Physics of the Interstellar and Intergalactic Medium

Errata in the sixth printing.
Updated 2019.04.18

Bruce T. Draine
Which printing of the book you have can be determined from the last line on the copyright page:

First printing: 1 3 5 7 9 10 8 6 4 2
Second printing: 3 5 7 9 10 8 6 4 2
Third printing: 3 5 7 9 10 8 6 4
Fourth printing: 5 7 9 10 8 6
Fifth printing: 5 7 9 10 8 6
Sixth printing: 7 9 10 8 6

Errata in the sixth printing.

- Plate 5 caption, typo:
 ...seen in Plate 6. → ...seen in Plate 4.
 noted 2018.04.07 by L. Bouma.

- §3.8, p. 31, Eq. (3.48), typo: change
 \[I_{n\alpha} \propto A_{n\alpha} h \nu_{n\alpha} \int n[H(n)] ds \propto n^{-6} b_n \int n_c n(H^+) ds \]
 → \[I_{n\alpha} \propto A_{n\alpha} h \nu_{n\alpha} \int n[H(n+1)] ds \propto n^{-6} b_{n+1} \int n_c n(H^+) ds \]
 noted 2019.02.06

- §10.2, sentence preceding Eq. (10.5): change
 ...the Gaunt factor from quantum-mechanical calculations is approximately
 → ...the Gaunt factor is approximately (Scheuer 1960)
 noted 2018.11.18 by S. Weinberg.

- §22.6, p. 256, footnote 6: the DDSCAT website has moved. Change
 noted 2019.03.25

- §34.4, p. 386, Eq. (34.10): sign mistake on RHS; change
 \[-4\pi r^2 k \frac{dT}{dr} \]
 → \[4\pi r^2 k \frac{dT}{dr} \]
 noted 2019.04.18 by G. Halevi.

- §37.1, p. 413, 2nd paragraph: Change
 Cases of astrophysical interest will normally have..
 → Many cases of astrophysical interest will have...
 noted 2018.04.09.
• §37.1, Eq. (37.8): The correction terms for \(u_R, x_R, u_D, \) and \(x_D \) can be improved by analyzing the full cubic equation (37.3): change

\[
\begin{align*}
 u_R &\approx 2c_2 \quad \rightarrow \quad u_R \approx 2c_2 \left[1 - \frac{2c_1^2 - 3v_{A1}^2}{8c_2^2} \right] \\
 x_R &\approx \frac{1}{2} + \frac{2c_1^2 + v_{A1}^2}{16c_2^2} \quad \rightarrow \quad x_R \approx \frac{1}{2} \\
 u_D &\approx \frac{2c_1^2 + v_{A1}^2}{4c_2} \quad \rightarrow \quad u_D \approx \frac{2c_1^2 + v_{A1}^2}{4c_2} \left[1 + \frac{2c_1^2 + v_{A1}^2}{8c_2^2} \right] \\
 x_D &\approx \frac{4c_2^2}{2c_1^2 + v_{A1}^2} \quad \rightarrow \quad x_D \approx \frac{4c_2^2}{2c_1^2 + v_{A1}^2} \left[1 - \frac{v_{A1}^2}{8c_2^2} \right]
\end{align*}
\]

noted 2018.02.19 by Woong-Tae Kim.

• Appendix G, p. 503, typo just before Eq. (G.7): change

\[
\text{...solution } x_0 = e^{-i\omega t} \quad \rightarrow \quad \text{...solution } x = x_0 e^{-i\omega t}.
\]

noted 2019.02.11

• Appendix I, p. 507, typo (15.78 \(\rightarrow \) 31.56): Eq. (I.7) should read

\[
\frac{Z e^2}{a_0 kT} = \frac{31.56Z}{T_3}
\]

noted 2019.01.14.