Pre-Algebra

Worksheet 8 Powers, Exponents and Square Roots, Solutions

- Simplify the following expressions leaving no negative exponents:

$$
\begin{gather*}
\frac{2 a^{5} b^{3} a}{b^{5}}=2 a^{5+1} b^{3-5}=2 a^{6} b^{-2}=\frac{2 a^{6}}{b^{2}} \tag{1}\\
\frac{3 x^{-2}}{6 x y^{3}}=\frac{3}{6} x^{-2-1} y^{-3}=\frac{1}{2} x^{-3} y^{-3}=\frac{1}{2 x^{3} y^{3}} \tag{2}\\
\left(-8 x^{3}\right)^{2}=(-8)^{2}\left(x^{3}\right)^{2}=64 x^{6} \tag{3}\\
\frac{\left(2 y^{3}\right)^{2}}{4\left(y^{2} x\right)^{3}}=\frac{2^{2}\left(y^{3}\right)^{2}}{4\left(y^{2}\right)^{3} x^{3}}=\frac{4 y^{6}}{4 y^{6} x^{3}}=\frac{y^{6-6}}{x^{3}}=\frac{y^{0}}{x^{3}}=\frac{1}{x^{3}} \tag{4}\\
\left(\frac{3 n^{-4}}{m^{7}}\right)^{3}=\frac{3^{3}\left(n^{-4}\right)^{3}}{\left(m^{7}\right)^{3}}=\frac{27 n^{-12}}{m^{21}}=\frac{27}{n^{12} m^{21}} \tag{5}\\
\frac{12^{3}}{2^{6} 9}=\frac{(4 x y)^{3}\left(z^{-2}\right)^{-3}=5^{3} x^{3} y^{3} z^{6}=125 x^{3} y^{3} z^{6} \quad \text { or } \quad\left(5 x y z^{2}\right)^{3}}{2^{6} 3^{2}}=\frac{\left(2^{2} 3\right)^{3}}{2^{6} 3^{2}}=\frac{\left(2^{2}\right)^{3} 3^{3}}{2^{6} 3^{2}}=\frac{2^{6} 3^{3}}{2^{6} 3^{2}}=2^{6-6} 3^{3-2}=2^{0} 3^{1}=1 \times 3=3 \tag{6}\\
\frac{15^{3} 3^{-3}}{25}=\frac{(5 \times 3)^{3} 3^{-3}}{5^{2}}=\frac{5^{3} 3^{3} 3^{-3}}{5^{2}}=5^{3-2} 3^{3-3}=5^{1} 3^{0}=5 \times 1=5 \tag{7}
\end{gather*}
$$

- Write in scientific notation:

$$
\begin{equation*}
0.0031=3.1 \times 10^{-3} \tag{9}
\end{equation*}
$$

$$
\begin{align*}
& 314 \times 100,000,000=3.14 \times 10^{2} \times 10^{8}=3.14 \times 10^{10} \tag{10}\\
& \left(5 \times 10^{11}\right)\left(2.9 \times 10^{-3}\right)=5 \times 2.9 \times 10^{11-3}=14.5 \times 10^{8} \tag{11}
\end{align*}
$$

- Word problems:

1.

$$
\begin{equation*}
1 \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=\left(\frac{1}{2}\right)^{7}=\frac{1}{128} \tag{12}
\end{equation*}
$$

2. n : number of years
$4^{n}=64=4 \times 4 \times 4=4^{3}$
$n=3$, so the answer is 3 years
3. For a square piece of land the width is equal to the length: $w=l$

Area $=w \times l=w \times w=w^{2}=64$ $w=\sqrt{64}=8$
Surrounding: $4 \times w=4 \times 8=32$ meters
4. A human body has $0.6 \times 100 \mathrm{~kg}$ of water. In grams this is:
$0.6 \times 100 \times 10^{3}=6 \times 10^{-1} \times 10^{2} \times 10^{3}=6 \times 10^{-1+2+3}=6 \times 10^{4}$
One molecule is 3×10^{-23} grams
So the number of water molecules is: $\frac{6 \times 10^{4}}{3 \times 10^{-23}}=\frac{6}{3} \times 10^{4-(-23)}=2 \times 10^{27}$

