -4$$

$$5x + 1 = -4$$

$$5x = -4 - 1$$

$$5x = -5$$

$$x = -1$$

27. Equation:
$$12 - x = -10$$

$$\begin{array}{rcl}
12 - x & = & -10 \\
-x & = & -10 - 12 \\
-x & = & -22 \\
x & = & 22
\end{array}$$

29. Equation:
$$-4n - 6 = 10$$

$$\begin{array}{rcl}
-4n - 6 & = & 10 \\
-4n & = & 10 + 6 \\
-4n & = & 16 \\
n & = & \frac{16}{-4} \\
n & = & -4
\end{array}$$

31. Equation:
$$9 + 8n = 9$$

$$9 + 8n = 9$$

$$8n = 9 - 9$$

$$8n = 0$$

$$n = 0$$

Problems 39 to 53

Solve and check.

39. Equation:
$$8y = y$$

$$8y = y$$

$$8y - y = 0$$

$$7y = 0$$

$$y = 0$$

41. Equation:
$$10 - 5x = x + 18$$

$$10 - 5x = x + 18$$

$$-5x - x = 18 - 10$$

$$-6x = 8$$

$$x = -\frac{8}{6}$$

$$x = -\frac{4}{3}$$

43. Equation:
$$7y - 8 = 12y - 8$$

$$7y - 8 = 12y - 8$$

$$7y - 12y = -8 + 8$$

$$-5y = 0$$

$$y = 0$$

45. Equation: 8a - 3 - 5a = 15

$$8a - 3 - 5a = 15$$

$$3a = 15 + 3$$

$$3a = 18$$

$$a = \frac{18}{3}$$

$$a = 6$$

47. Equation: 16n = 7n - 15 - 6n

$$\begin{array}{rcl}
 16n & = & 7n - 15 - 6n \\
 16n & = & n - 15 \\
 16n - n & = & -15 \\
 15n & = & -15 \\
 n & = & -1
 \end{array}$$

49. Equation: 2.4 - 0.6x + 3.3 = 1.3x

$$2.4 - 0.6x + 3.3 = 1.3x$$

$$5.7 - 0.6x = 1.3x$$

$$-0.6x - 1.3x = -5.7$$

$$0.6x + 1.3x = 5.7$$

$$x = \frac{5.7}{1.9}$$

$$x = 3$$

51. Equation: 18 - 12n = 16 + 3n - 11

$$18 - 12n = 16 + 3n - 11
18 - 12n = 5 + 3n
-12n - 3n = 5 - 18
-15n = -13
15n = 13
n = $\frac{13}{15}$$$

53. Equation: 23t + 11 - 15t = 6t - 18 + 7

$$23t + 11 - 15t = 6t - 18 + 7$$

$$8t + 11 = 6t - 11$$

$$8t - 6t = -11 - 11$$

$$2t = -22$$

$$t = \frac{-22}{2}$$

$$t = -11$$

Problems 59 to 69

Solve and check.

59. Equation:
$$-2(x-6) = 4$$

$$\begin{array}{rcl}
-2(x-6) & = & 4 \\
-2x+12 & = & 4 \\
-2x & = & 4-12 \\
-2x & = & -8 \\
2x & = & 8 \\
x & = & \frac{8}{2} \\
x & = & 4
\end{array}$$

61. Equation:
$$7 - (3n - 8) = -6$$

$$7 - (3n - 8) = -6$$

$$7 - 3n + 8 = -6$$

$$15 - 3n = -6$$

$$-3n = -6 - 15$$

$$-3n = -21$$

$$3n = 21$$

$$n = \frac{21}{3}$$

$$n = 7$$

63. Equation:
$$-4(7+3x) = -5(2x+8)$$

$$-4(7+3x) = -5(2x+8)$$

$$-28-12x = -10x-40$$

$$-12x+10x = -40+28$$

$$-2x = -12$$

$$2x = 12$$

$$x = \frac{12}{2}$$

$$x = 6$$

65. Equation:
$$\frac{1}{2}(16n - 12) = 9n + 11$$

$$\frac{1}{2}(16n - 12) = 9n + 11$$

$$\frac{16n}{2} - \frac{12}{2} = 9n + 11$$

$$8n - 6 = 9n + 11$$

$$8n - 9n = 11 + 6$$

$$-n = 17$$

$$n = -17$$

67. Equation: 5x - 2(x+6) = 6(x-1) - 8

$$5x - 2(x+6) = 6(x-1) - 8$$

$$5x - 2x - 12 = 6x - 6 - 8$$

$$3x - 12 = 6x - 14$$

$$3x - 6x = -14 + 12$$

$$-3x = -2$$

$$3x = 2$$

$$x = \frac{2}{3}$$

69. Equation: 13 - 9(2n + 3) = 4(6n + 1) - 15n

$$13 - 9(2n + 3) = 4(6n + 1) - 15n$$

$$13 - 18n - 27 = 24n + 4 - 15n$$

$$-14 - 18n = 9n + 4$$

$$-14 - 4 = 9n + 18n$$

$$-18 = 27n$$

$$\frac{-18}{27} = n$$

$$\frac{2}{3} = n$$

$$n = -\frac{2}{3}$$

Problem 81

The cost of a book at an online discount book retailer is 20% less than the list price of the book. The total cost to purchase the book online is \$33.59, which includes a shipping fee of \$3.99.

a. What is the original list price of the book?

Let L be the original List price of the book. We can write the equation:

$$\left(1 - \frac{20}{100}\right)L + 3.99 = 33.59$$

which we can solve to find L:

$$\left(1 - \frac{20}{100}\right)L + 3.99 = 33.59$$

$$\frac{80}{100}L = 33.59 - 3.99$$

$$\frac{4}{5}L = 29.6$$

$$L = \frac{5}{4}29.6$$

$$L = 37$$

The original list price of the book is \$37.

b. Excluding the shipping fee, how much money was saved purchasing the book online?

Let A be the Amount of money saved by purchasing the book online, S the Shipping fee and T the Total cost to purchase the book online. We have:

$$A = L - (T - S)$$

which we can rewrite:

$$A = 37 - (33.59 - 3.99)$$

$$A = 37 - 29.6$$

$$A = 7.4$$

\$7.40 were saved purchasing the book online.

c. If the shipping fee is included, what was the actual percent discount off the original list price?

Let D be the actual percent D is count when the shipping fee is included.

$$37(1-D) = 33.59$$

 $1-D = \frac{33.59}{37}$
 $1-D \simeq 0.91$
 $-D \simeq -0.09$
 $D \simeq 0.09$

When the shipping fee is taken into account, the actual discount is only about 9%.

Problem 83

There are 10 equally spaced hurdles in the women's 400-meter hurdle track event. The distance from the starting line to the first hurdle is 45 m and the distance from the last hurdle to the finish line is 40 m. What is the distance between the hurdles?

Let d be the distance between the hurdles. As there are 10 equally spaced hurdles, the distance between the first one and the last one is 9d. Thus,

$$45 + 9d + 40 = 400$$

which we can solve to find d:

$$45 + 9d + 40 = 400$$

$$85 + 9d = 400$$

$$9d = 400 - 85$$

$$9d = 315$$

$$d = \frac{315}{9}$$

$$d = 35$$

The distance between two hurdles is 35 m.

Problem 85

A telephone company offers two plans for local and long-distance calling. Plan A costs a flat fee of \$39.95 per month for unlimited local and long-distance calling. Plan B costs \$14.95 for unlimited local calling and \$4 plus an additional \$0.07 per minute for long-distance calling per month. For what number of minutes will the monthly cost of Plan B be the same as the monthly cost of Plan A?

Let m be the number of minutes for which the monthly costs of Plan A and Plan B are the same. We have:

$$14.95 + 4 + 0.07m = 39.95$$

which we can solve to find m:

$$14.95 + 4 + 0.07m = 39.95$$

$$18.95 + 0.07m = 39.95$$

$$0.07m = 39.95 - 18.95$$

$$0.07m = 21$$

$$m = \frac{21}{0.07}$$

$$m = \frac{2100}{7}$$

$$m = 300$$

The cost of Plan A and Plan B will be the same for 300 min of long-distance calls.

Problem 87

An interior designer has small and large throw pillows made for a family room. The small pillows require 1/2 sq yd of fabric and the large pillows require 2 sq yd of fabric. If 18 sq yd of fabric are used to make 18 pillows, how many of each type of pillow are made for the family room?

Let s be the number of small pillows and ℓ the number of large pillows that were made for the family room. 18 pillows were made, therefore $s = 18 - \ell$. Moreover, 18 sq yd of fabric were used, which yields:

$$\frac{1}{2}s + 2\ell = 18$$

Using the relation between s and ℓ given above, this can be written:

$$\frac{1}{2}(18 - \ell) + 2\ell = 18$$

$$\frac{18}{2} - \frac{\ell}{2} + 2\ell = 18$$

$$9 - \frac{\ell}{2} + \frac{4\ell}{2} = 18$$

$$9 + \frac{3\ell}{2} = 18$$

$$\frac{3\ell}{2} = 18 - 9$$

$$\frac{3\ell}{2} = 9$$

$$\ell = 9\frac{2}{3}$$

$$\ell = 6$$

As $s = 18 - \ell$, 12 small pillows and 6 large ones were made for the family room.

Problem 95

The AIDS Walk is an annual 10-km walkathon held in various cities throughout the United States. If a participant walks at an average of 4 km per hour, how long will it take her to finish the walkathon?

Let t be the time the participant needs to walk 10 km at 4 km per hour. It comes:

$$4t = 10$$

$$t = \frac{10}{4}$$

$$t = 2.5$$

It will take 2 and a half hours for the participant to finish the walkathon.

Problem 97

Fifteen minutes after a boy left for school on his bike, his mother noticed that he had left his term paper on the kitchen table. His mother left home, driving at a rate of 32 mph, to catch up with him. If he had been bicycling at a rate of 8 mph, how long did it take his mother to catch up with him?

Let t be the time the boy's mother needed to catch up with him. Noticing that 15 minutes is 1/4 of an hour, we have:

$$32t = 8\left(\frac{1}{4} + t\right)$$

$$32t = \frac{8}{4} + 8t$$

$$32t - 8t = 2$$

$$24t = 2$$

$$t = \frac{2}{24}$$

$$t = \frac{1}{12}$$

t is therefore 1/12 of an hour, or 5 min.

Problem 103

A sales representative invests his \$12,000 bonus in two mutual funds. After 1 year, one fund made a 7% profit and the other lost 9%. If the total profit on the investments was \$200, how much did he invest in each mutual fund?

Let a be the amount the sales representative invested in the profitable mutual fund. It comes:

$$\frac{7}{100} a - \frac{9}{100} (12000 - a) = 200$$

$$\frac{7+9}{100} a - 12000 \frac{9}{100} = 200$$

$$\frac{4}{25} a - 1080 = 200$$

$$\frac{4}{25} a = 200 + 1080$$

$$\frac{4}{25} a = 1280$$

$$a = 1280 \frac{25}{4}$$

$$a = 8000$$

The sales representative invested \$8,000 in the profitable fund and \$12,000 - \$8,000 = \$4,000 in the other one.