Physical Models for Diffuse ISM Dust in the Light of Planck

B. T. Draine

Princeton University

- Some Physical Dust Models
- Testing the DL07 dust model: *Planck Int. Results XXIX*
- Polarized Extinction and Emission from Galactic Dust
 - Planck observations
 - New dust model

1

• Anomalous Microwave Emission: What is the Source?

What do we mean by "Physical Dust Model"?

- Specify grain materials
 - may be real materials studied in lab (e.g., graphite, SiC, metallic Fe)
 - may be proxies for poorly-known interstellar materials (e.g., "astrosilicate" or "astro-PAHs")
- Specify (adjust) distributions of grain **sizes** and **shapes** (should be consistent with interstellar elemental abundances)
- Solve Maxwell's equations to calculate absorption and scattering cross sections
- In case of "astro-PAHs", use empirical estimates of absorption cross sections that are consistent with general knowledge
- For smaller grains, or weak radiation fields, need heat capacities
- Specify (adjust) grain alignment function $f_{\text{align}}(a)$ (Ideally would calculate this, but don't yet know how to...).
- Calculate extinction(λ) and emission SED.
- Calculate starlight polarization, and polarization of emission.
- Other: scattering of starlight, X-ray absorption and scattering...

The Question of Grain Geometry

Optical properties of grains depends on grain **geometry** as well as composition. Are interstellar grains fairly **smooth and compact**?

Presolar onion-like graphite grain (diameter $\sim 5 \,\mu m$). Photo from S. Amari. Or are they typically **loose aggregates** of smaller particles, with a large "porosity"?

Two interplanetary dust particles collected from stratosphere (diameter $\sim 10 \,\mu m$). Images courtesy E.K. Jessberger and Don Brownlee.

Which does Nature favor? We don't know.

Modeling Uncertainties...

We continue to seek ways to discriminate among grain geometries, e.g.,

- X-ray scattering halos
- observations of optical submm polarization
- polarization profile of the $10\,\mu{
 m m}$ silicate feature
- \bullet apparent absence of polarization in the 3.4 μm C-H stretch feature

Another important uncertainty: composition.

- Amorphous silicate: what exactly is composition and $\epsilon(\omega)$?
- What exactly is the carbonaceous material?
- What else: metallic Fe? Fe oxides? SiC?

Some Models for Interstellar Dust

- Li & Draine (2001): pre-Spitzer model amorphous silicate grains + graphite + PAHs spherical grains: no polarization
- Draine & Li (2007) (**DL07**): amorph. sil. and graphite from Li & Draine (2001) PAHs adjusted slightly to match early Spitzer results spherical grains: no polarization
- Draine & Fraisse (2009): DL07 materials spheroidal grains grains with partial alignment
- Compiègne et al. (2011) ("DUSTEM" model) amorph. silicate + amorph. C + PAHs spherical grains: no polarization
- Jones et al. (2013): *amorph. silicate* + *Fe nanoparticles* + *amorph. C* + *PAHs spherical grains: no polarization*
- Hensley & Draine (2015): *amorph. silicate (new dielectric fn.) + Fe + graphite + PAHs spheroidal grains with partial alignment*

Testing the DL07 model

Planck Intermediate Results XXIX. arXiv:1409.2495 corresponding authors: G. Aniano, F. Boulanger

- All-sky diffuse Galactic emission:
 - 5 Planck bands (143 GHz 857 GHz)
 - DIRBE 240, 140, 100 $\mu\mathrm{m}$
 - IRAS 100 $\mu \mathrm{m},$ 60 $\mu \mathrm{m}$
 - WISE $12\,\mu\mathrm{m}$
- Try to fit observed SED with DL07 dust, adjusting only
 - total dust surface density $\Sigma_{\rm dust}$
 - starlight intensity parameter U_{\min}
 - starlight intensity parameter f_{PDR} (fraction of starlight heating from regions with U > 100)
- Does this reproduce the SED?
 Yes quite good agreement
- But: predicted A_V vs. reddening of SDSS QSOs: systematic overestimation of A_V

DL07 Model fit vs. Observation (5 arcmin PSF)

-1.0 Lo Dep. IRAS 100

(from Planck Int. Results XXIX)

$$Dep. \equiv \frac{Model - Obs}{Uncertainty}$$

Regional Variations in Opacity

Could improve on DL07 fit by adjusting $\beta \equiv d \ln \kappa_{\nu}/d \ln \nu$ at long wavelengths (350 - 850 µm): $\beta \rightarrow \beta + \delta \Upsilon$

Changes are modest, with $\delta \Upsilon$ both negative and positive.

FIR-Submm SED

Sample: 273000 pixels containing SDSS QSOs

Mean SED for these pixels

(from Planck Int. Results XXIX)

DL07 Model: Predicted A_V vs. Observation

- 270,000 SDSS QSOs.
- for each Planck pixel with QSO, have an estimate of $\Sigma_{dust} \Rightarrow E(B - V)$
- For fixed redshift, correlate observed QSO color vs. predicted E(B V).
- Good correlation, but DL07 model *OVERPREDICTS* A_V by factor ~2
- Overprediction is function of fit parameter U_{\min}
- Empirical correction:

 $A_{V,\text{corr}} = (0.28 + 0.42U_{\min}) A_{V,\text{DL07}}$ Good estimator of actual A_V

(from Planck Int. Results XXIX)

Empirical correction factors vs. fit parameter U_{\min} . 20 U_{\min} bins, each with ~13,500 QSOs. For each bin, show weighted mean $A_{V,\text{QSO}}/A_{V,\text{DL07}}$

Overprediction of A_V by the DL07 Model

(from Planck Int. Results XXIX)

Conclusions:

- $\tau_{\rm abs, FIR}/\tau_{\rm ext, optical}$ too low in DL07 model
- Remedy: new models should have $\tau_{\rm FIR}/\tau_{\rm optical}$ increased by factor ${\sim}2$.
- If raise $\tau_{\text{FIR}}/\tau_{\text{optical}}$ and starlight U by same factor, T_{dust} and SED shape unchanged.
- Empirical correction depends on fit $U_{\min} \Rightarrow$ Regional variations in FIR dust properties ("space weathering"?)

Models for Interstellar Dust

What about Polarization?

- Li & Draine (2001): pre-Spitzer model amorphous silicate grains + graphite + PAHs *spherical grains: no polarization*
- Draine & Li (2007):

amorph. sil. and graphite from Li & Draine (2001) PAHs adjusted slightly to match early Spitzer results spherical grains: no polarization

- Draine & Fraisse (2009): DL07 materials spheroidal grains with alignment f_{align}(a)
- Compiègne et al. (2011) ("DUSTEM" model) amorph. silicate + amorph. C + PAHs spherical grains: no polarization
- Jones et al. (2013):

amorph. silicate + Fe nanoparticles + amorph. C + PAHs spherical grains: no polarization

Models for Interstellar Dust

1.4:1 and 1.6:1 oblate spheroids

Planck Observations of Polarized Emission from Galactic Dust

A&A 576, A104

Planck intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust

A&A 576, A106

Planck intermediate results. XXI. Comparison of polarized thermal emission from Galactic dust at 353 GHz with optical interstellar polarization

A&A 576, A107

Planck intermediate results. XXII. Frequency dependence of thermal emission from Galactic dust in intensity and polarization

polarized emission @ $353 \text{ GHz} = 850 \,\mu\text{m}$ Planck int. results XIX (Planck Collaboration et al. 2015b)

polarized fraction @ 353 GHz Planck int. results XIX (Planck Collaboration et al. 2015b)

polarization direction @ 353 GHz Planck int. results XIX (Planck Collaboration et al. 2015b)

Planck: Polarized Emission from Galactic Dust

Planck int. results XIX (Planck Collaboration et al. 2015b)

Most of the sky has polarization >5%polarization >12% is uncommon but a few points have p > 20% 353 GHz polarization fraction $(Q_S, U_S)/I_S$ vs. starlight polarization/ τ $(q_V, u_V)/\tau_V$ Planck int. results XXI (Planck Collaboration et al. 2015c)

> Observed slope: -4.13 ± 0.06 DF09 prediction: -3.8

Consistent with $\tau_{\rm FIR}/\tau_{\rm opt}$ too low by factor ~2 in DL07 model

Planck: Polarization Fraction vs. Frequency

Planck int. results XXII (Planck Collaboration et al. 2015d)

Apparent drop in p with decreasing ν : Why? *Possibilities:*

- two types of grains present, fractional contribution of less-aligned grains increases with decreasing ν ?
- ferromagnetic inclusions in aligned grains? magnetic dipole radiation polarized ⊥ to "electric dipole" emission

Draine & Hensley (2013) Predictions for 100% of Fe in ferromagnetic (metallic Fe) or ferrimagnetic (Fe₃O₄ or γ -Fe₂O₃) inclusions.

New models (with Brandon Hensley) Hensley & Draine (2015, in prep.)

- \bullet Increase $\tau_{\rm FIR}/\tau_{\rm V}$ to increase emission per unit τ_{V}
- \bullet Obtain "new" astrosilicate dielectric function $\epsilon_{\rm sil}(\omega)$
 - *improved* $10 \,\mu m$ *silicate profile*
 - adjust FIR-submm for consistency with Planck observations

Use Kramers-Kronig relations to relate $\text{Re}(\epsilon_{sil})$ and $\text{Im}(\epsilon_{sil})$.

- Increased FIR opacity requires simultaneous increase in assumed starlight intensity U_{\star} to get the right grain temperature.
- New $\epsilon_{sil} \rightarrow$ modest increase in submm polarization p.
- Models include variable amounts of ferromagnetic inclusions

models with 25% of Fe as metallic inclusions in silicate hosts ($f_{\text{fill}} = 0.05$)

(Hensley & Draine 2015)

25% of Fe in metallic inclusions in silicates ($f_{\text{fill}} = 0.05$)

(Hensley & Draine 2015)

Anomalous Microwave Emission

TEST

• **History:** dust-correlated microwave emission discovered by COBE-DMR (Kogut et al. 1996)

much stronger than expected from "normal" dust emission

- **Proposal:** rotational emission from spinning dust, particularly PAHs (Draine & Lazarian 1998)
- *Prediction* of spinning dust models:
 - AME should be minimally polarized
 - PAH size distribution $\Rightarrow j_{\nu}$ peaking in the 20-40 GHz range
 - *if spinning PAHs:* variations in PAH abundance
 ⇒ variations in AME
 (consistent with relatively weak
 AME emission from SMC)

(Hensley, Draine, & Meisner 2015, in prep.)

 AME map from Planck ("Commander" analysis; Planck Collaboration et al. 2015a)

maps of τ_{353} , T_{dust} , β , and total dust radiance \mathcal{R} from Planck 2013 results XI (Planck Collaboration et al. 2014)

- $12 \,\mu \text{m}$ map from WISE (Meisner & Finkbeiner 2014) (diffuse $12 \,\mu \text{m}$ dominated by PAH emission).
- \bullet PAH abundance assumed to be \propto

$$f_{\rm PAH} \equiv \frac{\rm WISE12\,\mu m}{\mathcal{R}}$$

Correlation of AME with au_{353} and radiance \mathcal{R}

Surprise: Much better correlation with \mathcal{R} than with τ_{353} !

Expectation: spinning PAH rotational emission \propto PAH abundance Is there a correlation with f_{PAH} ?

Does AME Come from Spinning PAHs?

(Hensley et al. 2015)

Doesn't look like it: No evidence of variation in AME $\propto f_{
m PAH}$

Anomalous Microwave Emission: *What is the Source?*

- No evidence of variation of AME/ \mathcal{R} when f_{PAH} varies!
- If free-fliers, PAHs *must* be spinning, but perhaps have small electric dipole moments, with most AME coming from some other source.
 - Alternative sources of AME:
 - Perhaps other spinning dust (silicates?) dominate AME
 - Perhaps something else entirely, such as thermal emission from magnetic fluctuations in ferromagnetic particles?

What is Source of AME? Test for Thermal Emission Process

(Hensley et al. 2015)

Observed AME is <u>not</u> consistent with thermal emission from dust <u>unless</u> dust opacity at 30 GHz is very sensitive to T_d , as in $\tau_{30}/\tau_{353} \propto T_d^{3.2}$

Does AME Correlate with β **?**

- Suppose $\kappa_{\nu} \propto \nu^{\beta}$
- Best-fit β varies.
- Might expect dust opacity at \sim 30 GHz to vary when β varies (higher $\beta \rightarrow$ lower $\tau_{30 \text{ GHz}}$).
- If AME is thermal emission, then expect **NEGATIVE**

correlation of AME with β

No indication of correlation of AME with β

Summary

- Planck: DL07 model has $\tau_{\rm FIR}/\tau_{\rm optical}$ too low by factor ${\sim}2$
- Planck: there are regional variations in FIR dust properties in the diffuse ISM
- \bullet Planck: submm polarization \propto starlight polarization
- \bullet Planck: possible variation in submm polarization fraction with ν
- Model with partially-aligned compact spheroidal grains, new $\epsilon_{sil}(\omega)$, and Fe inclusions is able to reproduce:
 - Extinction and polarization of starlight
 - IR-microwave emission: total and polarized
- \bullet Apparent decrease of polarization fraction at $\nu \stackrel{<}{_{\sim}} 120\,{\rm GHz}$
 - due to magnetic dipole emission from ferromagnetic inclusions?
 - (but could also be due to increasing contribution from non-aligned grains)
- Anomalous Microwave Emission
 - No evidence of expected connection to PAHs
 - No evidence for thermal emission process
 - Is AME primarily from non-PAH (silicate?) spinning nanoparticles?

Many open questions; much interesting work ahead...

References

- Compiègne, M., et al. 2011, Astr. Ap., 525, A103
- Draine, B. T., & Fraisse, A. A. 2009, Ap. J., 696, 1
- Draine, B. T., & Hensley, B. 2013, Ap. J., 765, 159
- Draine, B. T., & Lazarian, A. 1998, Ap. J. Lett., 494, L19
- Draine, B. T., & Li, A. 2007, Ap. J., 657, 810
- Hensley, B. S., & Draine, B. T. 2015, in preparation
- Hensley, B. S., Draine, B. T., & Meisner, A. M. 2015, in prep.
- Jones, A. P., Fanciullo, L., Köhler, M., Verstraete, L., Guillet, V., Bocchio, M., & Ysard, N. 2013, *Astr. Ap.*, 558, A62
- Kogut, A., Banday, A. J., Bennett, C. L., Gorski, K. M., Hinshaw, G., Smoot, G. F., & Wright, E. I. 1996, Ap. J. Lett., 464, L5
- Li, A., & Draine, B. T. 2001, Ap. J., 554, 778
- Meisner, A. M., & Finkbeiner, D. P. 2014, Ap. J., 781, 5
- Planck Collaboration, et al. 2014, Astr. Ap., 571, A11
- —. 2015a, arXiv:1502.01588
- —. 2015b, Astr. Ap., 576, A104
- —. 2015c, Astr. Ap., 576, A106
- -. 2015d, Astr. Ap., 576, A107