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Preface

I have assembled this collection of problems to accompany Physics of the Interstellar and Inter-
galactic Medium. Although these problems do not cover all topics in the text, I hope that they will
prove useful to both students and instructors.

From time to time the problem collection will be updated with new problems, and with corrections
as needed. The up-to-date collection is available on-line at

http://www.astro.princeton.edu/∼draine/book/problems.pdf

Solutions to odd-numbered problems are available on-line at
http://www.astro.princeton.edu/∼draine/book/solutions odd.pdf

If you detect errors in the problems or solutions, please notify the author at draine@astro.princeton.edu
.
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Chapter 1. Introduction

1.1 The total mass of neutral gas in the Galaxy is ∼ 4×109 M⊙. Assume that it is uniformly distributed in a disk
of radius Rdisk = 15 kpc and thickness H = 200 pc, and that it is a mixture of H and He with He/H=0.1 (by
number). Assume ionized hydrogen to be negligible in this problem. [Note: even though the assumptions in this
problem are very approximate, please carry out calculations to two significant digits.]

(a) What is the average number density of hydrogen nuclei within the disk?

(b) If 0.7% of the interstellar mass is in the form of dust in spherical particles of radius a = 1000 Å = 0.1µm
and density 2 g cm−3, what is the mean number density of dust grains in interstellar space?

(c) Let Qext be the ratio of the visual (V band, λ = 0.55µm) extinction cross section to the geometric cross
section πa2. Suppose that Qext ≈ 1. What would be the visual extinction AV (in magnitudes!) between
the Sun and the Galactic Center (assumed to be 8.5 kpc away)?

(d) Now assume that 30% of the gas and dust mass is in spherical molecular clouds of radius 15 pc and mean
density n(H2) = 100 cm−3.
What would be the mass of one such cloud?
How many such molecular clouds would there be in the Galaxy?

(e) With 30% of the gas and dust mass in molecular clouds as in (d), what is the expectation value for the
visual extinction AV to the Galactic Center?

(f) With 30% of the material in molecular clouds as in (d), what is the expectation value for the number of
molecular clouds that will be intersected by the line of sight to the Galactic center?
What is the probability that zero molecular clouds will be intersected? [Hint: the number of molecular
clouds in the Galaxy is large, and they occupy a small fraction of the volume, so think of this as a “Poisson
process”, where the presence or absence of each molecular cloud on the line-of-sight is treated as an
independent event (like the number of radioactive decays in a fixed time interval).]

(g) If the line of sight to the Galactic center happens not to intersect any molecular clouds, and if the atomic
hydrogen and associated dust are distributed uniformly throughout the disk volume, what will be the visual
extinction to the Galactic center?

1.2 Suppose that we approximate hydrogen atoms as hard spheres with radii a = 1.5 Å. In a neutral atomic hydrogen
cloud with density nH = 30 cm−3, what is the mean free path for an H atom against scattering by other H atoms
(assuming the other H atoms to be at rest)?

1.3 The “very local” interstellar medium has nH ≈ 0.22 cm−3 (Lallement et al. 2004: Astr. & Astrophys. 426, 875;
Slavin & Frisch 2007: Sp. Sci. Revs. 130, 409). The Sun is moving at vW = 26± 1 km s−1 relative to this local
gas (Möbius et al. 2004: Astr. & Astrophys. 426, 897).

Suppose that this gas has He/H=0.1, and contains dust particles with total mass equal to 0.5% of the mass of
the gas. Suppose these particles are of radius a = 0.1µm and density ρ = 2g cm−3, and we wish to design a
spacecraft to collect them for study.

How large a collecting area A should this spacecraft have in order to have an expected collection rate of 1 inter-
stellar grain per hour? Neglect the motion of the spacecraft relative to the Sun, and assume that the interstellar
grains are unaffected by solar gravity, radiation pressure, and the solar wind (and interplanetary magnetic field).

1.4 The distance to the nearby star Proxima Centauri is D = 1.30 pc. The ISM between the Sun and Proxima Cen
has a mean density of H nucleons nH = 0.22 cm−3. Suppose that the mass in dust grains is 0.7% of the mass in
H, and that the dust grains are spheres with radii a = 0.15µm and internal density ρ = 2g cm−3.
A chip with a forward-facing cross-sectional area A = 2 cm2 is to travel from the Sun to Proxima Cen.
If the chip travels at v = 0.2c, what is the expected number Nimpact of dust grain impacts on the forward-facing
side of the chip?
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1.5 Suppose that large rocky objects from interstellar space pass within 1AU of the Sun at a rate of 1 per year, with
mean speed (at infinity) vrock = 20 km s−1. The objects are irregular, but suppose that they have solid volumes
equal (on average) to spheres with radius 50m.

(a) If the rock itself has a mass density of 3 g cm−3, and 75% of the mass in the rock is contributed by the
elements Mg, Si, and Fe, estimate ⟨ρMgSiFe

rocks ⟩, the mean mass density in the ISM of Mg, Si, and Fe contained
in such rocky objects. For simplicity, neglect effects of gravitational focusing by the Sun.

(b) If the mean density of H in the ISM is ⟨nH⟩ = 1 cm−3, and Mg, Si, Fe together contribute a mass equal
to 0.4% of the H mass, estimate the fraction f of the interstellar Mg, Si, and Fe that is contained in these
large rocky objects.

1.6 Consider a cloud with density nH = 30 cm−3. Suppose that it contains two types of dust grains:

• “Large” grains with radii alarge = 0.1µm, with total mass equal to 0.006 of the mass in hydrogen, and

• “Small” grains with radii asmall = 0.001µm, with total mass equal to 0.001 of the total hydrogen mass.

Suppose that both large and small grains are spheres with internal density ρ = 2g cm−3.

Suppose that the large grains are moving with rms speed ⟨v2large⟩1/2 = 1km s−1 in random directions. Suppose
that the small grains are moving much more slowly, with rms speed vsmall = 10−3 km s−1 in random directions.

For purposes of this problem, assume that for collisions between particles from species 1 and 2, each moving
with random velocities, the particle-particle velocity difference ∆v has

⟨|∆v12|⟩ ≈
(
⟨v21⟩+ ⟨v22⟩

)1/2
,

Assume that there is no interaction between grains until they actually come into contact.

(a) Calculate the number per unit volume nlarge and nsmall of large and small grains.

(b) For a given large grain, what is the probability per unit time of undergoing a grain-grain collision with
another large grain?

(c) For a given small grain, what is the probability per unit time of undergoing a collision with another small
grain?

(d) For a given small grain, what is the probability per unit time of undergoing a collision with a large grain?

(e) For a given large grain, what is the probability per unit time of collisions with small grains?

1.7 The “very local” interstellar medium has nH ≈ 0.22 cm−3 (Lallement et al. 2004: Astr. & Astrophys. 426, 875;
Slavin & Frisch 2007: Sp. Sci. Revs. 130, 409). The Sun is moving at vW ≈ 26 km s−1 relative to this local gas
(Möbius et al. 2004: Astr. & Astrophys. 426, 897).

(a) Suppose that this gas has He/H=0.1, and contains dust particles with total mass equal to 0.5% of the mass
of the gas, in the form of dust grains of radius a = 0.1µm and density ρ = 2g cm−3.

(b) We wish to design a spacecraft to collect interstellar dust for study. The spacecraft will travel outwards
from the Sun with at a speed sufficient to escape from the Solar system. Suppose that the heliocentric
velocity of the spacecraft will be vspacecraft = 30 km s−1 when it is far enough from the Sun that Solar
gravity can be neglected. It will be traveling toward the incoming “interstellar wind”.
How large a collecting area A is required to have an expected collection rate of 1 interstellar grain per 24
hours when it is far from the Sun?
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Chapter 2. Collisional Processes

2.1 Consider an electron-proton plasma at temperature T . Let ts(e − e) be the time scale for 90 degree scattering
of one electron with kinetic energy ∼ kT by encounters with other electrons.
The electron-proton mass ratio mp/me = 1836. The following time scales tx will differ from ts(e − e) by
factors (mp/me)

α and factors of order unity; ignore the latter, so that tx ≈ (mp/me)
α × ts(e− e).

Identify the exponent α for each of the following processes; in each case, assume the process to be acting alone.
It is not necessary to do any derivations – just give a one-sentence justification for each answer.

(a) 90 degree scattering of one electron by encounters with protons.

(b) 90 degree scattering of one proton by encounters with electrons.

(c) 90 degree scattering of one proton by encounters with other protons.

(d) exchange of energy from one electron to other electrons.

(e) exchange of energy from one electron to protons.

(f) exchange of energy from one proton to electrons.

(g) exchange of energy from one proton to other protons.

2.2 Consider a hydrogen atom in a highly-excited state with quantum number n ≫ 1, immersed in an electron-
proton plasma at temperature T .

(a) In a gas of temperature T = 104T4 K, for what quantum number nc is the orbital velocity of the bound
electron equal to the rms velocity of a thermal proton?

(b) For quantum number n ≫ nc, use the impact approximation to estimate the collisional rate coefficient for
ionization by proton impact: H(n) + H+ → 2H+ + e−.

(c) Compare this rate coefficient to the rate coefficient for ionization by electron impact [Eq. (2.12)].

2.3 Consider a dust grain of radius a, and mass M ≫ mH, where mH is the mass of an H atom. Suppose that the
grain is initially at rest in a gas of H atoms with number density nH and temperature T . Assume the grain is
large compared to the radius of an H atom. Suppose that the H atoms “stick” to the grain when they collide
with it, so that all of their momentum is transferred to the grain, and that they subsequently “evaporate” from
the grain with no change in the grain velocity during the evaporation.

(a) What is the mean speed ⟨vH⟩ of the H atoms (in terms of mH, T , and Boltzmann’s constant kB)?

(b) Calculate the time τM for the grain to be hit by its own mass M in gas atoms. Express τM in terms of M ,
a, nH, and ⟨vH⟩.

(c) Evaluate ⟨vH⟩ and τM for a grain of radius a = 10−5 cm and density ρ = 3g cm−3, in a gas with
nH = 30 cm−3 and T = 102 K.

(d) If the collisions are random, the grain velocity will undergo a random walk. Estimate the initial rate of
increase (dE/dt)0 of the grain kinetic energy E due to these random collisions. Express (dE/dt)0 in
terms of nH, mH, kBT , a, and M . [Hint: think of the random walk that the grain momentum p⃗ undergoes,
starting from the initial state p⃗ = 0. What is the rate at which ⟨p2⟩ increases?]

(e) Eventually the grain motion will be “thermalized”, with time-averaged kinetic energy ⟨E⟩ = (3/2)kBT .
Calculate the timescale

τE ≡ (3/2)kBT

(dE/dt)0

for thermalization of the grain speed. Compare to τM calculated in (b).
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2.4 Consider a molecule with a permanent dipole moment p⃗0 and mass m1. Suppose p⃗0 is in the ẑ direction, and
consider the simple case of a neutral atom or molecule (with no permanent dipole moment) with mass m2

and polarizability α approaching along a trajectory in the x̂–ŷ plane with velocity (at infinity) v0 and impact
parameter b. The electric field in the z = 0 plane due to the dipole p⃗0 = p0ẑ is

E⃗ = −p0
r3

ẑ

(a) For an induced dipole moment p⃗ ∝ E⃗, the interaction energy is U = −(1/2)p⃗ · E⃗. For an atom in the
z = 0 plane, what is the potential U(r) describing its interaction with the fixed dipole p⃗ = p0ẑ at r = 0?

(b) For motion in the x̂ − ŷ plane with incident velocity v0, calculate a “critical” impact parameter b0 such
that the interaction energy at separation b0 is equal to 1/4 of the initial kinetic energy. (Why 1/4? Because
previous study of the r−4 potential has shown us that for U ∝ r−4, we get orbiting collisions for b less
than the distance where the interaction energy is equal to 1/4 of the initial kinetic energy E0. The present
interaction has a different dependence on r, but U(b0) = (1/4)E0 will probably be a good guide to the
impact parameter separating “orbiting” from “non-orbiting” collisions.)

(c) Without working out the dynamics, we can reasonably expect that trajectories with b <∼ b0 will be strongly
scattered, and may formally pass through r = 0 by analogy with the trajectories for a r−4 potential.
Estimate the cross section σ0(v0) for “orbiting” collisions where the projectile approaches very close to
the target.

(d) How does the product σ0v0 depend on v0?

(e) Substituting a typical thermal speed for v0, estimate the thermal rate coefficient ⟨σv⟩ for “orbiting” colli-
sions as a function of gas kinetic temperature T to obtain the temperature dependence.

(f) Consider scattering of H2 by the SiO molecule, which has dipole moment p0 = 3.1Debye = 3.1 ×
10−18 esu cm. From Table 2.1, the polarizability of H2 is α = 7.88× 10−25 cm3. Suppose that the “hard
sphere” cross section for SiO-H2 scattering is Chs = 3 × 10−15 cm2. Estimate the temperature Tc below
which the collision rate will be strongly affected by the induced-dipole interaction.

2.5 Consider a cloud of partially-ionized hydrogen with n(H0) = 20 cm−3, n(H+) = ne = 0.01 cm−3, and
T = 100K. Consider an electron injected into the gas with kinetic energy E0 = 1 eV. We will refer to it as the
“fast” electron.

(a) What is the speed v0 of the fast electron?

(b) If the electron-neutral elastic scattering cross section is given by eq. (2.40):

σmt = 7.3×10−16

(
E0

0.01 eV

)0.18

cm2

calculate tscat, where t−1
scat is the probability per unit time for elastic scattering of the fast electron by the

neutral H atoms.

(c) A result from elementary mechanics:

If a particle of mass m1 and kinetic energy E0 undergoes a head-on elastic collision with a particle
of mass m2 that was initially at rest, the kinetic energy E2 of particle 2 after the collision is just
E2 = 4m1m2E0/(m1 +m2)

2.

Using this result, if the electron undergoes a head-on elastic scattering with a hydrogen atom that was
initially at rest, what fraction fmax of the electron kinetic energy is transfered to the H atom?

(d) If elastic scattering off H atoms were the only process acting, and if the average scattering event transferred
50% as much energy as in head-on scattering, what would be the initial time scale tE = E0/|dE/dt|E0

for the electron to share its energy with the H atoms?
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(e) Now consider elastic scattering of the fast electron by the other (thermal) free electrons in the gas. Equation
(2.19) from the textbook gives the energy loss time for a fast particle of mass m1, velocity v1, charge Z1e
moving through a gas of particles of mass m2 and charge Z2e:

tloss =
m1m2v

3
1

8πn2Z2
1Z

2
2e

4 ln Λ

lnΛ = 22.1 + ln

[(
E1

kT

)(
T

104 K

)3/2(
cm−3

ne

)]

If the only energy loss process was scattering of the fast electrons by the thermal electrons in the gas,
evaluate the energy loss time tloss for the fast electron.
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Chapter 3. Statistical Mechanics and Thermodynamic Equilibrium

3.1 Consider a “nα” radio recombination line for n ≫ 1, and assume the emission to be optically-thin. Assume
that the probability per unit time of emitting a photon is given by the Einstein A−coefficient

An+1→n ≈ 6.130×109 s−1

(n+ 0.7)5
.

Relate the ratio bn+1/bn to the observed line intensity ratio In+1→n/In→n−1. Assume that IH/n2kBT ≪ 1.
Retain the term of leading order in the small parameter 1/n.

3.2 Suppose that the cross section for the reaction AB + C → A+ B + C is σ(E) = 0 for E < E0, σ(E) = σ0

for E > E0, where E is the center-of-mass translational energy. Let the masses of AB and C be mAB and mC .

Theorem: If species 1 and 2, with masses m1 and m2, each have Maxwellian velocity distributions characterized
by temperatures T1 and T2, then the rate per volume of collisions with center-of-mass energy in the interval
[E,E + dE] is the same as for collisions between two species, with the same collision cross section σ(E),
but with one species infinitely massive, and the other species with mass µ = m1m2/(m1 + m2) and with
temperature T̄ = (m1T2 +m2T1)/(m1 +m2).

(a) Assuming the above theorem to be true (it is!) obtain the thermally-averaged rate coefficient ⟨σv⟩ for the
reaction AB + C → A+B + C as a function of temperature T .

(b) The rate/volume for the reaction A + B + C→AB + C is QnAnBnC , where Q is the “three-body” rate
coefficient. If E0 is the energy required to dissociate AB into A + B, and mA and mB are the masses
of A and B, obtain Q(T ) in terms of mA, mB , mC , σ0, E0, and T . (Assume A, B, C, and AB to be
structureless and spinless particles).

3.3 Consider a path of length L with electron density ne and gas kinetic temperature T . Let the population of the
high-n levels of H be characterized by departure coefficients bn.

If the medium is optically-thin, and the only radiative transitions are spontaneous decays, the integrated line
intensity for an nα (i.e., n+ 1 → n) transition is

I(nα) =
A(nα)

4π
hνnα

∫ L

0

ds n[H(n+ 1)]

where A(nα) is the Einstein A-coefficient, and n[H(n+ 1)] is the volume density of H atoms in quantum state
n+ 1. Assume that A(nα) is accurately approximated by

A(nα) ≈ A0

(n+ 0.7)5

where A0 ≡ 6.130× 109 s−1.

(a) Obtain an expression for I(nα) in terms of T4 ≡ T/104 K, quantum number n, departure coefficient bn+1,
and the “emission measure”

EM ≡
∫ L

0

ds n(H+)ne .

(b) Evaluate I(166α)/b167 for EM = 106 cm−6 pc, and T4 = 1.

3.4 The characteristic radius of the hydrogenic orbital with radial quantum number n is rn = n2a0.

(a) Calculate the quantum number nmax for a “Rydberg atom” such that the expected number of field electrons
within a distance rn is 1, for electron density ne. Evaluate nmax for ne = 1 cm−3.
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(b) A back-of-the-envelope estimate of the rate coefficient for collisional ionization of H in level n ≫ 1 is Eq.
(3.41):

⟨σv⟩n→c ≈ n2 e
4

IH

(
8π

mekBT

)1/2

e−IH/n2kBT

For the Bohr model of the atom, the electron speed is vn = αc/n, where α = 1/137 is the fine structure
constant, and n is the principal quantum number. The orbital period is Pn = 2πrn/vn = 2πa0n

3/αc. For
an electron in orbital nmax from part (a), calculate the probability of collisional ionization in one orbital
period, for ne = 1 cm−3 and T = 5000K. Show how this depends on both electron density ne and
temperature T . You may take eIH/kBT ≈ 1.

3.5 Suppose that Rydberg levels of hydrogen with quantum number 100 ≤ n ≤ nmax are in LTE at T = 5000K
with protons and electrons, with n(H+) = ne = 1 cm−3. Calculate the ratio

1

n(H+)

nmax∑
100

n[H(n)]

and evaluate it for nmax = 103. Make approximations as appropriate.
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Chapter 4. Energy Levels of Atoms and Ions

4.1 Classify the following emission lines as either (i) Permitted, (ii) Intercombination, or (iii) Forbidden, and give
your reason.

(a) C III : 1s22s2p 3P o
1 → 1s22s2 1S0 1908.7 Å

(b) O III : 1s22s22p2 1D2 → 1s22s22p2 3P2 5008.2 Å

(c) O III : 1s22s22p2 1S0 → 1s22s22p2 1D2 4364.4 Å

(d) O III : 1s22s2p3 5S o
2 → 1s22s22p2 3P1 1660.8 Å

(e) O III : 1s22s22p2 3P1 → 1s22s22p2 3P0 88.36µm

(f) C IV : 1s22p 2P o
3/2 → 1s22s 2S1/2 1550.8 Å

(g) Ne II : 1s22s22p5 2P o
1/2 → 1s22s22p5 2P o

3/2 12.814µm

(h) O I : 1s22s22p33s 3S o
1 → 1s22s22p4 3P2 1302.2 Å
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Chapter 5. Energy Levels of Molecules

5.1 Both H2 and HD have similar internuclear separation r0 ≈ 0.741 Å. Assume that the molecules can be approx-
imated as rigid rotors.

(a) Calculate [E(v=0, J)−E(v=0, J=0)]/kB for H2 for J=1, J=2, and J=3.

(b) Calculate [E(v=0, J)−E(v=0, J=0)]/kB for HD for J=1, J=2, and J=3.

(c) Because H2 has no electric dipole moment, ∆J = ±1 transitions are forbidden, and instead the only
radiative transitions are electric quadrupole transitions with ∆J=0,±2. Calculate the wavelengths of the
J=2 → 0 and J=3 → 1 transitions of H2

(d) Because HD has a (small) electric dipole moment, it has (weak) electric dipole transitions. What is the
longest-wavelength spontaneous decay for HD in the v = 0 vibrational level?

5.2 Why doesn’t H2 in the ground electronic state X1Σ+
g have hyperfine splitting?

5.3 Most interstellar CO is 12C16O. The J = 1 → 0 transition is at ν = 115.27GHz, or λ = 0.261 cm, and the
v = 1 → 0 transition is at λ = 4.61µm (ignoring rotational effects).

(a) Estimate the frequencies of the J = 1 → 0 transitions in 13C16O and 12C17O.

(b) Estimate the wavelengths of the v = 1 → 0 transitions in 13C16O and 12C17O. Ignore rotational effects.

(c) Suppose that the 13C16O J=1− 0 line were mistaken for the 12C16O J=1− 0 line.
What would be the error in the inferred radial velocity of the emitting gas?

(d) What is ∆E/kB , where ∆E is the difference in “zero-point energy” between 12C16O and 13C16O, and
kB is Boltzmann’s constant?
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Chapter 6. Spontaneous Emission, Stimulated Emission, and Absorption

6.1 A hydrogen atom with principal quantum number n has energy En = −IH/n
2 where IH = 13.602 eV is the

ionization energy of hydrogen. A radiative transition from level n + 1 → n is referred to as “nα”; a radiative
transition from level n+ 2 → n is referred to as “nβ”. E.g., the 1α transition is the same as Lyman alpha, and
the 2α transition is the same as Balmer α (also known as Hα).

(a) Show that the frequency of the nα transition is given by

νn→n+1 =
C(n+ 0.5)

[(n+ 0.5)2 − 0.25]
2 .

What is the value of C (in Hz)?

(b) For n ≫ 1, it is reasonable to neglect the term 0.25 in the denominator, so from here on approximate

νn→n+1 ≈ C(n+ 0.5)−3 .

Now suppose that we want to observe 21cm radiation from gas at redshift z = 9, redshifted to frequency
ν = 142.04 MHz. Our Galaxy will also be producing hydrogen recombination radiation. What are the
frequencies and n values of the nα transition just above, and just below, 142.04 MHz?

(c) Suppose that the high-n levels of hydrogen are found in ionized gas with an electron temperature T =
8000K, with the hydrogen having one-dimensional velocity dispersion σv = 10 km s−1. What will be the
FWHM linewidth (in MHz) of the nα transitions near 142 MHz? Compare this linewidth to the frequency
difference (νn+1→n − νn+2→n+1) between adjacent nα lines near 142 MHz.

(d) Find the frequency and n value for the nβ transition just below 142 MHz, and just above 142 MHz.

6.2 Neutral helium and neutral carbon will also produce nα transitions. For n ≫ 1, the energies of these transitions
will be almost the same as for H, the difference coming only from the reduced mass: for an atom X , the high-n
levels have energies (relative to n = ∞)

En = −µ
(αc)2

n2
,

where µ = memX/(me +mX) is the reduced mass and α = e2/h̄c is the fine-structure constant.

Can we distinguish the lines?

(a) Estimate the frequency shift νHenα − νHnα, and νCnα − νHnα, for nα giving a transition frequency near
142 MHz.

(b) Will the Henα and Cnα lines be separated by more or less than the FWHM of Henα due to Doppler
broadening in gas where the Hnα line has a FWHM = 21 km s−1? Assume that the Hnα line width is
entirely due to thermal broadening.
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Chapter 7. Radiative Transfer

7.1 A local H I cloud is interposed between us and the cosmic microwave background with temperature TCMB =
2.7255K. Suppose that the H I in the cloud has a spin temperature Tspin = 50K, and that the optical depth at
line-center (of the 21 cm line) is τ = 0.1. The cloud is extended. We observe the cloud with a radio telescope
with a beam that is small compared to the angular extent of the cloud.

(a) What will be the (absolute) brightness temperature TB at line-center of the 21 cm line? Express your
answer in deg K. You may assume that hν ≪ kBTB .

(b) What will be the (absolute) intensity at line-center of the 21 cm line? Express your answer in Jy sr−1.

7.2 Consider a photon of frequency hν entering a slab of material containing two-level atoms with excitation tem-
perature Tuℓ. At the frequency of the photon, let the optical depth of the slab be τ .

(a) Let Pabs be the probability that the original photon will undergo absorption before exiting from the slab.
Give an expression for Pabs in terms of τ and hν/kBTuℓ.

(b) Consider a photon that crossed the slab without being absorbed. Let Pstim.em. be the probability that the
incident photon will stimulate emission of one or more photons. Give an expression for Pstim.em. in terms
of τ and hν/kBTuℓ.

7.3 Suppose that we have a molecule with three energy levels – denoted 0, 1, 2 – ordered according to increasing
energy, E0 < E1 < E2. Let g0, g1, g2 be the degeneracies of the levels. Supppose that there is radiation present
with hν = E2 − E0, due to an external source plus emission in the 2 → 0 transition.

Let ζ02 be the absorption probability per unit time for a molecule in level 0, with a transition to level 2. Let
A20, A21, and A10 be the Einstein A coefficients for decays 2→0, 2→1, and 1→0 by spontaneous emission of
a photon. Ignore collisional processes.

(a) Ignoring possible absorption of photons in the 2 → 1 and 1 → 0 transitions, obtain an expression for the
ratio n1/n0, where ni is the number density of molecules in level i.

(b) How large must ζ02 be for this molecule to act as a maser in the 1→0 transition?

(c) Is it possible for this system to have maser emission in the 2→1 transition? If so, what conditions must be
satisfied?

7.4 Consider the simple harmonic oscillator with fundamental vibrational frequency ν0, and energy levels Ev =
(v + 1

2 )hν0, where v = 0, 1, 2, .., vmax is the vibrational quantum number.

Quantum mechanics tells us that the Einstein A coefficient for a transition v → v − 1 is simply related to the A
coefficient for v = 1 → 0: Av,v−1 = vA1,0.

Suppose that we have a gas of these harmonic oscillators, with number density nv of oscillators in level v. The
total number density n =

∑vmax

v=0 nv ,

Let the oscillators all have a common velocity distribution, so that they all have the same normalized line profile
ϕν (with

∫
ϕνdν = 1). The level degeneracies do not depend on quantum number v: gv+1/gv = 1. The

absorption cross section of an oscillator in level v is given by Eq. (6.18):

σv→v+1(ν)= (v + 1)σ0→1 = (v + 1)C0ϕν

C0 ≡
(

c2

8πν20

)
A1,0 .

Thus the absorption cross section σv→v+1 increases with increasing vibrational excitation.

Now assume that the level populations have nvmax
= 0 (i.e., negligible population in the highest level).
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With this assumption, show that the attenuation coefficient is simply

κν = nσ0→1 = nC0ϕν ,

with no dependence on how the populations are distributed among the levels v < vmax: the attenuation
coefficient does not depend on the degree of vibrational excitation of the gas.

7.5 A supernova remnant (SNR) is emitting a sychrotron continuum with a brightness temperature TB,SNR = 700K
near 21 cm. An extended H I cloud is interposed between us and the SNR. Suppose that the H I in the cloud
has a spin temperature Tspin = 100K, and that the optical depth of the H I λ = 21.11 cm line at line-center is
τ = 0.2.
We observe the SNR through the cloud. The radio telescope has a beam that is small compared to the angular
extent of the SNR and the cloud.

(a) What will be the (absolute) brightness temperature TB at line-center of the 21 cm line? Express your
answer in deg K. You may assume that hν ≪ kBTspin ≪ kBTB,SNR. The cosmic background radiation
can be neglected.

(b) What will be the (absolute) intensity at line-center of the 21 cm line? Express your answer in Jy sr−1.
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Chapter 8. H I 21-cm Emission and Absorption

8.1 H I 21 cm emission observations (if optically-thin) measure the amount nu of H I in the hyperfine excited state.
In Eq. (8.3) it was assumed that exactly 75% of the HI is in the excited state, so that n(H I) = (4/3)× nu .

(a) What is the fractional error in the assumption that n(H I) = (4/3)×nu if Tspin = 100K ?

(b) What if Tspin = 20K?

8.2 For hydrogenic ions, the Lyman alpha transition has ν0 ∝ Z2, and Auℓ ∝ Z4

Suppose that we have gas with a one-dimensional velocity FWHMV = 100 km s−1. For what Z value does the
intrinsic FWHM of the line equal the Doppler broadening FWHM?

8.3 Calculate the oscillator strength fℓu for the H I 21 cm transition.

8.4 Interstellar H I is found with a range of temperatures, but the distribution is bimodal, leading to the concept
of two distinct “phases”: “cool” H I with spin temperature Tc ≈ 70K, and “warm” H I with spin temperature
Tw ≈ 5000K.

Two geometries for the cool and warm H I.

Suppose that we observe an extragalactic radio source through Galactic H I consisting of a mixture of the cool
and warm phases, with spin temperatures Tc and Tw. Consider two cases: case 1, where the cold material is
closest to the observer, and case 2 where the warm material is closest (see above figure).

Let the cold and warm regions have H I column densities Nc and Nw. Assume that the cold and warm regions
have Gaussian velocity profiles with the same central velocity and velocity dispersion σv .

The background sky brightness is Iskyν (the CMB and background diffuse emission).

Let Ω be the beamsize of the radio telescope (defined such that a uniform intensity source Iν gives a measured
flux density IνΩ).

Let Sν be the flux density from the source in the absence of any intervening absorption.

(a) What is the flux density F ⋆
ν that the radio telescope will measure at the position of the source? Give the

solution to the equation of radiative transfer at line-center for case 1 and for case 2. Write your answer in
terms of Sν , Iskyν , Ω, the temperatures Tc and Tw and the optical depths τc and τw of the two components.

(b) What is the flux density at line-center F off
ν that the radio telescope will measure when pointed off the

source (the “sky” pointing in the figure)? Give the solution to the equation of radiative transfer for case 1
and for case 2. Write your answer in terms of Iskyν , Ω, the temperatures Tc and Tw and the optical depths
τc and τw of the two components.
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(c) If Sν is known (by making measurements at frequencies where the H I absorption and emission are negli-
gible), show how to determine (τc + τw) from the observed F ⋆

ν and F off
ν . Do you need to know whether

the geometry is case 1 or case 2?

(d) Suppose that Iskyν is known (from measurements at frequencies where 21-cm emission and absorption are
negligible). If τw ≪ 1 and τc ≪ 1, show how the total column density N can be obtained from the
measurements.

(e) Suppose that the total optical depth τ = τc + τw is now known from part (c), and assume that the total
column density N = Nc + Nw is also known from part (d). If the observer thought that all the gas has
a single spin temperature Teff , give a relation between Teff and the actual temperatures (Tc and Tw) and
column densities (Nc and Nw).

8.5 An extragalactic radio “point source” (unresolved by the beam of the radio telescope) is observed to have an
emission feature. The observed flux density is approximately constant at Fν = 0.01 Jy from 1299.9MHz to
1300.1MHz, with a negligible continuum below 1299.9 MHz and above 1300.1 MHz.

The emission feature is interpreted as the 21 cm line of H I.

(a) What is the redshift of the galaxy?

(b) For a Hubble constant of H = 70 km s−1 Mpc−1, estimate the “luminosity distance” DL to the galaxy.
(Assume a simple, uniform “Hubble flow” in Euclidean space – don’t worry about relativistic corrections.)

(c) If self-absorption can be ignored, what is the mass of H I in the galaxy?

(d) If the galaxy is a disk of radius R = 20 kpc, what is the average H I column density N(H I) in cm−2?

(e) What can be said about the velocity distribution of the H I in the galaxy’s rest frame?

8.6 A dwarf galaxy at a distance D = 15Mpc is emitting in the 21-cm line of atomic hydrogen. The observed
21-cm line flux is F = 1× 10−18 erg cm−2 s−1 = 1× 10−21 Wm−2

If the emitting gas is assumed to be optically thin, and there is no absorption by intervening gas, estimate the
mass of H I in the dwarf galaxy. You may neglect relativistic corrections (the redshift is small). Express your
answer in M⊙.

The Einstein A coefficient and wavelength for the 21-cm line are Auℓ = 2.88×10−15 s−1 and λ = 21.11 cm.
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Chapter 9. Absorption Lines: The Curve of Growth

9.1 Suppose that we observe a radio-bright QSO and detect absorption lines from Milky Way gas in its spectra.
The 21 cm line is seen in optically-thin absorption with a profile with FWHM(H I) = 10 km s−1. We also
have high-resolution observations of the Na I doublet lines referred to as “D1” (5898 Å) and “D2” (5892 Å) [see
Table 9.3] in absorption. The Na I D2 λ5892 Å line width is FWHM(Na ID2) = 5 km s−1. The line profiles
are the result of a combination of thermal broadening plus turbulence with a Gaussian velocity distribution with
one-dimensional velocity dispersion σv,turb .

You will want to employ the following theorem: If the turbulence has a Gaussian velocity distribution, the overall
velocity distribution function of atoms of mass M will be Gaussian, with one-dimensional velocity dispersion

σ2
v = σ2

v,turb +
kBT

M
.

(a) If the Na I D2 line is optically thin, estimate the kinetic temperature T and σv,turb .

(b) Now suppose that the observed Na I D doublet ratio W2/W1 < 2. What can be said about T and σturb
v ?

9.2 Calculate the absorption cross section per H in the pseudo-continuum when the high-n Lyman series lines blend
together, and compare to the photoionization threshold value for H. [The asymptotic formula for the oscillator
strength for the high-n Lyman series transitions is given in Table 9.1.]

9.3 An absorption line, assumed to be H I Lymanα, is measured to have a dimensionless equivalent width W =
(2.00± 0.10)×10−4. Suppose that the velocity profile is a Gaussian with b ≈ 5 km s−1. If b is known exactly,
estimate the uncertainty in Nℓfℓuλℓu arising from the ±5% uncertainty in W .

9.4 A distant quasar at a redshift zQ = 2.5 is observed on a line-of-sight which passes through the disk of an
intervening galaxy. A strong absorption feature is observed in the continuum spectrum of the quasar at an
observed wavelength of 3647 Å. This absorption feature is interpreted as Lyman-α absorption in the intervening
galaxy, implying that the galaxy is at a redshift zG = 2.0.

(a) The absorption feature at 3647 Å has an observed equivalent width Wλ,obs = 6.0 Å. The equivalent
width that would be observed by an observer in the rest-frame of the absorbing galaxy would be Wλ,G =
6.0 Å/(1 + zG) = 2.0 Å. Estimate the HI optical depth at line-center of the Lyα line which is required to
produce this equivalent width. Assume the one-dimensional velocity dispersion of the HI to be 20 km s−1.
[Hint: consider Eq. (9.15, 9.19, 9.24); by trial-and-error determine which part of the curve-of-growth you
are on.]

(b) What is the column density of HI in the n = 1 level in the intervening galaxy? Remark on the similar-
ity/difference between the interstellar medium of this galaxy versus the local ISM in our Galaxy.

9.5 A quasar (PKS0237-23) at a redshift zQ = 2.22 is observed to have an absorption feature in its spectrum
produced by Si II ions at a redshift zG = 1.36 The absorption line is due to the allowed transition Si II
2P o

1/2→
2S1/2 (see the energy level diagram on p. 493) at a rest wavelength λ = 1527 Å (at an observed

wavelength λobs = 3604 Å).

The 2P o
1/2→

2S1/2 feature has an observed equivalent width Wλ,obs = 2 Å. The conventional interpretation is
that this absorption feature is produced in an intervening galaxy.

(a) What is the column density N(Si II 2P o
1/2) of Si II in the ground state? Assume the line to be optically

thin (what condition does this impose on the velocity dispersion of the SiII in the intervening galaxy?).
Required atomic data can be found in the text (Table 9.5).

(b) The quasar spectrum shows no trace of absorption in the 2P o
3/2→

2S1/2 transition of Si II at λ = 1533 Å.
If the upper limit on the observed equivalent width is (Wλ)obs < 1 Å, what is the corresponding upper
limit on the column density N(Si II 2P o

3/2) in the intervening galaxy?
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(c) Given your result from (b) on the upper bound for N(Si II 2P o
3/2), what limit can be placed on the elec-

tron density ne in the intervening galaxy if the kinetic temperature is assumed to be 104 K? The Ein-
stein A coefficient is A( 2P o

3/2 → 2P o
1/2) = 2.13× 10−4 s−1, and the electron collision strength is

Ω( 2P o
3/2,

2P o
1/2) = 4.45 (see Table F1 on p. 496). (Ignore the existence of the 2S1/2 state in this and

(d) below; i.e., treat the two fine-structure states as a two-level system. Assume the interstellar radiation
field in the intervening galaxy to be not too wildly dissimilar to that in our Galaxy.)

(d) Can any useful limit be placed on ne if the kinetic temperature is assumed to be 102 K rather than 104 K?

9.6 An unconventional interpretation of the observations described above (in problem 9.5) is that the Si II absorption
is produced in a cloud of gas which has been shot out of the quasar with a velocity βc (relative to the quasar)
which gives it a redshift (as seen from the quasar) zGQ satisfying (1 + zG)(1 + zGQ) = (1 + zem), where
zG = 1.36 and zem = 2.22. Thus (1 + zGQ) = (1 + zem)/(1 + zG) = 1.364.

The velocity βc of the cloud relative to the QSO is then given by the relativistic Doppler shift formula

1.364 = 1 + zGQ =
1 + β

(1− β2)1/2
=

(
1 + β

1− β

)1/2

,

with the result

β =
(1 + zGQ)

2 − 1

(1 + zGQ)2 + 1
= 0.301 .

Suppose the quasar to be emitting (isotropically) a power per unit frequency (evaluated in the rest frame of the
quasar) Pν = (L0/ν0)(ν/ν0)

−α, where L0 = 1013 L⊙ and ν0 = 1015 Hz, and the exponent α is of order unity.

At a distance D from the QSO, in a frame at rest relative to the QSO, the energy density is

uν =
Pν

4πD2c
=

L0/ν0
4πD2c

(
ν

ν0

)−α

.

A little bit of special-relativistic reasoning leads to the conclusion that a “cloud” observer receding from the
QSO at velocity βGQc will find that the energy density at frequency νG (measured in the gas cloud frame) is
given by

(uν)G =
1

(1 + zGQ)1+α

L0/ν0
4πD2c

(
νG
ν0

)−α

.

(a) For the moment consider only transitions between the 2P o
1/2 and 2P o

3/2 levels. What is the minimum
value of D which is consistent with the observed upper limit on the ratio N(Si II 2P o

3/2)/N(Si II 2P o
1/2)?

(Assume ne = 0).

(b) Now consider pumping of the 2P o
3/2 level via the 2S1/2 level. What is the probability per time for an Si II

ion in the 2P o
1/2 state to be excited to the 2S1/2 level by absorbing a UV photon? Give your answer as a

function of D.

(c) What fraction of the Si II excitations to the 2S1/2 state will lead to population of the 2P o
3/2 state?

(d) Suppose the absorbing cloud to be a spherical shell around the quasar. If the Si/H ratio in the gas does not
exceed the Si/H ratio in our Galaxy (Si/H=4×10−5), and the gas has He/H = 0.1, what is the minimum
kinetic energy of this expanding shell? (This extreme energy requirement has been used in arguing against
this interpretation of absorption line systems.)

9.7 An absorption line is observed in the spectrum of a quasar at an observed wavelength λ = 5000. Å. The absorp-
tion is produced by an intergalactic cloud of gas somewhere between us and the quasar. The observer measures
an equivalent width Wλ = 1.0×10−2 Å. The absorption line is resolved, with an observed FWHMλ = 0.50 Å.

The line is assumed to be H I Lymanα, with rest wavelength λ0 = 1215.7 Å and oscillator strength fℓu =
0.4164.
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(a) What is the redshift z of the absorber?

(b) What is the column density of H I in the absorbing cloud?

(c) In the rest frame of the cloud, the H I has a one-dimensional velocity distribution ∝ e−(∆v/b)2 . What is
the value of b for this cloud?

9.8 The spectrum of a quasar has absorption lines at observed wavelengths λ = 5000.0 Å and 5008.4 Å, with
observed equivalent widths Wλ = 0.020 Å and Wλ = 0.010 Å, respectively. Both lines are resolved, each with
observed FWHMλ = 0.40 Å.

The lines are interpreted as being produced by C IV, with rest wavelengths λ0 = 1548.20 Å and 1550.77 Å, and
oscillator strengths fℓu = 0.190 and 0.096.

(a) What is the redshift z of the absorber?

(b) What is the column density of C IV in the absorbing cloud?

(c) In the rest frame of the cloud, the H I has a one-dimensional velocity distribution ∝ e−(∆v/b)2 . What is
the value of b for this cloud?

9.9 The CH+ molecule has an absorption line at λ = 4233 Å with an oscillator strength fℓu = 0.0060 out of the
ground state ℓ. An absorption line is observed at this wavelength with an equivalent width Wλ = 0.010 Å, and
a FWHM of 10 km s−1. What is the column density of ground-state CH+ on this line-of-sight? Single-digit
accuracy is sufficient.

9.10 High-resolution spectra of a quasar show absorption by H Lymanα (rest-frame wavelength 1215.6 Å) at an
observed wavelength λ = 3890.2 Å and a C IV absorption doublet (rest-frame wavelengths 1548.2, 1550.8 Å)
at λ = 4954.2 Å and λ = 4962.6 Å.
Suppose that all three lines are optically thin, with Gaussian line profiles.
The line at 3890.2 Å has observed full-width-at-half-maximum FWHMH = 0.3168 Å.
The line at λ = 4954.2 Å has observed FWHMC IV = 0.2196 Å.
Recall that if a variable x has a Gaussian distribution, FWHMx =

√
8 ln 2× σx = 2.355σx.

(a) What is the redshift z of the absorbing gas?

(b) What is the one-dimensional velocity dispersion σv,H of the hydrogen atoms (in the absorption system rest
frame)? Give your answer in km s−1.

(c) What is the one-dimensional velocity dispersion σv,C IV of the C IV ions (in the absorption system rest
frame)? Give your answer in km s−1

(d) Assume that the H and C IV are in gas with temperature T and turbulence with one-dimensional turbulent
velocity dispersion σturb, so that the one-dimensional velocity dispersion of a particle of mass M is given
by the sum (in quadrature) of the thermal and turbulent velocity dispersions:

σ2
v =

kBT

M
+ σ2

turb

For the absorption line system, what is T (in degrees K) and σturb (in km s−1)?
9.11 Suppose that an H atom in the 3p level is at rest in an H I cloud of density n(H) = 20 cm−3 and kinetic

temperature T = 100K. Assume that the motions of the other H atoms in the cloud are purely thermal. Assume
the cloud to be infinite in extent, and pure H (no dust, etc.).

If the H(3p) emits a Lymanβ photon, what is the mean free path of this photon before it is absorbed by another
H atom? The wavelength of Lymanβ is 1025.7Å. The oscillator strength for the Lyman β transition is f1s,3p =
0.0791.
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Chapter 10. Emission and Absorption by a Thermal Plasma

10.1 The brightest part of the Orion H II region has an emission measure EM ≈ 5×106 cm−6 pc. Assume an electron
temperature Te = 104 K.

(a) What is the optical depth τ due to free-free absorption at λ = 1 cm (ν = 30GHz)?

(b) What is the optical depth τ due to free-free absorption at λ = 21.1 cm (ν = 1420MHz)?

(c) Suppose that there is atomic hydrogen on the far side of the H II region with a column density N(H I) =
1021 cm−2 and a spin temperature Tspin = 1000K. Calculate the observed strength of the 21 cm line
(where “line” is the excess above the continuum), integrated over the line profile, and expressed in the usual
“antenna temperature-velocity” units of Kkms−1. Assume the line to be broad enough to be optically
thin.

(d) A radio telescope observes the brightest part of the H II region. Calculate the dimensionless “equivalent
width” W of the 21 cm line, and also calculate the “velocity” equivalent width WV ≡ c × W and the
“frequency” equivalent width Wν ≡ ν ×W .
Note: the dimensionless equivalent width of an emission line is defined to be

W ≡
∫

[Iν − I
(c)
ν ]

I
(c)
ν

dν

ν

where I
(c)
ν is the “continuum” level of the free-free emission on either side of the 21 cm line.

10.2 Suppose that a slab of ionized hydrogen has emission measure EM , temperature T = 104T4 K, and a Gaussian
velocity distribution with one-dimensional velocity dispersion σv = σv5 km s−1.

(a) Calculate the optical depth τnα at line center for nα radiation propagating through the slab.
You may assume that n ≫ 1, and you should leave the departure coefficient bn and the factor βn [defined
in Eq. (10.30)] as unknown quantities (i.e., represented by symbols bn and βn). The Einstein A coefficient
An+1→n is given by Eq. (10.27). The number density nn of hydrogen in level n is related to nenp and bn
using Eq. (3.45).
Your result for τnα should be given as an expression containing only a numerical coefficient, and the
variables n, bn, βn, T4, σv5, and (EM/ cm−5).

(b) Assume T4 = 1, EM = 10 cm−6 pc, bn = 0.9, and βn = −100 for n = 166. Evaluate τnα for n = 166
if there is no turbulence present.

10.3 We are hoping to observe 21 cm emission from redshift z ≈ 9 and need to model the “Galactic foreground” pro-
duced by a slab of partially-ionized hydrogen (at redshift 0) at temperature T . Consider a Hnα line originating
in this slab.

(a) For what n will the Hnα line be near 142MHz?

(b) Suppose that βnα [defined by Eq. (10.30)] is negative, and suppose that the optical depth τnα is a small
negative number. Suppose that just beyond the slab of partially-ionized hydrogen, there is a region pro-
ducing synchrotron emission with antenna temperature TA,0 at 142 MHz.
If the hydrogen in the slab is “isothermal” (or perhaps we should say “iso-excited”), then the exact solution
to the equation of radiative transfer is simply

Iν = Iν,0e
−τν +Bν(Texc)

(
1− e−τν

)
,

where recall that the definition of Texc is such that
nu

nℓ
≡ gu

gℓ
e−Euℓ/kBTexc .

Assuming that |hν/kBTexc| ≪ 1 and |τν | ≪ 1, show that

TA(ν) ≈ TA,0e
−τν + Texcτν .
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(c) Recall the definition of βnα:

βnα ≡ 1− (nugℓ)/(nℓgu)

1− exp(−hν/kBT )
,

where u = n+ 1 and ℓ = n. If |hν/kBT | ≪ 1, |hν/kBTexc| ≪ 1, and |τν | ≪ 1, show that
TA(ν) = TA,0e

−τν + β−1
nαTτν .

(d) The sky-averaged synchrotron background is approximately given by Eq. (12.3). What is the sky-averaged
antenna temperature TA0 of the synchrotron background at 142 MHz?

(e) Suppose that the difference in antenna temperature “on-line” vs. “off-line” is
∆TA = [TA,0e

−τν + β−1
nαTτν ]− TA,0 = TA,0(e

−τν − 1) + β−1
nαTτν .

If τν = −10−7, βnα = −100, T = 104 K, and TA,0 = 500K, calculate the “antenna temperature” ∆TA

of the line. Which is larger – the amplification of the synchrotron emission, or the contribution β−1
nαTτν

that is independent of the synchrotron emission? [For comparison, the redshifted 21cm line is expected
to have ∆TA ≈ +15 mK if the universe was reionized by radiation from massive “Pop III” stars, and
the fluctuations in antenna temperature due to “minihalos” at z ≈ 9 are expected to be of order ∼ 1 mK
(Furlanetto et al. 2006: Physics Reports 433, 181, Fig. 12)].

10.4 Consider an H II region with n(H+) = ne = 103 cm−3, T = 8000K, and radius R = 1pc. Estimate the radio
frequency ν at which the optical depth across the diameter of the H II region is τ = 1. To make this estimate
you may assume that the Gaunt factor gff ≈ 6.

10.5 Consider an ionized wind flowing outward from a point source. Suppose that the temperature T = 104T4 K and
the electron density ne varies as

n(r)=n0

(
R0

r

)2

.

R0 is simply some reference radius, with n0 the electron density at that radius. Assume the attenuation coef-
ficient κν to have the simple power-law dependence on frequency ν = ν9 GHz and temperature given by Eq.
(10.8):

κν =
A

R0

(
n

n0

)2

ν−2.12
9

A≡ 1.09×10−25n2
0R0T

−1.32
4 cm5 .

(a) Let τ(R) be the attenuation optical depth along a radial path from r = R to r = ∞. Define Rp(ν) to be
the radius where τ = 2/3. Obtain an expression for Rp/R0 in terms of A and the frequency ν9 ≡ ν/GHz.

(b) When viewed at frequency ν by a distant observer, the wind will have a “photosphere” at radius Rp.
Suppose that the emission from this photosphere at frequency ν can be approximated as a blackbody.
Assume we are in the Rayleigh-Jeans limit (hν ≪ kBT ). The observer is at distance D.
Obtain an expression for the flux density F

(photo)
ν of the “photospheric emission”.

The “spectral index” β is defined by F
(photo)
ν ∝ νβ . Obtain β.

(c) In addition to the “photospheric” emission, there will be additional emission from the optically-thin wind
outside the photosphere. Assume the emissivity to have the simple power-law dependence given by Eq.
(10.8):

4πjν =B

(
n

n0

)2

ν−0.12
9

B=4π × 3.35×10−40T−0.32
4 n2

0 erg cm
3 s−1 Hz−1 .

If the wind extends to infinity, and absorption can be entirely ignored (ignore the fact that the “photosphere”
blocks radiation from some of the material on the far side), calculate the flux density F

(outer)
ν from this

extended emission in terms of B, R0, and D. What is the spectral index of F (outer)
ν ?
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(d) According to this approximate treatment, what is the ratio F
(outer)
ν /F

(photo)
ν ?

(e) By neglecting absorption, the above treatment has overestimated F
(outer)
ν , so we now neglect F (photo)

ν and
take Fν ≈ F

(outer)
ν . If the wind has a mass-loss rate Ṁw and velocity vw, show that

F (outer)
ν ≈ 0.013 Jy

(
kpc

D

)2

T 0.12
4

(
Ṁ

10−6 M⊙ yr−1

)4/3(
20 km s−1

vw

)4/3

ν0.599 .

Assume H to be fully ionized but He to be neutral, so that n = ρ/1.4mH.

10.6 Consider an ionized wind flowing outward from a point source. Suppose that the electron density and tempera-
ture T = 104T4 K vary as

n(r)=n0

(
R0

r

)2

T (r)=T0

(
R0

r

)γ

with γ = 0 for a constant temperature outflow, or γ = 4/3 if the expanding wind cools adiabatically. R0 is
simply some reference radius, with n0 and T0 the density and temperature at that radius. Let T40 ≡ T0/10

4 K.
Assume the attenuation coefficient κν to have the simple power-law dependence on frequency ν = ν9 GHz and
temperature given by Eq. (10.8):

κν =
A

R0

(
n

n0

)2(
T4

T40

)−1.32

ν−2.12
9

A≡ 1.09×10−25n2
0R0T

−1.32
40 cm5

(a) Let τ(R) be the attenuation optical depth along a radial path from r = R to r = ∞. Define Rp(ν) to be the
radius where τ = 2/3. Obtain an expression for Rp/R0 in terms of A, γ, and the frequency ν9 ≡ ν/GHz.

(b) Let Tp(ν) be the temperature at r = Rp(ν). Obtain an expression for Tp(ν)/T0 as a function of A, γ, and
ν9.

(c) When viewed at frequency ν by a distant observer, the wind will have a “photosphere” at radius Rp.
Suppose that the emission from this photosphere at frequency ν can be approximated as a blackbody with
temperature Tp(ν). Assume we are in the Rayleigh-Jeans limit (hν ≪ kBT ). If the observer is at distance
D, obtain an expression for the flux density Fν of this photospheric emission as function of frequency
ν. The “spectral index” β is defined by F

(photo)
ν ∝ νβ . What is the range of the spectral index β if

0 ≤ γ ≤ 4/3?

(d) In addition to the “photospheric” emission, there will be additional emission from the optically-thin wind
outside the photosphere. Assume the emissivity to have the simple power-law dependence given by Eq.
(10.8):

4πjν =B

(
n

n0

)2(
T4

T40

)−0.32

ν−0.12
9

B=4π × 3.35×10−40T−0.32
40 n2

0 erg cm
3 s−1 Hz−1

If the wind extends to infinity, and absorption can be entirely ignored (ignore the fact that the “photosphere”
blocks radiation from some of the material on the far side), calculate the flux density F

(outer)
ν from this

extended emission in terms of B, R0, D, and γ. What is the spectral index of F (outer)
ν ?

(e) According to this approximate treatment, what is the ratio F
(outer)
ν /F

(photo)
ν ?
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(f) By neglecting absorption, the above treatment has overestimated F
(outer)
ν , so we now neglect F (photo)

ν

and take Fν ≈ F
(outer)
ν . If the wind has a mass-loss rate Ṁw and velocity vw, and constant temperature

(γ = 0), show that

F
(outer)
ν

Jy
≈ 0.013 Jy

(
kpc

D

)2

T 0.12
40

(
Ṁ

10−6 M⊙ yr−1

)4/3(
20 km s−1

vw

)4/3

ν0.599

Assume H to be fully ionized but He to be neutral, so that n = ρ/1.4mH.

10.7 Consider an H I cloud of column density NH = 1021 cm−2, H nucleon density nH = 30 cm−3, temperature
T = 100K, and fractional ionization ne/nH = 10−3.

(a) What is the emission measure EM =
∫
nenids ?

(b) What is the surface brightness (i.e., specific intensity) of free-free emission from the cloud at ν = 5GHz?
Assume the cloud to be optically-thin at 5GHz, and take gff ≈ 1.83. Express your answer in Jy sr−1.
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Chapter 11. Propagation of Radio Waves through the ISM

11.1 The pulses from a pulsar arrive later at low frequencies than at high frequencies. Suppose that the arrival times
at 1420MHz and 1610MHz differ by ∆t(1420MHz, 1610MHz) = 0.0913 s.

(a) What is the “dispersion measure” for this pulsar?

(b) If the pulsar is assumed to be at a distance D = 6kpc, what is the mean electron density ⟨ne⟩ along the
path to the pulsar?

11.2 A pulsar is observed at 1610 and 1660 MHz. The plane of polarization at these two frequencies differs by 57.5◦.

(a) What is the minimum possible magnitude of the rotation measure |RM | toward this source? Why is it a
minimum? What would be the next-largest possible value of |RM |?

(b) If the source has a dispersion measure DM = 200 cm−3 pc, and using the minimum |RM | from (a), what
is the electron-density-weighted component of the magnetic field along the line-of-sight?

11.3 A fast radio burst (FRB) occurs in a galaxy at redshift zFRB. The pulse arrival is delayed at low frequen-
cies because of dispersion contributed by electrons along the path [including electrons in the Milky Way, the
intergalactic medium (IGM), and the host galaxy of the FRB]. The observed DM is

DMobs = −πmec

e2
ν3obs

dtarrival
dνobs

.

For z <∼ 7 (i.e., after reionization), assume the electron density in the IGM to be

ne =n0(1 + z)3

n0 ≈ 1.1× 10−7 cm−3 ,

(corresponding to an IGM containing ∼50% of the baryons in the Universe). Assume a Hubble constant H0 =
70 km s−1 Mpc−1.

If the redshift is not too large, we can assume a simple Hubble flow, with redshift proportional to distance,
cdz = H0dr.

(a) At low redshift z ≪ 1, show that the contribution of the IGM to the observed dispersion measure is

DMIGM = 471

(
n0

1.1×10−7 cm−3

)
zFRB cm−3 pc

(b) At larger redshifts, one needs to take into account both the change in density of the universe and redshifting
of the radiation in the pulse as it travels from the FRB to us. Show that the contribution of the IGM to DM
is

DMIGM = 471

(
n0

1.1×10−7 cm−3

) [
(1 + zFRB)

2 − 1
]

2
cm−3 pc

[To keep things simple, continue to assume a simple Hubble flow, cdz = H0dr.]

11.4 A fast radio burst (FRB) occurs in a galaxy at redshift zFRB. The pulse arrival is delayed at low frequen-
cies because of dispersion contributed by electrons along the path [including electrons in the Milky Way, the
intergalactic medium (IGM), and the host galaxy of the FRB] with observed dispersion measure

DMobs = −πmec

e2
ν3obs

dtarrival
dνobs

.
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In addition, the polarization varies with wavelength with observed rotation measure

[RM ]obs ≡
dΨ

dλ2
obs

Suppose that the source is at redshift zFRB, and that the intergalactic medium (IGM) has electron density

ne =n0(1 + z)3

n0 ≈ 1.1× 10−7 cm−3

(corresponding to an IGM containing ∼50% of the baryons in the Universe). Assume a Hubble constant H0 =
70 km s−1 Mpc−1. Suppose also that there is a magnetic field parallel to the direction of propagation with

B∥ =B∥0(1 + z)2 .

(If for some reason there were a large-scale primordial magnetic field, this is how it would vary in an expanding
Universe.)

If the redshift z <∼ 1, we can assume a simple Hubble flow, with redshift proportional to distance: cdz = H0dr.

(a) Show that the contribution of the IGM to the RM is

[RM ]IGM =
e3

2πm2
ec

3

n0B0∥

H0

[
(1 + z)4 − 1

]
4

.

(b) FRB 150807 was observed to have DM = 266 cm−3 pc and RM = 12 ± 7 radm−2. Assume that the
DM is given by (see Problem 11.3).

[DM ]IGM = 471

(
n0

1.1×10−7 cm−3

) [
(1 + zFRB)

2 − 1
]

2
cm−3 pc

Suppose that all of the DM and RM come from the IGM, and n0 = 1.1×10−7 cm−3. Estimate the
redshift zFRB and B0∥.
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Chapter 12. Interstellar Radiation Fields

12.1 After the Sun, Sirius (α Canis Majoris) is the brightest star in our sky. It is actually a binary; Sirius A and
Sirius B. Sirius A is spectral type A1V, with mass 2.1M⊙; Sirius B is a (much fainter) white dwarf, with mass
0.98M⊙.

The Sirius system has luminosity L = 25L⊙, and is at a distance D = 2.6 pc. What is the energy density u due
to radiation from Sirius alone at the location of the Sun? What fraction of the local starlight background energy
density is contributed by Sirius alone?

12.2 The MMP83 radiation field (see Table 12.1) has an energy density u(912 Å < λ < 2460 Å) = 7.1×10−14 erg cm−3

of photons in the energy range 5.04–13.6 eV. Eq. (12.7) describes the spectrum of this radiation. Calculate the
number density of 10.0 < hν < 13.6 eV photons.
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Chapter 13. Ionization Processes

13.1 Define Ex to be the energy at which the photoelectric cross section (13.4) for a hydrogenic ion is equal to the
Compton scattering cross section, σT = (8π/3)(e2/mec

2)2.

(a) Express Ex/IH in terms of Z and the fine structure constant α ≡ e2/h̄c = 1/137.04

(b) For hydrogen, calculate Ex in eV.

13.2 Recall the definition of oscillator strength [Eq. (6.19)]:

fℓu ≡ mec

πe2

∫
σℓu(ν)dν .

Let us now apply this with lower level ℓ being an initial bound state nℓ (don’t get confused about the two usages
of ℓ here!), and u being all the free electron states.

Suppose that the electrons in some atomic shell nℓ have photoionization cross section

σpi = σt,nℓ

(
hν

Inℓ

)−3

for hν > Inℓ ,

with oscillator strength fpi,nℓ associated with photoionization transitions from the initial bound state nℓ to all of
the free electron states.

(a) With these assumptions, express the photoionization cross section at threshold σt,nℓ in terms of πa20 and
the dimensionless numbers fpi,nℓ, (Inℓ/IH), and α ≡ e2/h̄c.

(b) For hydrogen, the oscillator strength associated with photoionization is fpi,1s = 0.4359. Using this power-
law approximation for the photoelectric absorption, estimate the value of the photoionization cross section
at threshold, and compare to the value of the exact result Eq. (13.2).

(c) C has 2 electrons in the n = 1 shell (the “K shell”). The photoionization threshold from the n = 1 shell
is IK = 285.4 eV. Suppose that fpi,1s ≈ 2× 0.5 = 1. Estimate the cross section just above threshold for
photoionization out of the 1s shell.

(d) C has 4 electrons in the n = 2 shell. Approximate the photoionization threshold from the n = 2 shell
as I2s2p = 12 eV. Suppose that fpi,1s ≈ 2 × 0.5 = 1, and fpi,2s2p ≈ 4 × 0.5 = 2. With the above
assumptions about the energy dependence, estimate the ratio of the C photoionization cross section just
above IK to the value just below IK.

13.3 From Figure 13.2, one sees that the photoionization cross section for neutral Si can be approximated by

σ(hν) ≈ 7× 10−17

(
hν

8.15 eV

)−3.5

cm2

for 8.15 eV < hν < 13.6 eV. Suppose that the energy density of starlight in an H I cloud (see Fig. 12.2) can be
approximated by

νuν ≈ 9× 10−14

(
hν

8.15 eV

)−1

erg cm−3

for 8.15 eV < hν < 13.6 eV, and uν ≈ 0 for hν > 13.6 eV.

Calculate the photoionization rate ζ for an Si atom.
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Chapter 14. Recombination of Ions with Electrons

14.1 Suppose that an electron recombines into the n = 5, ℓ = 4 (also known as 5g) level of hydrogen. What is the
probability that an Hα photon will be emitted during the radiative cascade starting from (n, ℓ) = (5, 4)?

14.2 The Einstein A coefficients for all of the allowed transitions of hydrogen from levels n ≤ 3 are given in the
table below:

u ℓ Auℓ( s
−1) λuℓ( Å)

3d 2p 6.465×107 6564.6 Hα
3p 2s 2.245×107 6564.6 Hα
3s 2p 6.313×106 6564.6 Hα
3p 1s 1.672×108 1025.7 Lyβ
2p 1s 6.265×108 1215.7 Lyα

(a) Consider a hydrogen atom in the 3p state as the result of radiative recombination: p+ e− → H(3p). What
is the probability pβ that this atom will emit a Lyman β photon?

(b) In an H I region where hydrogen is the only important opacity source, and averaged over many atoms
“prepared” in the 3p state, what is the mean number ⟨n⟩ of times a Lyman β photon is “scattered” (that is,
absorbed and then re-emitted) before an H α photon is emitted?
Hint: you may want to use the result

∞∑
n=1

nqn = q

∞∑
n=1

nqn−1 = q
d

dq

∞∑
n=1

qn = q
d

dq

[
q

1− q

]
=

q

(1− q)2
.

14.3 For case B recombination at T = 104 K, estimate j(Lyα)/j(Hα) for ne = 102 cm−3, 103 cm−3, and 104 cm−3.
Here j is the power radiated per unit volume, where “radiated” is interpreted as creation of “new” photons (i.e.,
scattering is not included). Note that j is a local property – it does not take into account whether or not the
photons will “escape” the emitting region.

14.4 Consider an H I cloud with nH = 30 cm−3, T = 100K, n(H+) = 0.005 cm−3, n(C+) = 0.005 cm−3, and
ne=0.01 cm−3. The ultraviolet starlight intensity is characterized by G0 = 1. You may wish to refer to Table
14.6.

(a) What is the probability per unit time for a given proton to radiatively recombine with an electron?

(b) What is the probability per unit time for a given C+ to radiatively recombine with an electron?

(c) Using Eq. (14.37) and Table 14.9, estimate the effective rate coefficients αgr for neutralization of a proton
as a result of a collision with a grain.

(d) Evaluate αgr(C
+) for neutralization of a C+ as the result of a collision with a grain.

(e) What fraction of proton recombinations with electrons are due to grains? What fraction of C+ recombina-
tions with electrons are due to grains?

14.5 In the standard Big Bang model, H and He were nearly fully ionized at redshifts z >∼ 2000. As the expanding
Universe cooled, the rates for photoionization and collisional ionization dropped and the gas began to recombine.
According to current estimates of the baryon density, the hydrogen fractional ionization was x = 0.5 at a redshift
and temperature

z0.5 ≈ 1250 , T0.5 ≈ 3410K .
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At this temperature, collisional ionization and photoionization are still important, and the Saha equation provides
a good approximation to the ionization fraction. As the temperature and density continue to drop, the Universe is
expanding too rapidly to maintain thermodynamic equilibrium, and a kinetic calculation is necessary. According
to detailed calculations (Grin & Hirata 2010; Phys. Rev. D 81, 083005), the fractional ionization has dropped to
x = 0.01 at redshift

z0.01 = 880 , T0.01 = 2400K .

From this point on, let us assume that photoionization and collisional ionization can be neglected, and consider
only radiative recombination.

According to current estimates of cosmological parameters
(H0 = 70.2 km s−1 Mpc−1, Ωbaryon = 0.0458, Ωdark matter = 0.229, ΩΛ = 0.725: Komatsu et al. 2010;
arXiv1001.4538), the age of the Universe at redshift z >∼ 10 is

t(z) ≈ 17Gyr

(1 + z)3/2
,

and the age of the Universe when x = 0.01 was

t0.01 ≈ 17Gyr

(1 + z0.01)3/2
= 6.5×105 yr .

According to current estimates of the baryon density based on nucleosynthetic constraints, the hydrogen density
nH = n(H0) + n(H+) in the expanding Universe is

nH(t) = nH,0.01

(
1 + z

1 + z0.1

)3

= nH,0.01

(
t

t0.01

)−2

,

where the H density at z0.01 = 880 was

nH,0.01 = 130 cm−3 .

Because of Compton scattering, the temperature of the free electrons remains coupled to the radiation field until
quite late times. If we assume that this coupling persists throughout the main phase of recombination, then the
electron temperature evolves as

Te(z) = T0.01

(
1 + z

1 + z0.01

)
= T0.01

(
t

t0.01

)−2/3

.

Suppose that for t > t0.01 (i.e., z < z0.01), no further ionization takes place, and the ionized fraction x continues
to drop due to radiative recombination. Suppose that the rate coefficient for radiative recombination for T <
2400K can be written

αB = 7.8×10−13(Te/2400K)−0.75 cm3 s−1 .

Note: Ignore helium in this problem.

(a) Obtain an equation for dx/dτ , where x ≡ n(H+)/nH is the hydrogen fractional ionization, and τ ≡
t/t0.01 is time in units of t0.01. (Hint: do not let the expansion of the Universe confuse you. Remember
that if there were no recombination, the fractional ionization would remain constant even as the Universe
expands.)

(b) Solve the differential equation from part (a) to find the solution x(t) for t > t0.01.

(c) Assuming that photoionization and collisional ionization remain negligible, evaluate the fractional ioniza-
tion x at redshift z = 50, z = 100 and z = 15. The nonzero ionization remaining at z <∼ 100 is sometimes
referred to as “ionization freezout”.

(d) WMAP observations of polarization in the CMB appear to require partial reionization of the Universe at
z ≈ 12. Suppose that a large region is reionized by photoionization at z = 12. The photoionized gas will
initially be at T ≈ 2×104 K, with case B recombination coefficient αB ≈ 1.7×10−13 cm3 s−1. Compare
the timescale for recombination at z = 12 to t(z = 12), the age of the Universe at z = 12.
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14.6 Absorption line observations of an interstellar cloud measure column densities N(Ca I) = 1.00 × 1012 cm−2

and N(Ca II) = 3.08× 1014 cm−2. The gas temperature is estimated to be T = 50K. At this temperature the
radiative recombination coefficient for Ca II+e− → Ca I+hν is α = 1.3×10−11 cm3 s−1. The starlight present
within the cloud can photoionize Ca I + hν → Ca II + e− with a photoionization rate ζ = 1.2 × 10−10 s−1.
Assume that grain-assisted recombination can be neglected.

Estimate the electron density ne in the cloud.

14.7 From observation of the K I absorption line at 7667 Å, an H I cloud is determined to have a column density
N(K I) = 1.0×1013 cm−2. Starlight ionizes the K I at a rate (from Table 13.1) ζ(K + hν → K+ + e−) =
6.85×10−12 s−1. Assume that the electron density in the cloud is ne = 0.03 cm−3, the gas temperature is T =
100K, and the radiative recombination rate coefficient αrr ≡ α(K++e− → K+hν) = 1.11×10−11 cm3 s−1.
Assume that radiative recombination is the only process removing K II and producing K I (i.e., neglect grain-
assisted recombination). Assume that higher ion stages (K III, K IV, ...) can be neglected.

(a) Estimate the total column density of gas-phase K (both K I and K II) on this sightline.

(b) Given that grain-assisted recombination has been neglected, is the above estimate for the total column
density of gas-phase K a lower bound or an upper bound?

14.8 Absorption at HeI10833 Å has been observed during some exoplanet transits (e.g., HAT-P-11n and WASP-
107b), and is thought to be produced by an extended atmosphere (or wind) from the planet as it transits in front
of the star.

Consider a slab with H nucleon density nH, and He nucleon density nHe = 0.1nH. Suppose that radiation
from a star is partially ionizing both H and He, maintaining fractional ionizations xH = n(H+)/nH and xHe =
n(He+)/nHe.

Let αH and αHe be the rate coefficients for radiative recombination of H and He. Let fs ≈ 0.3 be the fraction
of H radiative recombinations that populate the H 2s state, and let ftrip ≈ 0.75 be the fraction of He radiative
recombinations that populate the triplet states. Let A(2s) be the probability/time that H2s will undergo 2-photon
decay. Let A(23S1) be the radiative decay rate for the metastable state He(23S1).

(a) In the low density limit, obtain an expression for n(H 2s) in terms of nH, xH, xHe.

(b) In the low density limit, obtain an expression for n(He 2 3S0) in terms of nH, xH, and xHe.

(c) At higher densities, metastable levels can be depopulated by collisions with electrons (and protons, but
ignore them for simplicity). Let q2s be the rate coefficient for depopulation of H2s by electron collisions,
and qHe23S1

be the rate coefficient for dopopulation of He23S1 by electron collisions.
Obtain expressions for n(H 2s) and n(He 23S1) including electron collisions.

(d) He(3S1) has an absorption line triplet He3S1 →3P0,1,2 at λ = 10833 Å. Treat this as a single line with
oscillator strength f = 0.539. Suppose that the slab has density nH = 108 cm−3, T = 2000K (so
that αHe ≈ 1×10−12 cm3 s−1 and qHe23S1

≈ 2×10−9 cm3 s−1), xH = 0.1, xHe = 0.1, and thickness
L = 5×109 cm.
Calculate the equivalent width (Wλ)He10833 through the slab.

(e) H atoms in the n = 2 levels produce Hα absorption, at λ = 6565 Å. The 2p state spontaneously decays in
1.6 ns, and therefore is negligibly populated. However the metastable 2s state will have a larger population.
Obtain an expression for the ratio

(Wλ/λ)Hα

(Wλ/λ)He I 10833

and evaluate it for the above conditions. Take αH = 9×10−13 cm3 s−1 and q2s = 1.2×10−3 cm3 s−1 for
T = 2000K. The Hα line has an oscillator strength fℓu = 0.641.
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14.9 Observation of He I 10833 Å absorption during transit of some exoplanets has been interpreted as absorption
by metastable He I 23S1 produced by recombination of He+ (see textbook Figure 14.3). A simple toy model
that attempts to explain this postulates that the exoplanet has a an extended atmosphere with nH = 108 cm−3,
He/H=0.1, n(H+)/nH = 0.1, n(He+)/nHe = 0.1, and T = 2000K, and thickness L ≈ 5×109 cm.

The He ionization in this extended atmosphere is assumed to be maintained by hν > 24.6 eV radiation from
the star. Suppose that the hν > 24.6 eV stellar photons have a typical energy 35 eV, and suppose that the He
photoionization cross section is σ = 4×10−18 cm2 (see Figure 13.1a).

If the exoplanet has orbital radius R = 0.05AU, what must be the stellar luminosity in hν > 24.6 eV photons?
Neglect attenuation of the ionizing radiation in the extended atmosphere.

[For comparison, the average spectrum of the Sun has a luminosity ∼ 10−6L⊙ in hν > 24.6 eV photons.]

14.10 Suppose that spectra of distant galaxies routinely showed a weak absorption feature at λ = 6565 Å that is
interpreted as Hα absorption by hydrogen in a “veil’ of excited hydrogen surrounding the Galaxy. Suppose
that the Hα absorption feature has an equivalent width Wλ = 0.17 Å. The feature is broad, with velocity
FWHMv ≈ 1000 km s−1.

(a) What is the implied column density N(H(n = 2)) of hydrogen in the n = 2 level? The oscillator strength
fℓu = 0.641 for either 2s → 3p absorption, or 2p → 3s, 3d absorption.

(b) Suppose that this hydrogen is all in the 2s state, with the column density N(n = 2) from part (a), and
is in a shell of radius R = 15 kpc. What would be the radiated power L of this shell in 2s → 1s 2-
photon emission? The decay rate of the 2s level is A2s→1s = 8.23 s−1. Give your result in units of
L⊙ = 3.826× 1033 s−1.
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Chapter 15. Photoionized Gas

15.1 A O9V star has luminosity L = 104.77 L⊙, emits hν > 13.6 eV photons at a rate Q0 = 1048.06 s−1, and emits
hν > 24.6 eV photons at a rate Q1 = 0.0145Q0 (see Table 15.1). The star is surrounded by a steady-state H II
region.

(a) If the ionized region has a uniform density nH = 102 cm−3 and temperature T = 104 K, estimate the
neutral fraction n(H0)/nH at a distance r = 0.9RH II from the star, where RH II is the radius of the zone
where H is ionized. Assume that the gas is pure hydrogen, and that dust is negligible.

(b) Now assume that the gas has He/H≈0.1 by number. What will be the ratio RHe II/RH II, where RHe II

is the radius of the zone where helium is ionized? An answer accurate to 10% is OK – don’t worry over
details. State your assumptions.

15.2 Hydrogen 166α (i.e., 167ℓ→166ℓ′) and He 166α (i.e., 1s167ℓ→1s166ℓ′) recombination lines are observed from
an H II region. Assume that the telescope beamwidth is much larger than the nebula. The strengths of the lines
are in the ratio T (He)/T (H) = 0.032, i.e.,∫

dΩ

∫
He 166α

Iνdν = 0.032

∫
dΩ

∫
H166α

Iνdν .

(a) Using Table 15.1, estimate the temperature of the exciting star for the H II region, assuming it to be
of luminosity class V. Assume that all hν > 24.6 eV photons are absorbed by He. Assume αB(H) ≈
2.54× 10−13 cm3 s−1 for HII and αB(He) ≈ 2.72× 10−13 cm3 s−1 for HeII.

(b) The observed recombination lines have full widths at half-maximum (FWHM) of 23.5 and 15.3 km s−1 for
H and He respectively, as observed with a receiver with an instrumental line width (FWHM) of 5 km s−1.
Assume that the only motions are from thermal motions plus turbulence with an unknown velocity disper-
sion.

• What is the kinetic temperature T in the nebula?
• What is the one-dimensional velocity dispersion σturb of the turbulence?

[You may assume that both the instrumental response function and the thermal and turbulent velocity
distribution functions are gaussians. The convolution of a gaussian with a gaussian yields a gaussian with
variance equal to the sum of the variances of the original two gaussians.]

15.3 Consider a spherically-symmetric stellar wind with mass-loss rate Ṁw = 10−4M⊙ yr−1. and wind speed
vw = 20 km s−1. Suppose the mass-loss continues steadily for tw = 103 yr and then stops, with the wind
continuing to “coast” outwards. Suppose that after a time t, the central star suddenly becomes an ionizing
source emitting hydrogen-ionizing photons at a rate Q0, creating a “protoplanetary nebula”.

(a) After time t, the outflowing wind has a spherical outer surface and a spherical inner “hole”. What is the
density just inside the outer surface?

(b) What is the density just outside the inner hole?

(c) Ignoring expansion of the nebula during the ionization process, what is the minimum value of Q0 required
to ionize the H throughout the nebula?

(d) What is the recombination time just inside the outer surface? Compare this to the 103 yr dynamical age.

15.4 Consider a runaway O star, of spectral type O8V, traveling through a diffuse region with nH ≈ 0.2 cm−3.

(a) What is the Strömgren radius RS0 if the photoionized gas has T = 104 K?

(b) If the star is traveling at v⋆ = 100 km s−1, compare the time required for the star to travel a distance equal
to the Strömgren radius to the recombination time.

(c) Very briefly discuss the implications of the comparison in item (b).
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15.5 Consider an H II region powered by a star emitting ionizing photons at a rate Q0. Assume a pure hydrogen
nebula (no He, no dust), and approximate the H II region by a Strömgren sphere with uniform density nH. Let
αB be the case B recombination rate coefficient, T be the gas temperature, and assume the ionizing stellar
photons to be monoenergetic with energy hν. Assume that the hydrogen is nearly fully ionized. (ne ≈ nH).

(a) The star exerts radiation pressure on the gas – each ionizing photon, when absorbed, deposits a momentum
hν/c. Assume that the only interaction of the photons with the gas is through photoionization (i.e., electron
scattering and free-free absorption are neglected). Define a function prad by the differential equation
−dprad/dr = radial force/volume exerted by the absorbed stellar radiation. If the density in the H II
region is uniform, calculate ∆prad ≡ prad(0)− prad(RS), where RS is the Strömgren radius. Write your
result in terms of αB , nH, Q0, and hν.

(b) Obtain the ratio ∆prad/2nHkBT in terms of Q0, nH, αB , hν, c, and kBT .

(c) Evaluate the ratio ∆prad/2nHkBT for Orion Nebula-like conditions: T = 104 K, nH = 3200 cm−3,
Q0 ≈ 6.5×1048 s−1, and hν ≈ 18 eV.

(d) When this radiation pressure is taken into consideration, it is clear that a uniform density isothermal nebula
would not be in dynamical equilibrium. If the nebula needs to be in dynamical equilibrium, will the gas
pressure at the edge adjust to be larger or smaller than the gas pressure at the center?

15.6 An O8V star radiates hν > 13.6 eV photons at a rate Q0 = 1048.44 s−1. The total luminosity of the star is
L = 104.96 L⊙.

(a) If the average energy of the hν > 13.6 eV photons is 18 eV, what fraction fioniz of the total power L is
radiated in hν > 13.6 eV photons?

(b) If the star is surrounded by pure hydrogen gas with H nucleon density nH = 102 cm−3, estimate the radius
of the volume around the star where the hydrogen is predominantly ionized. Assume that the ionized gas
has temperature T ≈ 104 K, and the case B recombination coefficient αB = 2.54× 10−13 cm3 s−1.

(c) 45% of case B recombinations generate an Hα photon. What will be the Hα luminosity of the ionized gas?

15.7 Consider an H II region with uniform electron density ne, powered by a star emitting ionizing photons at a rate
Q0. Neglect helium and neglect dust. Let αB be the case B recombination rate coefficient, and let f2s be the
fraction of case B recombinations that populate the 2s level.

Suppose that the only processes depopulating the n = 2 levels are spontaneous decays and collisions with
electrons. Let A2s be the rate for spontaneous decay of the 2s level, and let neq2s→2p be the rate for 2s → 2p
collisional transitions.

(a) Obtain an expression for N(H 2s), the column density from center to edge of H in the 2s level, as a
function of Q0, ne, αB , f2s, A2s, and q2s→2p.

(b) Evaluate N(H 2s) for f2s = 0.325, αB = 2.59 × 10−13 cm3 s−1, A2s = 8.21 s−1, q2s→2p = 5.31 ×
10−4 cm3 s−1, Q0 = 1048 s−1, and ne = 104 cm−3.

15.8 An O7V star radiates hν > 13.6 eV photons at a rate Q0 = 1048.75 s−1. The total luminosity of the star is
L = 105.14 L⊙.

(a) If the average energy of the hν > 13.6 eV photons is 20 eV, what fraction fioniz of the total power L is
radiated in hν > 13.6 eV photons?

(b) If the star is surrounded by pure hydrogen gas with H nucleon density nH = 103 cm−3, estimate the radius
of the volume around the star where the ionized fraction will be close to 1. Assume that the ionized gas
has temperature T ≈ 104 K, and the case B recombination coefficient αB = 2.54× 10−13 cm3 s−1.

(c) 11.7% of case B recombinations generate an Hβ photon. What will be the Hβ luminosity of the ionized
gas?
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15.9 An O7V star radiates hν > 13.6 eV photons at a rate Q0 = 1048.75 s−1. The star is surrounded by pure hydrogen
gas (no He, no dust) with uniform H nucleon density nH = 102 cm−3. Assume that the star has been shining
long enough to achieve “steady-state” conditions. Assume that the ionized gas has temperature T ≈ 104 K, and
the case B recombination coefficient αB = 2.54× 10−13 cm3 s−1.

(a) Estimate the radius R of the volume around the star where the ionized fraction will be close to 1.

(b) 45% of case B recombinations generate an Hα photon. What will be the Hα luminosity of the ionized gas?

(c) Estimate n(H0)/nH at a distance r = 0.8R from the star. Assume the ionizing radiation at this location to
have a typical photon energy hν ≈ 15 eV and a typical photoabsorption cross section σpe≈ 5×10−18 cm2.

15.10 Sirius A, at a distance d = 2.6 pc, is the brightest star (other than the Sun) in the sky at visual wavelengths.
Its hot white dwarf companion, Sirius B, outshines Sirius A at short wavelengths. Sirius B has an effective
temperature Teff = 25200K and a radius R = 0.0081R⊙.

(a) Calculate the luminosity of Sirius B. Give your answer in L⊙.

(b) A blackbody radiates photons at a rate

Ṅ =
L

⟨hν⟩
where the mean photon energy

⟨hν⟩ = 3
ζ(4)

ζ(3)
kBT = 2.701kBT

[ζ(x) is the Riemann ζ-function]. For IH/kBT = 13.6 eV/2.17 eV = 6.26, it turns out that 42.7% of the
radiated photons have hν > IH.
If Sirius B radiates like a blackbody, what is Q0 = the rate of emission of H-ionizing photons?

(c) Suppose the local ISM density were nH = 0.05 cm−3: calculate the Strömgren radius RS for Sirius B, and
compare to our distance to Sirius B. Assume an electron temperature Te = 7000K.

(d) Compare the value of RS that you obtained with the expected thickness ∆R = 1/(nHσpi) of the transi-
tion from nearly-fully-ionized to nearly-fully-neutral for a Strömgren sphere (here σpi is a representative
photoioinization cross section for the ionizing photons.) Discuss what you expect for the ionization of the
ISM around Sirius B.

(e) Suppose that Sirius is moving at a speed ∼ 20 km s−1 relative to the local ISM. Does the steady-state
assumption make sense?
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Chapter 16. Ionization in Predominantly Neutral Regions

16.1 The diffuse molecular cloud toward the bright star ζ Persei has N(H+
3 ) = 8× 1013 cm−2 and N(H2) =

5×1020 cm−2. Estimate the abundance n(OH+)/nH in the molecular region of this cloud if the gas-phase
abundance n(O)/nH ≈ 4×10−4.

Assume nH ≈ 102 cm−3 and T ≈ 60K. Assume that most of the hydrogen is molecular, so that n(H2) ≈ nH/2.
The rate coefficient for OH+ + e− is given in Table 14.8. Assume that the free electrons come primarily from
photoionization of “metals” with n(M+)/nH = xM ≈ 1.07×10−4 (as per Eq. 16.3).

16.2 [Note: This problem is appropriate for Chapter 17, not 16.]
Consider a two-level system. Suppose that there is only one collision partner. If the critical density [as defined
in Eq. (17.7)] is ncrit, and the actual density of the collision partner is n, what fraction of collisional excitations
will be followed by a radiative decay back to the ground state?

16.3 The ion H+
3 can react with electrons (H+

3 + e− → H2 +H and H+
3 + e− → 3H) or neutral atoms or molecules

M (H+
3 +M → MH+ +H2). If the eligible species M (e.g., O, C, S) have abundance n(M)/nH = 3×10−4,

what is the fractional ionization xe below which the destruction of H+
3 is dominated by

H+
3 +M → MH+ +H2 ?

Assume that this reaction proceeds with a typical ion-neutral rate coefficient k ≈ 2×10−9 cm3 s−1, and that the
gas temperature T = 30K. The rate coefficient for H+

3 + e− → H2 +H is 5.0× 10−8T−0.48
2 cm3 s−1 and the

rate coefficient for H+
3 + e− → 3H is 8.9× 10−8T−0.48

2 cm3 s−1.

16.4 In a dark cloud with density nH = 104 cm−3 and fractional ionization xe ≈ 10−7 (see Figure 16.3), the
hydrogen is mostly H2. Assume that k(H2

+ + H2 → H+
3 + H) ≈ 2×10−9 cm3 s−1 The cosmic ray flux is

such that an H atom would have a primary ionization rate ζCR ≈ 10−16 s−1. Ignore helium. Assume that H+
3 is

destroyed primarily by H+
3 +M → H2 +MH+, with n(M)/nH ≈ 3× 10−4 and k16.18 ≈ 2× 10−9 cm3 s−1.

(a) Estimate n(H2
+)/nH.

(b) Estimate n(H+
3 )/nH.

16.5 Consider a region containing only partially-ionized hydrogen. Let ζ be the ionization rate per H atom, and let α
be the recombination coefficient.

(a) Determine the steady-state ionization fraction xss in terms of nH ≡ n(H0) + n(H+), ζ, and α. Express
your answer in terms of the dimensionless parameter β ≡ ζ/(αnH)

(b) What is the asymptotic behavior of xss for β ≪ 1? Show the leading dependence on β.

(c) What is the asymptotic behavior of xss for β ≫ 1? Show the leading dependence on β.

(d) Suppose that the fractional ionization at time t = 0 is given by x(0) = xss + δ. If |δ| ≪ xss, determine
the solution x(t > 0), assuming nH, ζ, and α to be constant. (Hint: linearize around the steady state.)
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Chapter 17. Collisional Excitation

17.1 Consider the H I spin temperature in a region where the brightness temperature of the background radiation field
at λ ≈ 21 cm is Trad, and the gas temperature is Tgas. Suppose that hν/kTrad ≪ 1, and Tgas > Trad.

Consider only the two hyperfine levels of H I (i.e., ignore the effects of Lyman alpha excitation of the 2p levels).

Let the H nucleon density of the gas be nH, and define the “critical density” according to Eq. (17.7),
ncrit ≡ (1 + nγ)

A10

k10
.

(a) Using the approximation hν/kTrad ≪ 1, obtain an expression for the spin temperature Tspin in terms of
Trad, Tgas, and the ratio R ≡ nH/ncrit.

(b) Find the minimum value of R such that Tspin > (T rad + Tgas)/2.
You may assume that Tgas ≫ hν/k, T rad ≫ hν/k, and |Tgas − T rad| ≫ hν/k.

17.2 Consider atoms X with two levels, j = 0 and j = 1, with degeneracies g0 and g1, in a gas where collisions
take place with some collision partners with density nc. Let ∆E ≡ E1 − E0, and let T be the gas temperature.
Let k10 be the rate coefficient for collisional deexcitation, and A10 be the Einstein A coefficient for spontaneous
decay. Suppose that there are no photons present. Let x(t) be the fraction of X in the excited state.

(a) What is the fraction xss such that the level populations are in steady-state statistical equilibrium?
(b) Suppose that y(t) ≡ x(t)− xss, with initial value y(0). Solve for y(t).

17.3 When the proton spins in H2 are antiparallel, we have “para”-H2, which can have rotational angular momentum
J = 0, 2, 4, .... When the proton spins are parallel, we have “ortho”-H2, for which only odd values of J are pos-
sible. Radiative transitions between ortho-H2 and para-H2 are strongly forbidden; para→ortho or ortho→para
transitions occur only because of collisions.

Because the nuclear spins are only weakly-coupled to collision partners such as H atoms, the rate coefficients
for ortho→para or para→ortho conversion are small.

Let H2(v, J) denote H2 with vibrational and rotational quantum numbers (v, J). The rate coefficient for

H2(0, 1) + H2(0, 0) → H2(0, 0) + H2(0, 0)

is estimated to be only k10 = 1.56× 10−28 cm3 s−1 (Huestis 2008: Plan. Sp. Sci. 56, 1733). The energy
difference between H2(0, 1) and H2(0, 0) is ∆E/k = 170.5K.

(a) Use detailed balance to obtain the rate coefficient k01 for

H2(0, 0) + H2(0, 0) → H2(0, 1) + H2(0, 0) .

(b) In a molecular cloud with n(H2) = 100 cm−3 and T = 50K, what is the steady-state ratio of n(J =
1)/n(J = 0) if only collisions with H2 are acting?

(c) If the ortho-para ratio at t = 0 differs from the LTE value, small deviations from LTE abundances will
decay exponentially on a time scale τ . Evaluate τ for n(H2) = 106 cm−3 and T = 50K, assuming that
the only processes causing ortho-para conversion are

H2(0, 0) + H2(0, 0)→H2(0, 1) + H2(0, 0)

H2(0, 1) + H2(0, 0)→H2(0, 0) + H2(0, 0) .

17.4 The ground term of C II has two fine structure levels: 2Po
1/2 and 2Po

3/2. Absorption line studies of an interstellar
cloud give the column density of the ground state (2Po

1/2) N(C II) = 1016.8 cm−2, and an upper limit on the
column density of the excited state N(C II∗) < 1015.8 cm−2. The excited fine structure level emits 158µm
photons with a spontaneous decay rate A = 2.3 × 10−6 s−1. Take the electron collision strength between the
2Po

1/2 and 2Po
3/2 levels to be Ω = 1.5. If the gas kinetic temperature is known to be T = 100K, obtain a limit

on the electron density based on the relative populations of the fine structure levels.



Chapter 18 Please do not copy, scan, or photograph. 35

Chapter 18. Nebular Diagnostics

18.1 Derive the value of the constant C in the equation

n(O III)

n(H+)
= C× I([O III]5008)

I(Hβ)
T−0.494−0.089 lnT4
4 e2.917/T4 .

in the low density limit. For what densities is your result valid?

18.2 The observed spectrum of an H II region has

I([O III]4364.4 Å)

I([O III]5008.2 Å)
= 0.003 ,

I([O II]3729.8 Å)

I([O II]3727.1 Å)
= 1.2 .

(a) If interstellar reddening is assumed to be negligible, estimate the electron temperature T and the electron
density ne. You may find it convenient to use Figs. 18.2 and 18.4.

(b) Now suppose that it is learned that there is reddening due to intervening dust with
A(4364.4 Å)−A(5008.2 Å) = 0.31mag. Re-estimate T and ne.
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Chapter 19. Radiative Trapping

19.1 By approximating the sum by an integral, evaluate the partition function for a rigid rotor,

Zrot =

∞∑
J=0

(2J + 1)e−B0J(J+1)/kBTexc ,

in the high temperature limit kBTexc/B0 ≫ 1.

19.2 Consider a uniform spherical cloud of density nH = 103n3 cm
−3 and radius R = 1019R19 cm, with CO

abundance n(CO)/nH = 7×10−5. Assume the turbulence in the cloud results in a Doppler line broadening
parameter b = b5 km s−1.

The Einstein A coefficient for CO is given in Eq. (5.6). The rotation constant is B0/kB = 2.766K.

(a) Obtain an equation for the optical depth τ0 (from center to edge) in the J + 1 → J transition in a cloud
where the CO has excitation temperature Texc. Express τ0 in terms of n3, R19, b5, Texc, J , and B0/kB.

(b) Leaving n3, R19, and b5 as variables, and assuming Texc = 8K, evaluate τ0 for the J = 2 → 1 and
J = 3 → 2 transitions.

(c) Repeat the calculation in (b) for Texc = 30K.

19.3 Recall that XCO ≡ N(H2)/
∫
TAdv gives the relation between N(H2) and the “antenna temperature” TA

integrated over radial velocity v of the CO 1–0 line in a resolved source.

(a) Suppose that we observe CO 1–0 line emission from an unresolved galaxy at distance D, with an integrated
flux in the 1-0 line WCO ≡

∫
Fνdv, where Fν is the flux density, v is radial velocity, and the integral

extends over the full range of radial velocities in the galaxy.
Derive an expression giving the mass M(H2) of H2 in terms of WCO, XCO, λ, and D (and fundamental
constants).

(b) NGC 7331, at a distance D = 14.7Mpc, has WCO = 4090 Jy km s−1. Calculate M(H2). Assume that
XCO = 4×1020 cm−2(Kkm s−1)−1.

19.4 If L is the line luminosity of a spherical cloud of radius R, and M is its mass, calculate the ratio of the mean
line intensity ⟨I⟩ (averaged over the solid angle subtended by the cloud) to the mean surface density of the cloud
Σ = M/πR2. Note: this is easy – just an exercise to make you think about factors of 4π.
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Chapter 20. Optical Pumping

20.1 Consider UV-pumping of the rotationally-excited states of para-H2.
H2(v=0, J=2) can be pumped by UV in the 912–1108 Å wavelength range as follows:

1. Ground-electronic state H2(v=0, J =0) absorbs a photon (via a permitted electric-dipole transition) that
excites it to a J = 1 state of one of the many vibrational levels of either the B1Σ+

u or C1Πu states (see Fig.
5.1).

2. This is followed by spontaneous emission of a UV photon in a transition back to the ground electronic
state. A fraction fdiss ≈ 0.15 of these transitions are to the vibrational continuum of the ground electronic
state, leading to immediate dissociation H2 → H+H.

3. A fraction (1 − fdiss) of the UV decays are to one of the bound vibration-rotation levels (either J = 0 or
J = 2) of the ground electronic state. A large fraction (close to 100%) of these UV decays are to excited
vibrational states v ≥ 1 (either J = 0 or J = 2), and are then followed by a “vibrational cascade” that
returns the H2 to the v = 0 level, typically after emission of several infrared photons.

4. Suppose that a fraction ϕpara of the vibrational cascades of para-H2 end up in one of the rotationally-
excited levels J = 2, 4, 6, ... of the ground vibrational state v = 0. At low densities, the J = 4, 6, ...
rotationally-excited levels will decay by rotational quadrupole transitions (J → J−2) down the rotational
ladder, eventually populating the v = 0, J = 2 level.

Now consider a plane-parallel cloud, and suppose that each face of this cloud is illuminated by a radiation field,
isotropic over 2π steradians, with λuλ = 2×10−14χ erg cm−3, where χ is a dimensionless intensity scale factor.
Suppose that a fraction fH2

of the incident UV photons in the 1110–912 Å range are absorbed by H2 (rather
than by dust), and suppose that a fraction hpara of the H2 absorptions are due to H2(v=0, J=0).

Suppose that an observer views the cloud with the line-of-sight making an angle θ with respect to the cloud
normal.

If collisions can be neglected, and UV pumping is the only mechanism for populating the J ≥ 2 levels of H2,
obtain a formula for the surface brightness of the cloud in the H2 0–0S(0) line at 28.22µm (your result should
depend on χ, fH2

, fdiss, hpara, ϕpara, and the inclination angle θ).

20.2 Consider an ion X in an H II region around a star radiating hν > 13.6 eV photons at a rate Q0. Let L⋆ and T⋆

be the stellar luminosity and effective temperature.

Suppose that the ion X in level ℓ has an absorption line with wavelength λℓu and oscillator strength fℓu to upper
level u with (Eu − Eℓ) < 13.6 eV.

(a) If intervening absorption can be neglected, and the hν < 13.6 eV radiation from the star can be approx-
imated by a blackbody, obtain a formula for the photoabsorption probability/time ζℓu for an ion X at a
distance r from the star.

(b) Now suppose that the H II region has uniform density nH and recombination rate coefficient αB . Obtain
an expression for the pumping rate at the “half-mass” radius r = 2−1/3RS0, where RS0 is the Strömgren
radius.

(c) The N II ion has a permitted absorption line out of the ground state 3P0 to the 3D o
1 level (see Fig. 6.1) with

fℓu given in Table 9.4.
Consider an H II region around an O9V star with Q0, L⋆, and effective temperature as given in Table 15.1.
Suppose the H II region has αB = 3×10−13 cm3 s−1 (corresponding to electron temperature ∼8150K).
Evaluate ζ0u at the half-mass radius as a function of nH. Evaluate ζ0u for nH = 1 cm−3.

(d) The 3D o
1 state has three allowed decay channels: 3D o

1 → 3P0, with Au0 = 2.10×108 s−1, 3D o
1 → 3P1,

with Au1 = 1.54×108 s−1, and 3D o
1 → 3P2, with Au2 = 9.96×106 s−1.

Ignoring intervening absorption, what is the UV pumping rate β01 at the “half-mass radius” for populating
the 3P1 fine structure level by photoexcitation out of 3P0? Include radiative transitions that pass through
the 3P2 state.
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(e) Compare this UV pumping rate with the rate for collisional excitation of N II 3P1 by thermal electrons.
Collision strengths are available in Table F.2.
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Chapter 21. Interstellar Dust: Observed Properties

21.1 Suppose that dust produced extinction A(λ) directly proportional to the frequency of the light. What would be
the value of RV ≡ AV /E(B − V ) ? Assume λV = 0.55µm and λB = 0.44µm.

21.2 If the extinction were to vary as a power law, A ∝ νβ , what power-law index β would give RV = 3.1 ? As-
sume λV = 0.55µm and λB = 0.44µm.

21.3 The interstellar extinction at λ = 0.55µm is observed to be proportional to the hydrogen column density NH,
with A0.55µm/NH ≈ 3.52× 10−22mag cm2. Suppose that this extinction is produced by spherical dust grains
with a single radius a. Let the usual dimensionless efficiency factor Qext(λ) ≡ Cext(λ)/πa

2, where Cext(λ) is
the cross section for extinction at wavelength λ.

(a) If the grains have internal density ρ, calculate Mdust/MH, the ratio of total dust mass to total hydrogen
mass, in terms of unknown Qext(0.55µm), ρ, and a.

(b) Calculate the numerical value of Mdust/MH if a = 0.1µm, Qext = 1.5, and ρ = 3g cm−3.
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Chapter 22. Scattering and Absorption by Small Particles

22.1 Suppose that for λ = 10µm, amorphous silicate material has dielectric function ϵ = ϵ1 + iϵ2 given in the
following table:

λ(µm) ϵ1 ϵ2
9.50 0.731 1.987
9.60 0.774 2.131
9.70 0.831 2.260
9.80 0.891 2.373
9.90 0.946 2.476
10.0 0.996 2.575
10.1 1.040 2.678
10.2 1.085 2.792
10.3 1.141 2.920
10.4 1.224 3.056
10.5 1.333 3.184

For a spherical grain of amorphous silicate with radius a = 0.1µm:

(a) Calculate the absorption efficiency factor Qabs and the absorption cross section per volume Cabs/V at
λ = 10µm.

(b) Calculate the scattering efficiency factor Qsca at λ = 10µm.

22.2 For particles in the electric dipole limit, Eq. (22.12) gives the absorption cross section in terms of the complex
polarizability α, and Eq. (22.14) provides an expression for the polarizability αjj for the electric field parallel
to principal axis j.

(a) Consider an oblate ellipsoid with shape factors Lj . Show that in the electric dipole limit, the absorption
cross section for radiation polarized with the electric field parallel to axis j is

Cabs,j =
2πV

λ

ϵ2

[1 + (ϵ1 − 1)Lj ]
2
+ (ϵ2Lj)2

.

(b) Show that the difference in extinction cross section for radiation polarized parallel to axes a and b is

Cabs,a −Cabs,b =
2πV ϵ2

λ
(Lb − La)×

(ϵ1 − 1)2(Lb + La) + 2(ϵ1 − 1) + ϵ22(Lb + La){
[1 + (ϵ1 − 1)La]

2
+ ϵ22L

2
a

}{
[1 + (ϵ1 − 1)Lb]

2
+ ϵ22L

2
b

} .

22.3 Consider a oblate spheroidal grain with axial ratios a : b : b :: 0.1µm : 0.15µm : 0.15µm. In the electric dipole
limit (λ ≫ a), the absorption cross section for radiation polarized with the electric field parallel to axis j is

Cabs,j =
2πV

λ

ϵ2

[1 + (ϵ1 − 1)Lj ]
2
+ (ϵ2Lj)2

.

(a) Using Eq. (22.15–22.18), evaluate the shape factors La and Lb for applied electric fields parallel to the
short axis a or a long axis b.

(b) If the complex dielectric function of amorphous silicate material at λ = 10µm is ϵ = 0.996 + 2.575i,
where i ≡

√
−1, calculate Cabs,a/V , Cabs,b/V , and [Cabs,b − Cabs,a] /V for radiation with λ = 10.0µm.

22.4 In the electric dipole limit, the absorption cross section for an ellipsoidal grain is given by

Cabs,j =
2πV

λ

ϵ2

[1 + (ϵ1 − 1)Lj ]
2
+ (ϵ2Lj)2

.
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Consider a spheroidal grain with axial ratios a : b : b :: 1 : 1.5 : 1.5 composed of “astrosilicate” material. For
λ >∼ 100µm, suppose that the dielectric function of this material can be approximated by

ϵ ≈ 11.6 + 3.0

(
100µm

λ

)
i .

If such grains are perfectly aligned with short axis â ∥ B0, calculate the degree of polarization of optically-thin
450µm thermal emission along a sightline ⊥ B0.
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Chapter 23. Composition of Interstellar Dust

23.1 Suppose that in the optical and near-UV the extinction efficiency can be approximated

Qext(a, λ) ≈ 2(πa/2λ)β for πa/λ < 2

≈ 2 for πa/λ > 2 .

This is imprecise, but you can see from Fig. 22.3 that for β ≈ 1.5 it roughly approximates the essential behavior
if |m − 1| ≈ 0.5: a rapid increase in Qext with increasing a/λ until it reaches ∼2. Note that this is not a good
approximation for a/λ <∼ 0.05, but in the present problem we consider only the extinction at B and V , which is
dominated by the larger particles.

Suppose that the dust density is proportional to nH, with a simple power-law size distribution

1

nH

dn

da
=

A0

a0

(
a

a0

)−p

0 < a ≤ amax ,

where a0 = 0.1µm is a fiducial length, A0 is dimensionless, and p < 4.
The V and B bands have wavelengths λV = 0.55µm and λB = 0.44µm.

Let σext(λ) be the extinction cross section per H at wavelength λ.

(a) Assume that amax < 0.28µm (i.e., πamax/λV < πamax/λB < 2). Obtain an expression for

σext(λ)

A0πa20

that would be valid for λ = λV or λB . Evaluate this ratio for β = 1.5, p = 3.5, amax = 0.25µm, and
λ = λV .

(b) For amax < 0.28µm, using your result from (a), obtain an expression for the ratio

σext(λB)

σext(λV )
,

and evaluate this for β = 1.5.

(c) Assuming amax < 0.28µm, obtain an expression for RV ≡ AV /(AB − AV ), and evaluate this for
β = 1.5.

(d) Now suppose that amax > 2λ/π. Obtain an expression for

σext(λ)

A0πa20
.

(e) If amax = 0.35µm, p = 3.5, and β = 2,
(i) Evaluate σext(λV )/A0πa

2
0,

(ii) Evaluate σext(λB)/A0πa
2
0,

(iii) Evaluate RV .
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Chapter 24. Temperatures of Interstellar Grains

24.1 Consider particles with number density nc, mass mc, and kinetic temperaure Tc colliding with a neutral grain.
The collision rate is

dN

dt
= πa2nc

(
8kBTc

πmc

)1/2

.

Let E be the kinetic energy of an impacting particle. What is ⟨En⟩, where the average is over the impacting
particles, for general n?

Evaluate the result for n = 1.

24.2 The Debye model for the heat capacity of a solid has the thermal energy given by

E(T )=
3Nv

(kBΘ)3

∫ kBΘ

0

x

exp(x/kBT )− 1
x2dx .

where Nv is the number of vibrational degrees of freedom of the solid, and Θ is the “Debye temperature”
(kBΘ = h̄ωmax, where ωmax is the frequency of the highest frequency vibrational mode of the solid). In the
low-temperature limit T ≪ Θ, the thermal energy becomes

E(T )≈ 3Nv(kBT )
4

(kBΘ)3

∫ ∞

0

y3dy

ey − 1

=
Nvπ

4

5

kBT
4

Θ3
.

(a) Suppose a grain contains Na atoms, with 3 translational, 3 rotational, and Nv = 3Na − 6 vibrational
degrees of freedom. Suppose that the vibrational modes are approximated by the Debye model. Consider
a grain with Na = 103 atoms and Θ = 300K. If the grain is initially at Ev = 0, what is the temperature
after absorbing a photon with energy hν = 10 eV?

(b) Obtain an expression for the heat capacity C(T ) of a grain with Na atoms in the low-temperature limit
T ≪ Θ.

(c) At high temperatures, C(T ) → NvkB. By equating the low-temperature form you obtained in (b) with this
high temperature limit, determine the value of T/Θ above which the low-temperature form of the Debye
heat content (E ∝ T 4) is no longer a good approximation. Evaluate this for a solid with Θ = 400K

24.3 Suppose that interstellar dust grains have Qabs ∝ λ−2 for λ > 1µm. When exposed to the local interstellar
radiation field (LISRF), these grains are heated to T ≈ 18K and radiate with λIλ peaking at λ = 140µm.

In a region where the starlight has the same spectrum as the LISRF but is stronger by a numerical factor U :

(a) What will be the grain temperature?

(b) If U = 103, what will be the wavelength where λIλ peaks?

24.4 Suppose that interstellar dust grains have Qabs ∝ λ−β for λ > 1µm. Suppose that when exposed to the
local interstellar radiation field (LISRF), these grains are heated to T ≈ 18K and radiate with λIλ peaking at
λpeak = 140µm.

In a region where the starlight has the same spectrum as the LISRF but is stronger by a numerical factor U :

(a) What will be the grain temperature? (give your result in terms of U and β).

(b) If U = 102 and β = 1.5, what will be the wavelength where λIλ peaks?
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Chapter 25. Grain Physics: Charging and Sputtering

25.1 Consider a grain with radius a = 0.1µm, located in an H I cloud with ne = 0.01 cm−3, T = 100K, and
a starlight background given by the MMP83 estimate for the solar neighborhood. Assume that the “sticking
efficiency” for colliding electrons se = 1.

(a) Estimate the probability per unit time t−1
e0 for electron capture by a neutral grain.

(b) For the MMP83 radiation field [see Table 12.1 and Eq. (12.7)] the number density of 10-13.6 eV photons
is nFUV ≈ 8×10−4 cm−3 (see Problem 12.2). If the a = 0.1µm grain has an absorption efficiency factor
Qabs ≈ 1, and the mean photoelectric yield for hν > 10 eV is Ype = 0.1, estimate the photoelectron
emission rate t−1

pe .

(c) As the grain becomes positively charged, Coulomb focusing will increase the rate of electron collisions.
If the rate of photoelectron emission t−1

pe does not change when the grain becomes positively charged, to
what potential U will the grain charge?
How many unit charges does this correspond to?

25.2 Consider a grain of radius a. Suppose that the balance between photoelectron emission and electron capture
results in charging to an average potential U > 0. The grain is located in gas with electron density ne and gas
temperature T , and the electron “sticking coefficient” is a constant se.

(a) What is the time-averaged rate of electron capture Ṅe by the grain? Give your result for general U > 0,
nese, T , and a, and then evaluate this result for ne = 0.01 cm−3, T = 102 K, se = 1, a = 0.1µm, and
U = 0.3V.

(b) What is the mean charge on the grain, in units of the charge quantum e?

(c) If the photoelectric emission rate is approximately independent of small variations of U , then the grain
charge Z will fluctuate around ⟨Z⟩, with a standard deviation ∼

√
⟨Z⟩, and a charge correlation time

τQ ≈ ⟨Z⟩Ṅ−1
e , where Ṅe is the time-averaged electron capture rate.

Calculate the dimensionless number ωτQ, where ω is the grain gyrofrequency in the local magnetic field.
Assume the grain material to have a density ρ = 3g cm−3. Evaluate ωτQ for a = 0.1µm, nese =
0.01 cm−3, T = 102 K, and B0 = 5µG.

25.3 Sputtering acts to erode grains at a rate da/dt = −nHβ independent of a. Suppose that the grain size distribution
at t = 0 is a power-law

1

nH

dn

da
=

A0

amax

(
a

amax

)−p

0 ≤ a ≤ amax .

(a) Let V0 be the initial volume of grain material per H nucleon. Express V0 in terms of A0, amax, and p.

(b) Obtain an algebraic expression for V (t)/V0 in terms of y ≡ ∆a/amax = nHβt/amax and p.

25.4 For the previous problem, now assume p = 3.5, and amax = 0.3µm.

(a) Plot V (t)/V0 as a function of ∆a/amax.

(b) Graphically estimate ∆a/amax such that V/V0 = 1/2.

(c) If amax = 0.30µm, β = 10−2 cm3 Å yr−1, and nH = 10−2 cm−3, what time ∆t is required to sputter
away 50% of the mass in grains?

25.5 Suppose that at t = 0 the dust has a size distribution

1

nH

dn

da
=

A0

a0

(
a

a0

)−p

for a ≤ amax .

Suppose that sputtering has continued for some time t, at a sputtering rate da/dt = −nHβ. Let Qext(a, λ) be
the extinction efficiency factor at wavelength λ for a grain of radius a



Chapter 25 Please do not copy, scan, or photograph. 45

Let σext(λ) be the dust extinction cross section per H. Write down an integral expression for σext(λ) at some
fixed time t < amax/|da/dt|.

25.6 Consider hot plasma with density nH in an elliptical galaxy. Suppose that planetary nebulae and other stellar
outflows are injecting dust into the plasma with a rate per unit grain radius(

dṄdust

da

)
inj

=
A0

amax

(
a

amax

)−p

.

(a) Obtain an expression for the total rate (dMdust/dt)inj at which dust mass is being injected into the plasma,
in terms of A0, amax, p, and the density ρ of the grain material.

(b) Upon injection into the plasma, the grains are subject to sputtering at a rate da/dt = −βnH, where β
is a constant. Find the steady state solution for dNdust/da, where Ndust(a) is the number of dust grains
present with radii ≤ a.

(c) Obtain an expression for the steady-state dust mass, Mdust.

(d) Obtain an expression for the characteristic mass survival time τsurvival ≡ Mdust/(dMdust/dt)inj in terms
of amax, p, and da/dt.

(e) Consider the “passive” elliptical galaxy NGC 4564 containing hot plasma kT ≈ 0.5 keV (T ≈ 6×106 K)
and a core density nH ≈ 0.01 cm−3 (Soria et al. 2006, ApJ 640, 126). From Figure 25.4, the sputtering
rate for refractory grains would be da/dt = −βnH, with β ≈ 10−6 µmcm3 yr−1.
Suppose that the injected dust has p = 3.5 and amax = 0.3µm. Estimate the mass survival time τsurvival.
If the dust injection rate from evolved stars in the central kpc is 1.3×10−4 M⊙ yr−1 (Clemens et al. 2010:
A&A 518, L50), estimate the estimated steady-state dust mass Mdust.
Compare to the observed upper limit Mdust < 8700M⊙ from Clemens et al. (2010).

25.7 Suppose that interstellar gas contains dust grains consisting of two populations: “large” grains of radius a1 =
1×10−5 cm and number density n1 = 2×10−12nH, and “small” grains of radius a2 = 5×10−7 cm and number
density n2 = 1× 10−9nH.

(a) Suppose that every grain is charged to a potential U ≈ +2V. If the gas as a whole is electrically neutral,
compute (ne − nI)/nH, where ne is the free electron density, and nI is the density of free ions (where we
do not consider the charged grains to be “ions”).

(b) Discuss whether your answer to (a) is seriously affected by charge quantization.

25.8 Suppose that a spherical dust grain of radius a ≈ 0.1µm is charged to a potential +1.0 Volt.

(a) If the net charge on the grain is Q, calculate the number of excess charges Z = Q/e, where e is the unit
charge.

(b) If the grain is moving perpendicular to the local magnetic field B, it will move in a circular orbit. If the
local field is B = 5µG, and the grain has solid density ρ = 3g cm−3, calculate the period of this orbital
motion (assume only the Lorentz force acts on the grain).

(c) If the grain is moving at a speed v⊥ = 1km s−1 perpendicular to the magnetic field, what is the “gyrora-
dius” of the orbit?

25.9 Consider hot plasma with density nH in an elliptical galaxy. Suppose that planetary nebulae and other stellar
outflows are injecting dust grains with a single initial size a = amax into the plasma with a rate (dNdust/dt)inj,
where Ndust = number of dust grains.

Upon injection into the plasma, the grains are subject to sputtering at a rate da/dt = −βnH, where β is a
constant.

(a) Find the steady state solution for dNdust/da, where Ndust(a) is the number of dust grains present with
radii ≤ a. Express your result in terms of β, nH, and the injection rate (dNdust/dt)inj.
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(b) If the rate of injection of dust mass is(
dMdust

dt

)
inj

=
4πρ

3
a3max

(
dNdust

dt

)
inj

where ρ is the internal density of the dust, obtain an expression for the steady-state dust mass, Mdust.
Express your result in terms of (dMdust/dt)inj, β, nH, and amax.

(c) Obtain an expression for the characteristic “mass survival time”

τmass survival ≡
Mdust

(dMdust/dt)inj
.

(d) Consider the “passive” elliptical galaxy NGC 4564 containing hot plasma kT ≈ 0.5 keV (T ≈ 6×106 K)
and a core density nH ≈ 0.01 cm−3 (Soria et al. 2006, ApJ 640, 126). From Figure 25.4, the sputtering
rate for refractory grains would be da/dt = −βnH, with β ≈ 10−6 µmcm3 yr−1.
Suppose that the injected dust has a = 0.3µm. If the dust injection rate from evolved stars in the central
kpc is 1.3×10−4 M⊙ yr−1 (Clemens et al. 2010: A&A 518, L50), estimate the steady-state dust mass
Mdust in the central kpc.
Compare to the observed upper limit Mdust < 8700M⊙ from Clemens et al. (2010).

(e) Estimate the dust mass survival time τmass survival in the core of NGC 4564.
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Chapter 26. Grain Dynamics

26.1 Suppose that a silicate dust grain has a radius a = 0.1µm. Suppose that the dust grain has Qabs = 0.11,
Qsca = 0.69, and that the scattered light has ⟨cos θ⟩ = 0.31, where θ is the angle between the direction of
incidence and the direction of propagation; these values have been estimated for “astronomical silicate” grains
at λ = 5500 Å (Draine 1985: Ap.J.Suppl., 57, 587). Take ρ = 3g cm−3 for the grain density.

(a) Ignoring the wavelength dependence of these quantities, what is the value of L/M (the ratio of luminosity
to mass) for a star such that the radiation pressure force on such a grain close (but not too close) to the star
exactly balances the gravitational force due to the star? Give L/M in solar units (L⊙/M⊙).

(b) Now suppose that such silicate grains are mixed with gas, with the dust mass equal to 0.7% of the gas
mass, and that the grains are “well-coupled” to the gas through collisions or magnetic fields. What must be
the ratio of L/M for the star (in solar units) such that radiation pressure on the grains will exert a repulsion
equal in magnitude to the gravitational attraction on the gas-dust mixture?

26.2 In this problem you will get some feeling for how anisotropic the radiation field in interstellar space is likely to
be.

(a) Estimate the anisotropy of the radiation field in an interstellar cloud by pretending that it consists of an
isotropic component with energy density 0.4 eV cm−3 plus radiation from an imaginary source of luminos-
ity L ≈ 1010 L⊙ located at the galactic center (at a distance 8 kpc). What is the energy density ( eV cm−3)
of the radiation associated with the anisotropic component?

(b) Obviously one should worry about the contribution of the single apparently brightest star to the anisotropy
of the local radiation field. Suppose that the brightest star in the sky is an A1V star with a luminosity
L = 50L⊙ at a distance d = 2.7 pc [e.g., Sirius in our sky!]. Calculate the ratio of the energy density
contributed by this star to the energy density contributed by the “galactic center” pseudosource.

26.3 Consider a dust grain with the properties of the a = 0.1µm “astronomical silicate” grain of problem 26.1.
Suppose this grain to be located in a diffuse cloud of density nH = 20 cm−3 and temperature T = 100K, with
n(He)/n(H) = 0.1. Assume the starlight background to have an energy density of 0.5 eV cm−3, with 80%
of the energy in an isotropic component, and 20% in a unidirectional component [cf. the “Galactic Center”
contribution from problem 26.2(a)].

(a) Neglecting any forces other than gas drag and radiation pressure, what will be the “terminal” drift veloc-
ity of the grain relative to the gas if the grain is uncharged? Approximate the gas drag by the formula
appropriate for subsonic motion (see Eq. 26.1-26.3):

Fdrag ≈ C · (πa2) · (nkBT )
v√

kBT/µ
,

where C = 16/3
√
2π ≈ 2.13, n is the gas particle density, and µ is the mass per gas particle.

(b) Approximately how long does it take the grain to reach terminal speed? Assume the grain density to be
ρ = 3g cm−3.

(c) Moving at the terminal speed, how long would it take the grain to drift a distance of 1 pc?

26.4 Suppose the magnetic field strength in an interstellar cloud is B = 3µG.

(a) Estimate the gyroradius for a grain with radius a = 0.1µm, density ρ = 3g cm−3, charged to a potential
U = 2V, moving with a velocity of 1 km s−1 perpendicular to the magnetic field.

(b) What is the gyroperiod for this grain?

(c) Estimate the gyroradius for a 100 MeV proton moving perpendicular to the field.
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26.5 β Pictoris is an A5 ZAMS star with substantial amounts of solid matter in a circumstellar disk. An A5 ZAMS
star has luminosity L ≈ 20L⊙ and mass M ≈ 2M⊙. Assume that there is no gas present in the disk – we want
to consider the motion of solid particles under the influence of radiation and gravity.

(a) Estimate τPR for an a = 10µm grain (with Qabs ≈ 1 and ρ ≈ 3 g cm−3) in an orbit with radius r =
3×1013 cm. (Neglect scattering).

(b) Briefly discuss the dynamics of an a = 0.1µm silicate grain in the neighborhood of this star. Assume the
optical properties given in problem 26.1.

26.6 Consider a dust grain with internal density ρ ≈ 2 g cm−3 (appropriate for carbonaceous material). Suppose the
grain to be spherical with radius a = 10−7a−7 cm.

(a) If the gas kinetic temperature is T = 102T2 K, what is the r.m.s. translational velocity of the dust grain
due to thermal excitation alone?

(b) If the grain rotation is in thermal equilibrium with the gas, what will be the r.m.s. rotation rate?

(c) If the grain is neutral, and is located in an H I region with density nH = 102n2 cm
−3, what is the timescale

τM for the grain to collide with its own mass of gas? (If the only process acting to change the linear
and angular momentum of the grain is direct collisions with neutral atoms, the translational and rotational
motion of the grain will “thermalize” on this timescale.)

26.7 The relative velocity of the Sun and the local interstellar medium is estimated to be 26 km s−1 (Möbius et al.
2004: A&A 426, 897): from the standpoint of the Sun there is an “interstellar wind” with a speed vISW =
26 km s−1. The local density of the interstellar medium can be inferred from observations of backscattered
solar Lyman α and Helium resonance line radiation; if the local helium is primarily neutral, then the inferred
density is nH ≈ 0.22 cm−3 (Lallement et al. 2004; A&A 426, 875). Suppose that the local gas contains dust
grains with a mass equal to 0.01 of the hydrogen mass. Suppose that these grains are in a size distribution with
dn/da ∝ a−3.5 for .005 < a < 0.25µm (this is the “MRN” size distribution).

(a) For this size distribution, what fraction fM (a > 0.1µm) of the grain mass is in particles with a > 0.1µm?

(b) At the radius of Jupiter, estimate the mass flux ( g cm−2 s−1) due to a > 0.1µm interstellar grains
if they are not deflected after passing through the “heliopause” where the interstellar medium and the
interplanetary medium are both shocked. The location of the heliopause is uncertain; it is estimated to be
at ∼ 100AU.

(c) Now suppose the grains have internal densities of ρ = 2g cm−3, and suppose that sunlight charges them
to a potential U = 5V. Let the solar wind be in the radial direction with a speed v⊙W = 450 km s−1.
Assume that in the frame of reference where the solar wind is locally at rest, the local electric field vanishes.
Further assume, for simplicity, that the interplanetary magnetic field is perpendicular to the direction of
the interstellar wind, and has a strength B = 2µG (at ∼100AU). With the above assumptions, calculate
the gyroradius of an a = 0.1µm interstellar grain once it has entered the region containing the solar wind.
How does the gyroradius depend on the grain radius a?
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Chapter 27. Heating and Cooling of H II Regions

27.1 Consider an H II region consisting only of hydrogen. Suppose that the source of ionizing photons is a blackbody
with temperature T = 32000K. Assume the nebula is in thermal and ionization equilibrium.

(a) Near the center of the nebula, at what temperature will heating by photoionization balance cooling?

(b) Estimate the mass-weighted average temperature of the gas in the nebula.

27.2 The central regions of the Orion Nebula have nH ≈ 4×103 cm−3. Suppose that MHD waves are being dissipated
in the Orion Nebula. If the energy density in the waves ∆uwave is less than 10% of the gas pressure, what value
of the damping length Ldamp is required for the wave heating to equal 10% of the photoelectric heating rate
Γpe? You may assume that vwave ≈ 10 km s−1.

27.3 Suppose that the cosmic ray flux within the Orion Nebula corresponds to a cosmic ray ionization rate ζCR <
10−15 s−1 for an H atom, with the ionization dominated by ∼ 1GeV protons. Compare the heating rate due
to plasma drag on the cosmic rays with the photolectric heating rate Γpe. Assume nH ≈ 4000 cm−3 and
T ≈ 8000K for the gas, and assume the H is fully ionized.
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Chapter 28. The Orion H II Region

28.1 The free-free emission from the Orion Nebula has been measured with radio telescopes. At ν = 1.4GHz the
integrated flux density from M42 is Fν = 495 Jy. Assuming a distance D = 414 pc, estimate the hydrogen
photoionization rate ṄL required to keep this gas ionized, if the gas temperature is T = 9000K. Assume helium
to be singly-ionized, with nHe/nH = 0.10.

28.2 The peak emission measure in M42 is EM = 5×106 cm−6 pc. If M42 is approximated as a uniform density
sphere of diameter 0.5 pc, calculate the total rate of H recombinations occuring within this sphere. Assume a
gas temperature T = 104 K, and assume He is singly ionized with He/H=0.1
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Chapter 29. H I Clouds: Observations

29.1 Suppose the H I gas to be in a plane-parallel slab geometry, with full thickness 6 × 1020 cm−2, and take the
velocity distribution be Gaussian with a one-dimensional velocity dispersion σV = 10 km s−1. Neglect the
effects of Galactic rotation.

(a) If the spin temperature is Tspin = 100K, for what galactic latitudes is the line-center optical depth τ < 0.5,
as seen from a point in the mid-plane?

(b) If the full-thickness of the H I disk is 300 pc, out to what radius (in the plane) can it be observed with
line-center optical depth τ < 0.5?

(c) What is the maximum N(H I) that can be observed with τ < 0.5 at all radial velocities?

29.2 Let dN(H I)/du × ∆u be the column density of H I in the radial velocity interval ∆u. Show that the optical
depth in the 21-cm line can be written

τ =
3

32π
Auℓ

hcλ2

kBTspin

dN(H I)

du

= 0.552

(
100K

Tspin

)
dN(H I)/du

1020 cm−2/( km s−1)
.

29.3 Suppose we observe a background radio continuum point source through a layer of “foreground” H I with
dN(H I)/du = 3 × 1020 cm−2/(20 km s−1), where u is the radial velocity. If the measured flux density of
the background continuum source changes by less than 1% on-line to off-line, what can be said about the spin
temperature of the H I? Assume the beamsize is very small. You may use the result from problem 29.2:

τ = 0.552

(
100K

Tspin

)
dN(H I)/du

1020 cm−2/( km s−1)
.
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Chapter 30. H I Clouds: Heating and Cooling

30.1 The local X-ray background (see Figure 12.1) can be approximated by

νuν ≈ 1×10−18

(
hν

400 eV

)β

erg cm−3

for 400 <∼ hν <∼ 1 keV.

(a) Using the photoionization cross section from eq. (13.3), obtain an expression for the rate for photoion-
ization of H by the 0.4–1 keV X-ray background, showing explicitly the dependence on β. To keep the
algebra simple, define u0 ≡ 10−18 erg cm−3 and σ0 ≡ 6.3×10−18 cm2, and leave your result in terms of
u0, σ0, and c.

(b) Evaluate the rate for β = 2. Is the photoionization rate dominated by the low-energy X-rays or the high-
energy X-rays?

(c) What is the mean energy of the absorbed photons for the above X-ray spectrum?

(d) The photoelectrons resulting from X-ray ionization of H and He have sufficient energy to produce sec-
ondary ionizations. If the fractional ionization xe ≈ 4 × 10−4, use Eq. (13.6) to estimate the number of
secondary ionizations per photoelectron.
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Chapter 31. Molecular Hydrogen

31.1 The radiative attachment reaction

H+ e− → H− + hν

has a rate coefficient kra = 1.9×10−16T 0.67
2 cm3 s−1. The associative detachment reaction

H− +H → H2 + e−

is a fast ion-molecule reaction with rate coefficient kad = 1.3×10−9 cm3 s−1, but H− also undergoes photode-
tachment

H− + hν → H+ e−

with a rate ζpd = 2.4×10−7 s−1 in the interstellar radiation field (rates are from Le Teuff et al. 2000: A&A
Suppl., 146, 157).

Consider an H I cloud with density nH = 30 cm−3 and electron density ne = 0.02 cm−3. The temperature is
T = 102T2 K (show the dependence of your results on T2).

(a) What is the steady-state ratio n(H−)/nH ?

(b) What fraction of the H− ions undergo the reaction H− +H → H2 + e−?

(c) Evaluate the quantity

RH− ≡ kadn(H
−)n(H)

nHn(H)

Compare this to the empirical “rate coefficient” for formation of H2 by dust grain catalysis.

31.2 Consider a region containing a mixture of H and H2. Let the rate per volume of formation of H2 from H
via grain surface recombination be RnHn(H) (i.e., [dn(H2)/dt]gr.form. = RnHn(H) is the contribution to
dn(H2)/dt from formation on grains). Let β be the rate for photodissociation of H2 → 2H.

(a) What is the steady-state solution ys for y ≡ 2n(H2)/nH?

(b) If y(t = 0) = ys + δy, show that y(t > 0) = ys + δy e−t/τ (assuming nH, R, and β to remain constant).
Obtain an expression for the “relaxation time” τ in terms of nH, R, and β.

(c) Estimate the timescale τ for nH = 20 cm−3, R = 3×10−17 cm3 s−1, and β such that ys = 0.5.

31.3 In the early universe, near redshift z ≈ 100, the H nucleon density

nH ≈ 0.20 cm−3 ,

and the fractional ionization of hydrogen has dropped to
ne

nH
≈ 3× 10−4 .

The CMB temperature is T ≈ 275K; the gas temperature is close to the CMB temperature.

The radiative attachment reaction

H+ e− → H− + hν

has a rate coefficient

kra = 3.7×10−16

(
T

275K

)0.67

cm3 s−1 .

The associative detachment reaction

H− +H → H2 + e−
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is a fast ion-neutral reation with a rate coefficient

kad = 1.3× 10−9 cm3 s−1 ,

and H− is also destroyed by

H− +H+ → H+H ,

with a rate coefficient

kn ≈ 7.8× 10−8

(
T

275K

)−1/2

cm3 s−1 .

(a) If the Universe were not continuing to expand and recombine, what would be the steady-state density
n(H−) for nH = 0.20 cm−3, T = 275K, and ne/nH = 3×10−4?

(b) Assuming this steady-state abundance of H−, calculate the rate per volume of H2 formation (H2 cm
−3 s−1)

at this time.
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Chapter 32. Molecular Clouds: Observations

32.1 The mass distribution of GMCs in the Galaxy is given by [eq. (32.1) in the textbook]:

dNGMC

d lnMGMC
≈ Nu

(
MGMC

Mu

)−α

103 M⊙ <∼ MGMC < Mu

with Mu ≈ 6× 106 M⊙, Nu ≈ 63, and α ≈ 0.6 (Williams & McKee 1997, Astrophys. J. 476, 166 ).

(a) Calculate the total mass in GMCs in the Galaxy.

(b) Calculate the number of GMCs in the Galaxy with M > 106 M⊙.
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Chapter 33. Molecular Clouds: Chemistry and Ionization

33.1 Consider a diffuse molecular cloud with nH = 102 cm−3. The hydrogen is predominantly molecular, with
n(H2) = 50 cm−3. Assume that 30% of the total C (250 ppm) abundance is in C+: n(C+) ≈ 7.5×10−5nH =
7.5×10−3 cm−3. Assume that ne ≈ 10−4nH = 0.01 cm−3. Assume that n(O)/nH ≈ 4×10−4 = 0.04 cm−3.
Treat T2 ≡ T/102 K as a free parameter.
Consider the reactions in the reaction network (33.6-33.13).

(a) Calculate the steady-state abundance of CH+
2 .

(b) Calculate the steady-state abundance of CH.
(c) Calculate the steady-state abundance of CO, leaving fshield(CO) as a free parameter. What fraction of all

of the carbon is in CO?

33.2 Consider a diffuse molecular cloud with nH = 102 cm−3. The hydrogen is predominantly molecular, with
n(H2) = 50 cm−3. The oxygen is primarily atomic, with n(O) ≈ 4×10−4nH. Assume that cosmic ray ioniza-
tion maintains an abundance n(H+

3 ) ≈ 5×10−8nH, and cosmic ray ionization plus starlight photoionization of
metals maintains ne ≈ 10−4nH = 0.01 cm−3. Let the gas temperature be T = 102T2 K.
Consider the reactions in the reaction network (33.14-33.19).

(a) What is the steady-state density n(OH+)?
(b) What is the steady-state density n(H2O

+)?
(c) What is the steady-state OH abundance relative to hydrogen, n(OH)/nH?
(d) There is more than one reaction that can produce OH. Which is most important for the given conditions?

33.3 Consider a hypothetical molecule XH+. Suppose that the principal channel for its formation in a diffuse cloud
is the radiative association reaction

X+ +H → XH+ + hν

with a rate coefficient kra = 5×10−17 cm3 s−1. Suppose that the two principal reactions for destroying XH+

are dissociative recombination
XH+ + e− → X+H

with a rate coefficient kdr = 2×10−7 cm3 s−1 and photodissociation
XH+ + hν → X+ +H

with a rate β = 5×10−10 s−1 due to the ambient starlight background.

(a) If only these processes act, compute the steady-state density ns of XH+ in a diffuse cloud with n(H) =
20 cm−3, n(X+) = 5×10−3 cm−3, and ne = 0.01 cm−3.

(b) Suppose that at time t = 0 we have n(XH+) = ns + ∆0. Assume that n(H), n(X+), and ne can all be
approximated as constant. It is easy to show that for t > 0, n(XH+) = ns+∆0e

−t/τ . Calculate the value
of τ .

33.4 Consider a hypothetical molecule XH+. The principal channel for its formation in a diffuse cloud is
X+ +H2 → XH+ +H

with a rate coefficient kf = 1×10−12 cm3 s−1. Suppose that the two principal reactions for destroying XH+ are
dissociative recombination

XH+ + e− → X+H

with a rate coefficient kdr = 2×10−7 cm3 s−1 and photodissociation
XH+ + hν → X+ +H

with a rate β = 5×10−10 s−1 due to the ambient starlight background.

(a) If only these processes act, compute the steady-state density ns of XH+ in a diffuse cloud with n(H) =
10 cm−3, n(H2) = 5 cm−3, n(X+) = 5×10−3 cm−3, and ne = 0.01 cm−3.

(b) What fraction fdr of the XH+ destructions are due to dissociative recombination?
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Chapter 34. Physical Processes in Hot Gas

34.1 Consider a spherical cloud of radius Rc immersed in hot gas with temperature and density (far from the cloud)
Th and nh. In the regime where classical evaporation applies, and the evaporative mass loss rate is Ṁ =
16πµRcκh/25kB, estimate the velocity v(r) of the evaporative flow. Express your answer for v(r) in terms of
nh, Th, κh, Rc, and (r/Rc).

34.2 Consider a slab of gas, with surfaces at x = ±L/2. Suppose that the gas at the two surfaces of the slab has
density nH = n0 and temperature T = T0 > 105 K, and is collisionally ionized. Assume that no magnetic field
is present.

(a) If the slab is thin, thermal conduction will keep the temperature within the slab close to the value at the
slab surface. Suppose that the gas within the slab loses heat by radiative cooling, with radiative power per
unit volume Λ(T ). Suppose that the temperature profile within the slab is

T ≈ T0

[
1 + β

(
2x

L
− 1

)(
2x

L
+ 1

)]
where β > 0 is a constant. This has the property that T = T0 at x = ±L/2, and T = T0 − βT0 at x = 0.
If the thermal conductivity κ and cooling function Λ are both taken to be constants, κ ≈ κ0 ≡ κ(T0) and
Λ ≈ Λ0 ≡ Λ(n0, T0), find β as a function of L, T0, κ0 and Λ0.

(b) Classical thermal conduction is given by eq. (34.5):

κ ≈ 0.87
k7/2T 5/2

m
1/2
e e4 ln Λc

where ln Λc ≈ 25 is the Coulomb logarithm. Suppose that the cooling function

Λ = 1.3× 10−22n2
0T

−0.7
6 erg cm3 s−1

where n0 ≡ nH/ cm
−3, and T6 ≡ T/106 K. Using the result for (a) (i.e., treating κ and Λ as constant),

evaluate the length scale LF such that β = 1. LF is known as the “Field length”.
Give your answer in terms of n0 and T6.

(c) If β ≪ 1 the assumption of constant κ and Λ are reasonable. Qualitatively, what do you expect to happen
if the slab thickness L were to be such that β is of order unity?

34.3 Suppose that hot interstellar gas contains dust grains of radius a = 1×10−5 cm and number density ngr =
2×10−12nH. Suppose that the grains are uncharged, and that every ion or electron that collides with the grain
surface transfers a fraction α of its original kinetic energy to the grain, which then cools radiatively.

Estimate Λ = the rate per volume at which the gas loses thermal energy due to this process, for density nH =
n0 cm

−3 and temperature T = 1×107T7 K. Assume the H and He to be fully ionized, and He/H=0.1. Give your
answer in terms of α, n0 and T7.
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Chapter 35. Fluid Dynamics

35.1 Show that the term (c/4πσ)∇× ∂D/∂t that has been omitted in Eq. (35.46) is smaller than (c2/4πσ)∇2B by
a factor ∼ (v/c)2, where v is a characteristic velocity in the flow.

35.2 The discussion leading to the expression Eq. (35.49) for τdecay assumed a fully-ionized gas. In partially-ionized
gas, electrons can be scattered by neutrals as well as by ions. Define a dimensionless quantity xc by

xc ≡
xe

(1− xe)
× scattering by neutrals

scattering by ions
,

where xc is a constant. The conductivity can then be written

σ ≈ σ(xe = 1)

1 + (1− xe)(xc/xe)
.

Thus, if xc ≪ 1, when xe ≈ xc the neutrals and ions are equally important for limiting the electrical conductiv-
ity.

(a) Obtain an estimate for xc as a function of temperature. Electron-neutral scattering is discussed in §2.5.
Using the rate coefficient (2.41) for electron scattering by H2, and the electron-ion scattering rate from
Eq. (2.23), estimate the value of xc as a function of T . Ignore scattering by He, and take the “Coulomb
logarithm” to have the value ln Λ ≈ 25.

(b) For T = 100K, estimate the fractional ionization xe below which scattering of electrons by neutrals is
more important than scattering of electrons by ions.

35.3 The “cooling time” τcool ≡ |d lnT/dt|−1. Suppose the power radiated per unit volume Λ can be approximated
by

Λ ≈ AnHne

[
T−0.7
6 + 0.021T

1/2
6

]
for gas of cosmic abundances, where A = 1.1×10−22 erg cm3 s−1, and T6 ≡ T/106 K. Assume the gas to have
nHe = 0.1nH, with both H and He fully ionized.

Compute the cooling time (at constant pressure) due to radiative cooling

(a) in a supernova remnant at T = 107 K, nH = 10−2 cm−3.

(b) for intergalactic gas within a dense galaxy cluster (the “intracluster medium”) with T = 108 K, nH =
10−3 cm−3.

35.4 Show that the surface integral (36.16) is equivalent to the volume integral (36.15).
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Chapter 36. Shock Waves

36.1 Consider a strong shock wave propagating into a medium that was initially at rest. Assume the gas to be
monatomic (γ = 5/3). Consider the material just behind the shock front. The gas has an energy density
uthermal from random thermal motions, and an energy density uflow from the bulk motion of the shocked gas.
If cooling is negligible, calculate the ratio uflow/uthermal in the frame of reference where the shock front is
stationary.

36.2 Consider a 2-fluid shock with preshock neutral density nn0, preshock magnetic field B0, and preshock electron
density ne0. The extent L of the magnetic precursor is given by eq. (36.43).

(a) Obtain an estimate for Ni = number of times that a given ion will undergo scattering by a neutral in the
precursor.

(b) Obtain an estimate for Nn = number of times that a given neutral will undergo scattering by an ion in the
precursor.

(c) Obtain an estimate for ∆p, the total momentum loss per neutral.

(d) Estimate the change ∆vn in the flow speed of the neutrals before arrival at the viscous subshock.

36.3 Suppose that a shock wave propagates at velocity vs through a fluid with preshock number density n0, preshock
temperature T0 = 0, and preshock magnetic field B0 = 0. Take the fluid to be a monatomic ideal gas of
molecular weight µ.

(a) What is the density ns just behind the shock?

(b) What is the temperature Ts just behind the shock?

(c) What is the ratio of the thermal pressure nskTs to the preshock “ram pressure” n0µv
2
s?

(d) Suppose that the postshock gas is subject to radiative cooling with a loss rate per unit volume Λ = An2Tα,
where A and α are constants. Assume that the shock is steady and plane-parallel, neglect heat conduction,
and make the simplifying assumption that the postshock cooling occurs at constant pressure, i.e., nT =
nsTs.
For what values of α does a fluid element cool to T = 0 in a finite time tcool after being shocked? Obtain
a formula for tcool as a function of ns, Ts, A, and α. Would this hold true for bremsstrahlung cooling, in
particular?

(e) With the same assumptions as in (c), for what values of α does the fluid element cool to T = 0 within a
finite distance xcool of the shock front?
Hint: Remember that the distance x traveled from the shock and the time t elapsed since passing through
the shock are related by dx = v dt, where v is related to the shock speed vs through mass conservation,
nv = n0vs. Thus dx = (n0/n)vs dt.

36.4 Consider spherically-symmetric accretion of matter from “infinity” onto a white dwarf of mass M = 1M⊙ and
radius R = 5.5 × 108 cm. Assume that the accretion flow is cold, but fully-ionized. Suppose the accretion
rate to be Ṁ = 10−9 M⊙ yr−1, with He/H=0.1 . The “accretion shock” is assumed to be just above the stellar
surface.

(a) What is the temperature Ts and H nucleon density nH just after passing through the accretion shock?
Express kT in keV.

(b) What is the luminosity of the star due to accretion alone?

(c) What is the effective temperature Teff of the star if accretion energy dominates the luminosity?

36.5 Consider a strong shock with velocity vs propagating into a monatomic (γ = 5/3) gas. The preshock gas
contains dust grains that are at rest relative to the gas. Immediately after passage of the shock front, the grains
still have their original velocity. What is the velocity of the grains relative to the shocked gas?
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36.6 A spherically-symmetric galaxy cluster has a mass M = 5× 1014 M⊙ interior to radius R = 2Mpc. Cold gas
from the intergalactic medium is falling freely (from “infinity”) toward the cluster until it hits the intracluster
medium and forms a shock front at R = 2Mpc.

(a) Assume that the standing shock is at rest relative to the center of the cluster. Assume that the cluster mass
exterior to 2Mpc can be neglected. If the infalling H-He mixture is fully ionized, what is the temperature
of the infalling gas after it is shocked?

(b) Now instead assume that the shocked gas is at rest relative to the center of the cluster, with the shock front
at R = 2Mpc moving outward. The infalling gas is as before. What would be the shock speed, and the
post-shock temperature?
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Chapter 37. Ionization/Dissociation Fronts

37.1 Eq. (37.15) gives the velocity Vi of the ionization front propagating outward from a source of ionizing photons
that turned on at t = 0 in a uniform, initially neutral, medium.

Consider early times when t/τ ≪ 1. For Q0 = 1048 s−1 and n0 = 103 cm−3, evaluate Vi for t/τ = 10−4.
Discuss the physical significance of the result, and comment on the validity of the analysis leading to this result.

37.2 At z = 10 the age of the Universe is ∼482Myr, and the average H density is nH = 2.52×10−4 cm−3. Consider
a QSO at z = 10 that suddenly “turns on” with a spectrum

νLν = 1044L44

(
hν

IH

)1−α

erg s−1 .

Suppose that the region around the QSO is initially neutral with uniform density nH = 10−4n−4 cm
−3.

(a) Let Q0 be the rate of emission of photons with hν > IH. Relate Q0 to L44 and α.

(b) For the above spectrum, what is the mean energy of the photons with hν > 13.6 eV? Evaluate this for
α = 1.2.

(c) Let the temperature of the photoionized gas be T = 104T4 K. Supposing that photoelectric absorption is
the only process producing ionization of H, obtain an expression for the Strömgren radius RS0 in terms of
n−4, L44, α, and T4. Evaluate this for n−4 = 3, L44 = 1, α = 1.2, and T4 = 2.

(d) One validity criterion for the Strömgren sphere approximation is that τS0 = nHσpiRS0 ≫ 1. Is this
fulfilled in the present problem? (Assume L44 = 1, n−4 = 3, and α = 1.2).

(e) Suppose that the Hubble expansion can be ignored, so that the density can be approximated as remaining
constant. The ionization front radius should then be given by Eq. (37.14). Assume L44 = 1, n−4 = 3,
α = 1.2, and T4 = 2. Estimate the radius and velocity of the ionization front at t = 106 yr, t = 107 yr,
and t = 108 yr.

(f) If the photoionized gas has T4 ≈ 2, what is the R-critical velocity uR? Approximate the He as being
fully-ionized, no magnetic fields, take the neutral gas to be cold, and primordial nHe/nH = 0.082 .

(g) Ignoring the Hubble expansion (i.e., assuming the density to remain constant), estimate the time when the
ionization front would make the transition from R-type to D-type.
Compare to the age of the Universe at that time. Comment on whether or not it is reasonable to neglect the
Hubble expansion.
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Chapter 38. Stellar Winds

38.1 Suppose that a star has spent 106 yr as a red supergiant with a mass loss rate Ṁrg = 10−6 M⊙ yr−1 and a
wind velocity vrg = 10 km s−1. At time t = 0 the star suddenly begins producing a fast wind with Ṁfw =
10−7 M⊙ yr−1 and vfw = 103 km s−1. Assume that radiative cooling and heat conduction are negligible. The
resulting structure will contain four zones:

1. unshocked fast wind;

2. shocked fast wind;

3. shocked slow wind;

4. unshocked slow wind.

So long as the shock has not reached the outer boundary of the slow wind, the radius of the (outer) shock wave
propagating into the unshocked slow wind material will vary as some power of t: Rsw ∝ tα. You can use simple
dimensionless analysis to obtain the value of α.

Proceed by assuming that the radius Rsw(t) of the shock wave propagating into the slow wind material varies
as some power of time: Rsw(t) ∝ tα. If Msw(t) is the mass of shocked slow wind material (i.e., slow wind
material that has been overtaken by the shock front), this will also vary as some power of time; similarly, the
kinetic energy of the shocked slow wind material will increase as a power of time. Since we have assumed that
there are no radiative losses, the total energy (kinetic energy of the ordered motion plus thermal kinetic energy)
Esw(t) of the shocked slow wind material must be some (constant) fraction of the energy input from the fast
wind up to time t; use this to determine the value of α. Let E(t) = (1/2)Ṁfwv

2
fwt be the total energy input

from the fast wind up to time t. If you now assume that Esw(t) is some (as yet unknown, but constant) fraction
β of E(t) [i.e., Esw(t) = βE(t)], you can now obtain an estimate of Rsw(t).

(a) Use simple “dimensional analysis” to determine the value of the power-law index α.

(b) Estimate the radius Rsw of the region of shocked slow wind at t = 104 yr.

(c) Estimate the temperature of the shocked slow wind material. (Assume the gas to be fully-ionized with
He/H=0.1).

(d) Estimate the temperature of the shocked fast wind material.

38.2 The local ISM is estimated to have a density nH ≈ 0.22 cm−3, and flowing at VISM ≈ 26 km s−1 relative to the
Sun. The local ISM partially ionized, with an isothermal sound speed cISM ≈ 7 km s−1, and it is magnetized,
with an Alfvén speed vA ≈ 10 km s−1. The solar wind varies over the solar cycle, but characteristic values of
the wind speed and mass loss rate are Ṁ ≈ 2.5 × 10−14 M⊙ yr−1, and Vw ≈ 700 km s−1. The solar wind is
hypersonic – thermal and magnetic pressures are neglible compared to the ram pressure ρwV

2
w . Estimate the

distance to the stagnation point between the termination shock and the bowshock. Express this in AU.
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Chapter 39. Effects of Supernovae on the ISM

39.1 Obtain an estimate of the dimensionless factor A in eq. (39.8) by assuming that 50% of the total energy will be
in ordered kinetic energy, and that the ordered kinetic energy is ≈ (1/2)Mv2s , where M is the swept-up mass.
Compare the resulting estimate for A with the exact solution.

39.2 Above we considered the case of uniform ambient density ρ and constant total energy E. Suppose that we
instead assume that the ambient density decreases as

ρ = ρ0 (r/r0)
δ (δ > −3) ,

and energy is increasing with time as a power law:

E = E0 (t/t0)
ϵ (ϵ ≥ 0) .

The radius of the blastwave will vary as Rs = const tγ .

(a) Find γ in terms of δ and ϵ.
Hint: To proceed, suppose once again that

Rs = AEαρβtη ,

where A is a dimensionless constant of order unity, ρ ≡ ρ(Rs). We have seen above from dimensional
analysis that α = 1/5, β = −1/5, and η = 2/5. Taking into account the variation of E and ρ with t and
Rs, you can find the exponent γ.

(b) If Rs ∝ tγ , how does the shock temperature Ts vary with time?

(c) Suppose that the density profile in the ambient medium is ρ ∝ r−2, as would apply to a constant-velocity
steady stellar wind present before the explosion. Suppose that there is a sudden explosion (e.g., a nova
explosion) depositing an energy E0 = constant. What will be γ for this case?
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Chapter 40. Cosmic Rays and Gamma Rays

40.1 Observations of 1.809 MeV γ rays resulting from the decay of 26Al indicate that the ISM of the Milky Way
contains ∼2.7± 0.7M⊙ of 26Al. The total mass of H in the ISM today is 4.9× 109 M⊙ (see Table 1.2). What
is the ratio of 26Al/27Al in the ISM today?

40.2 The 511 keV positronium annihilation line from the central regions of the Galaxy has an observed photon flux
from a “disk” component F511 = 7.3+2.6

−1.9 × 10−4 cm−2 s−1 (Weidenspointer et al. 2008: New Astr. Rev. 52,
454).

(a) Estimate the the total positronium formation rate ṄPs, and the positronium annihilation luminosity, as-
suming that all of the interstellar material is at the 8.5 kpc distance of the Galactic Center.

(b) Compare the total positronium formation rate ṄPs with the rate of creation of positrons from decay of
26Al, Ṅ(26Al) ≈ 4× 1042 s−1.

(c) If the Ps forms by radiative recombination, the radiative recombination process will be analogous to that
for hydrogen. What will be the wavelength of the analogs to Hα and Lyα?

(d) The positronium recombinations will be “case A”. Suppose that a fraction f(3 − 2) ≈ 0.2 of the case A
recombinations produces a 3→2 photon. Estimate the Galactic luminosity in this line.
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Chapter 41. Gravitational Collapse and Star Formation: Theory

41.1 Consider a plane-parallel slab of gas. At t = 0, suppose that the slab is of uniform density ρ, with half-thickness
H . Let z be a coordinate perpendicular to the slab, with the center of the slab at z = 0. Suppose that the gas is
at zero temperature, but supported (against its own self-gravity) entirely by magnetic pressure.

(a) The gravitational potential Φ satisfies Poisson’s equation ∇2Φ = 4πGρ. What is the gravitational accel-
eration g = −∇Φ as a function of z?

(b) If the magnetic field strength at the slab surface is B0, what must be the magnetic field B(z) within the
slab (i.e., −H < z < H) in order to provide the necessary support against gravity for the overall fluid
(neutrals + ions)?

(c) Assume that at t = 0 the ionization fraction is uniform throughout the slab: ni = xiρ/mn, where xi ≪ 1
is the ionization fraction and mn is the molecular mass of the neutrals (which are assumed to provide
essentially all of the mass density ρ). If ⟨σv⟩mt is the “momentum transfer rate coefficient” for ion-neutral
scattering (i.e., the force per volume exerted on the neutrals by the ions is ninn⟨σv⟩mt[mnmi/(mn +
mi)](v⃗i − v⃗n)), obtain an expression for the ambipolar diffusion drift velocity vin as a function of z.

(d) Obtain an expression for the ambipolar diffusion timescale z/vin. Evaluate this timescale for mn = 2mH,
xi = 10−6, mi = 9mn, and ⟨σv⟩mt = 1.9× 10−9 cm3 s−1.

41.2 Observations of H II regions in metal-poor galaxies indicate that the primordial He abundance is nHe/nH ≈
0.082. The WMAP 7 yr data analysis (Komatsu et al 2010, arXiv:1001.4538) finds H0 = 70.2 km s−1 and
Ωbaryon = 0.0458, corresponding to

nH = 1.91× 10−7(1 + z)3 cm−3 = 0.197

(
1 + z

101

)3

.

After recombination and decoupling of matter and radiation, adiabatic cooling of the baryons and residual
electrons results in a gas temperature

T (z) ≈ 180

(
1 + z

101

)2

K for z <∼ 150 .

Suppose that in some small region we can ignore the expansion of the universe, and the dynamics of the dark
matter can be ignored (this is not actually true, but let’s make these assumptions for the sake of discussion).
Evaluate the Bonnor-Ebert mass MBE as a function of redshift z for z <∼ 150, assuming the validity of Eq.
(41.43).

41.3 The Taurus Molecular Cloud has regions with H nucleon density nH = 1× 103 cm−3, temperature T = 12K.
The hydrogen is almost entirely molecular. Assume the gas remains isothermal. If the magnetic field can be
neglected, calculate the maximum mass of a self-gravitating non-rotating density peak in such gas.



66 Please do not copy, scan, or photograph. Chapter 42

Chapter 42. Star Formation: Observations

42.1 Star formation with a specified IMF implies steady production of massive stars which, although short-lived,
emit large numbers of ionizing photons. Using the stellar models in the Starburst99 code (Leitherer et al. 1999,
ApJS, 123, 3), the time-averaged emission of hν > 13.6 eV photons from steady star formation is found to be

Q0 = 1.37×1053
(

SFR

M⊙ yr−1

)
s−1 .

(e.g., Murphy et al. 2011, ApJ, 737, 67).

(a) Suppose that we observe a galaxy at a distance D, and measure an integrated Hα energy flux F (Hα). If
dust is not important, and the H II regions in the galaxy have an electron temperature 104T4 K, show that
star formation rate SFR can be obtained from the observed F (Hα):

SFR

M⊙ yr−1
=

4πD2F (Hα)

1.91×1041 erg s−1
× T 0.126+0.010 lnT4

4 .

State any important assumptions.

(b) Suppose that the thermal radio free-free emission from a galaxy at distance D, is observed to have a flux
density Fν at frequency ν = ν9 GHz. Show that the star formation rate can be deduced from the observed
Fν using

SFR

M⊙ yr−1
= 5.53×10−27ν0.1189 T−0.493

4 × D2Fν

erg s−1 Hz−1 .

State any important assumptions.

42.2 We observe a flux F (Hα) = 4 × 10−11 erg cm−2 s−1 of Hα photons from a galaxy at distance D = 10Mpc.
Estimate Q0 = the rate of emission of H-ionizing photons by the stars in the galaxy. State any assumptions.


