Exam 3 Solutions

Math 135: Intermediate Algebra

1. Solve: $2 x^{2}-4 x-1=0$

Solution:

$$
\begin{aligned}
2 x^{2}-4 x-1 & =0 \\
x & =\frac{4 \pm \sqrt{(-4)^{2}-4(2)(-1)}}{2(2)} \\
& =\frac{4 \pm \sqrt{24}}{4} \\
& =\frac{4 \pm 2 \sqrt{6}}{4} \\
& =1 \pm \frac{\sqrt{6}}{2}
\end{aligned}
$$

2. Consider the function $y=\frac{1}{2} x^{2}-2 x+1$.
(a) Graph this function.
(b) Find the coordinates of the vertex and mark it on your graph.
(c) Find the axis of symmetry and draw it on your graph.

Solution:

(a) Picking a few points to graph:

x	y
0	$y=\frac{1}{2}(0)^{2}-2(0)+1=1$
1	$y=\frac{1}{2}(1)^{2}-2(1)+1=-\frac{1}{2}$
2	$y=\frac{1}{2}(2)^{2}-2(2)+1=-1$
3	$y=\frac{1}{2}(3)^{2}-2(3)+1=-\frac{1}{2}$
4	$y=\frac{1}{2}(4)^{2}-2(4)+1=1$

(b) The vertex is at $x=-\frac{b}{2 a}$, so $x=-\frac{(-2)}{2(1 / 2)}=2$. The corresponding y is $y=$ $\frac{1}{2}(2)^{2}-2(2)+1=-1$, so the vertex is $(2,-1)$.
(c) The axis of symmetry is the vertical line passing through the vertex. This is $x=2$, and it is drawn in the graph shown for part (a).
3. Evaluate: $81^{-3 / 4}$

Solution:

$$
81^{-3 / 4}=\frac{1}{81^{3 / 4}}=\frac{1}{3^{3}}=\frac{1}{27}
$$

4. Solve:

$$
\frac{2}{x-2}+\frac{4}{x+1}=3
$$

Solution:

$$
\begin{aligned}
(x-2)(x+1)\left(\frac{2}{x-2}+\frac{4}{x+1}\right) & =3(x-2)(x+1) \\
2(x+1)+4(x-2) & =3\left(x^{2}-x-2\right) \\
2 x+2+4 x-8 & =3 x^{2}-3 x-6 \\
0 & =3 x^{2}-9 x \\
0 & =3 x(x-3) \\
x=0 & \text { or } x=3
\end{aligned}
$$

Checking:

$$
\begin{array}{rl}
x=0 & x=3 \\
\frac{2}{0-2}+\frac{4}{0+1} & \frac{2}{3-2}+\frac{4}{3+1} \\
=\frac{2}{-2}+\frac{4}{1} & =\frac{2}{1}+\frac{4}{4} \\
=-1+4 & =2+1 \\
=3 & =3
\end{array}
$$

Both solutions check.
5. Solve: $2 x-y=7$ and $3 x+4 y=-6$.

Solution:

$$
\begin{aligned}
4(2 x-y) & =4(7) \quad \text { (Multiply first equation by } 4) \\
8 x-4 y & =28 \\
+\underline{(3 x+4 y)} & =+\underline{(-6)} \quad \quad \text { (Add second equation) } \\
11 x & =22 \\
x & =2 \quad \text { (Solution for } x) \\
2(2)-y & =7 \quad \text { (Substitute } x \text { back into first equation) } \\
4-y & =7 \\
-y & =3 \\
y & =-3
\end{aligned}
$$

6. A farmer is planning to fence a pasture for cows. The pasture will be a square x meters by x meters. Each month the farmer expects to make $\$ 0.10$ per square meter of pasture from his cows, to spend $\$ 10$ per meter of fencing for upkeep, and to pay fixed costs of $\$ 5000$ regardless of how big the pasture is.
(a) Write down a function giving the farmer's net monthly income in terms of x.
(b) Graph the function.
(c) Find the minimum pasture size required for the farmer to make a profit. Indicate this point on your graph.

Solution:

(a) The pasture is a square of x by x meters, so the area of the pasture is x^{2} square meters, and the farmer's total income is $0.1 x^{2}$, since it's $\$ 0.10$ per square meter. The pasture has 4 sides of length x, so it's perimeter is $4 x$ meters, which costs $\$ 10$ per meter, a total of $40 x$, for upkeep. There is also the $\$ 5000$ fixed cost. Thus, the total net income is $0.1 x^{2}-40 x-5000$.
(b) Picking a few points:

x	Income
0	-5000
200	-9000
400	-5000
600	7000

(c) For the farmer to earn a profit, his net income must be 0 or greater, so we solve

$$
\begin{aligned}
0.1 x^{2}-40 x-5000 & =0 \\
x^{2}-40 x-50000 & =0 \\
(x-500)(x+100) & =0 \\
x=500 & \text { or } x=-100
\end{aligned}
$$

Since only the positive solution makes sense, we take $x=500$. The pasture must be at least 500 meters in size for the farmer to make a profit. The corresponding point on the graph is $(500,0)$.
7. A coast-to-coast airplane trip takes 5 hours heading East, with the wind, and 6 hours heading West, against the wind. If the trip is 3000 miles each way, find the speed of the wind and the speed of the plane in still air.

Solution:

Let v be the speed of the plane in still air and w be the speed of the wind. With the wind the speed is $v+w$, and against the wind it is $v-w$. Making a table:

Direction	Speed	Time	Distance
East	$v+w$	5	$5(v+w)$
West	$v-w$	6	$6(v-w)$

Since Distance $=$ Speed \times Time, we can write two equations:

$$
\begin{aligned}
& 5(v+w)=3000 \Rightarrow v+w=600 \\
& 6(v+w)=3000 \Rightarrow v-w=500
\end{aligned}
$$

Solving:

$$
\begin{aligned}
v+w & =600 \\
+\frac{(v-w)}{2 v} & =+\underline{500} \quad \text { (Adding the two equations) } \\
v & =550 \\
550+w & =600 \quad \text { (Substituting } v \text { into first equation) } \\
w & =50
\end{aligned}
$$

So the speed of the plane in still air is 550 miles per hour, and the speed of the wind is 50 miles per hour.
8. A coffee store owner has two types of coffee beans: a Kona bean and a Brazillian bean. He mixes them to make a breakfast blend, which is 40% Kona and 60% Brazillian, and a house blend, which is 10% Kona and 90% Brazillian. If a 10 ounce bag of the breakfast blend is $\$ 10.50$ and a 10 ounce bag of the house blend is $\$ 8.25$, find the price per ounce for pure Kona beans and for pure Brazillian beans.

Solution:

Let k and b be the price per pound of the Kona and Brazillian beans. A 10 ounce bag of the breakfast blend contains 4 ounces of Kona and 6 of Brazillian, while the house blend contains 1 ounce of Kona and 9 of Brazillian. We can therefore make a table:

	Kona					Brazillian			
Bl;end	Oz	Cost/oz	Cost	Oz	Cost/oz	Cost	Total cost		
Breakfast	4	k	$4 k$	6	b	$6 b$	$4 k+6 b$		
House	1	k	k	9	b	$9 b$	$k+9 b$		

Since we are given the cost of a bag of each blend, we can write two equations:

$$
\begin{aligned}
4 k+6 b & =10.5 \\
k+9 b & =8.25
\end{aligned}
$$

Now we just need to solve:

$$
\begin{aligned}
4(k+9 b) & =4(8.25) \quad \text { (Multiplying second equation by } 4) \\
4 k+36 b & =33 \\
-\frac{(4 k+6 b)}{30 b} & =-\underline{10.5} \quad \text { (Subtracting first equation) } \\
b & =0.75 \\
4 k+6(0.75) & =10.5 \quad \text { (Substituting into first equation) } \\
4 k+4.5 & =10.5 \\
4 k & =6 \\
k & =1.5
\end{aligned}
$$

So the Kona beans cost $\$ 1.50$ per ounce, and the Brazillian beans cost $\$ 0.75$ per ounce.

