## Physics of the Interstellar and Intergalactic Medium

Errata in the fourth and fifth printings.

Updated 2024.12.08

## Bruce T. Draine



PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD

Which printing of the book you have can be determined from the last line on the copyright page:

| First printing:   | $1\ 3\ 5\ 7\ 9\ 10\ 8\ 6\ 4\ 2$ |
|-------------------|---------------------------------|
| Second printing:  | 3 5 7 9 10 8 6 4 2              |
| Third printing:   | 357910864                       |
| Fourth printing:  | 57910864                        |
| Fifth printing:   | 5791086                         |
| Sixth printing:   | 791086                          |
| Seventh printing: | 79108                           |
| Eighth printing:  | 9 10 8                          |
| Ninth printing:   | 9 10                            |

## Errata in the fourth and fifth printings.

- Plate 5 caption, typo:
   ...seen in Plate 6. → ...seen in Plate 4.
   noted 2018.04.07 by L. Bouma.
- §3.6, p. 28, Eq. 3.31, typo: factor of 2 error. Eq. (3.31) should read

$$\sigma_{\mathrm{rr},u\ell}(E) = \frac{1}{2} \frac{g(X_\ell)}{g(X_u^+)} \frac{(I_{X,\ell u} + E)^2}{Em_e c^2} \sigma_{\mathrm{pi},\ell u}(h\nu = I_{X,\ell u} + E) \quad , \quad (3.31)$$

noted 2015.06.01 by E. B. Jenkins

- §3.7, p. 28, Eq. (3.33), typo: sign error. Change  $e^{-I_n/kT} \rightarrow e^{I_n/kT}$ . noted 2017.02.09
- §3.8, p. 31, Eq. (3.48), typo: change

$$I_{n\alpha} \propto A_{n\alpha}h\nu_{n\alpha} \int n[\mathbf{H}(n)]ds \propto n^{-6}b_n \int n_e n(\mathbf{H}^+)ds$$
$$\rightarrow I_{n\alpha} \propto A_{n\alpha}h\nu_{n\alpha} \int n[\mathbf{H}(n+1)]ds \propto n^{-6}b_{n+1} \int n_e n(\mathbf{H}^+)ds$$

noted 2019.02.06

• §7.5, p. 69, Eq. (7.29), typo: missing a factor  $n_{\ell}$ . Should read

$$\kappa_{\nu} = n_{\ell} \sigma_{\ell \to u} \left( 1 - \frac{n_u/g_u}{n_{\ell}/g_{\ell}} \right) < 0$$

noted 2020.10.12 by Yan Liang.

• §9.8, p. 84, typo in line following Eq. (9.35): change  $(v_{\rm FWHM}/2\,{\rm km\,s^{-1}})^2/3 \rightarrow (v_{\rm FWHM}/2\,{\rm km\,s^{-1}})^{2/3}$ . noted 2020.09.09 by Roohi Dalal.

• §10.2, sentence preceding Eq. (10.5): change

...the Gaunt factor from quantum-mechanical calculations is approximately  $\rightarrow$ 

...the Gaunt factor is approximately (Scheuer 1960) noted 2018.11.18 by S. Weinberg.

• §10.5, p. 97, Eq. (10.25), typo (missing factor of 2): should read

$$j_{\rm fb,\nu} = \frac{g_{\rm b}}{g_e g_i} \frac{2 h^4 \nu^3}{(2\pi m_e kT)^{3/2} c^2} e^{(I_{\rm b} - h\nu)/kT} \sigma_{\rm b,pi}(\nu) n_e n_i$$

noted 2021.02.14 by Shigenobu Hirose.

• \$11.4, p. 110, Eq. (11.34), typo (was off by factor  $10^4$ ): should read

$$= 6.53 \times 10^{-5} \operatorname{arcsec} \left( \frac{D/\operatorname{kpc}}{L/10^{14} \operatorname{cm}} \right)^{1/2} \frac{(\Delta n_e)_{L,\operatorname{rms}}}{10^{-3} \operatorname{cm}^{-3}} \nu_9^{-2}$$

1 /0

noted 2021.10.25 by I. Wasserman.

- §13.1, pp. 128, eq. (13.1), (13.3), (13.4): for notational consistency with the rest of the chapter, change  $\sigma_{\rm pe} \rightarrow \sigma_{\rm pi}$  noted 2018.01.07 by L. Bouma.
- §13.1, p. 130, second paragraph, typo: ...to  $3 \times 10^{-10} \, s^{-1}$  for Si  $\rightarrow$  ...to  $3 \times 10^{-9} \, s^{-1}$  for Si noted 2017.03.05
- §14.2.4, p. 145, Eq. (14.13), typo (was off by factor of 10): should read

$$\tau_0(\mathrm{Ly}\alpha) = 8.02 \times 10^3 \left(\frac{15 \,\mathrm{km \, s^{-1}}}{b}\right) \tau(\mathrm{Ly \, cont})$$

noted 2024.06.11 by D. Chernoff.

- §14.7.1, p. 156, Eq. (14.21), typo:  $\begin{array}{rcl} H(^{1}S_{1/2}) & \rightarrow & H(^{2}S_{1/2}) \\ \text{noted 2022.07.06 by S. R. Kulkarni.} \end{array}$
- §14.9, p. 159, typo: factor of 2 error. Eq. (14.41) should read

$$\sigma_{\rm rr}(E) = \frac{g_{\ell}}{2g_u} \frac{(I+E)^2}{Em_e c^2} \sigma_{\rm pi}(h\nu = I+E) \quad . \tag{14.41}$$

noted 2015.06.01 by E. B. Jenkins.

• §14.9, p. 160, typo: factor of 2 error. Eq. (14.43) should read

$$\frac{\langle \sigma v \rangle_{\rm rr}}{\langle \sigma v \rangle_{\rm ci}} \approx 2\pi \alpha^3 \frac{f_{\rm pi}}{C} \frac{I}{kT} e^{I/kT} \quad , \tag{14.43}$$

noted 2015.06.01 by E. B. Jenkins.

• §14.9, p. 160, typo: factor of 2 error. Eq. (14.44) and following should read

$$\frac{I}{kT}e^{I/kT} = \frac{C}{2\pi f_{\rm pi}}\frac{1}{\alpha^3} \quad . \tag{14.44}$$

If  $C \approx 1$  and  $f_{\rm pi} \approx 1$ , this has solution  $I/kT \approx 10.6$ . ... noted 2015.06.01 by E. B. Jenkins.

- §15.5, p. 174, sentence preceding Eq. (15.36), typo:  $N(\text{He}^+)/N(\text{H}^+) < n_{\text{H}}/n_{\text{He}} \rightarrow N(\text{He}^+)/N(\text{H}^+) < n_{\text{He}}/n_{\text{H}}$ noted 2020.09.29 by H. Jia
- §16.5, p. 188, Eq. (16.16), typo: should read

$$H_2 + CR \rightarrow H_2^+ + e^- + CR$$

noted 2020.09.29 by R. Córdova

- §17.3, p. 195, footnote 3, typos: ...frequency  $\sim 8 \times 10^{10} \text{ Hz...} \rightarrow ...\text{frequency } \sim 1.1 \times 10^{10} \text{ Hz...}$ ... $\sim 10^2$  precession periods.  $\rightarrow ... \sim 18$  precession periods. noted 2020.10.02
- §20.1, p. 229, typo just below Eq. (20.2): replace
   ...unit time that level x will... → ...unit time the level u will...
   noted 2020.10.12 by Yan Liang
- §22.6, p. 256, footnote 6: the DDSCAT website has moved. Change http://code.google.com/p/ddscat → http://www.ddscat.org noted 2019.03.25
- §23.3.2, p. 268, typo: Si-O-Si bending mode → O-Si-O bending mode noted 2020.10.12
- §25.3, p. 299, typo following Eq. (25.11): change ...charge  $Z_{gr} = Ua$  can...  $\rightarrow$  ...charge  $Z_{gr} = Ua/e$  can... noted 2021.06.25 by Yu Fung Wong.
- §27.3.1, p 320, typos in coefficient of  $\ln(T_4/Z^2)$  term: Eq. (27.19) and (27.20) should read

$$\gamma_A = -1.2130 - 0.0115 \ln(T_4/Z^2) \tag{27.19}$$

$$\gamma_B = -1.3163 - 0.0208 \ln(T_4/Z^2) \tag{27.20}$$

and (27.22) and (27.23) should read

$$\langle E_{\rm rr} \rangle_A = \left[ 0.787 - 0.0115 \ln(T_4/Z^2) \right] kT$$
 (27.21)

$$\langle E_{\rm rr} \rangle_B = \left[ 0.684 - 0.0208 \ln(T_4/Z^2) \right] kT$$
 (27.22)

noted 2023.01.29 by S. R. Kulkarni.

- §28.3, p. 328, 4th paragraph, typo: change distance from  $\Theta_1$ Ori C to the Orion Bar ionization front:  $\sim 7.8 \times 10^{18} \text{ cm} \rightarrow \sim 7.8 \times 10^{17} \text{ cm}$  noted 2020.10.26
- §32.9, p. 368, just before eq. (32.11), typo: change  $A_V/N_{\rm H} = 1.87 \times 10^{21} \,{\rm cm}^2 \rightarrow A_V/N_{\rm H} = 5.3 \times 10^{-22} {\rm mag} \,{\rm cm}^2$ . noted 2016.03.04 by IIsang Yoon.
- §32.11, p. 372, prepenultimate paragraph: terminological correction. Change "core" to "clump" (three occurrences). noted 2015.04.16
- §34.4, p. 386, Eq. (34.10): sign mistake on RHS; change

$$-4\pi r^2 \kappa \frac{dT}{dr} \quad \to \quad 4\pi r^2 \kappa \frac{dT}{dr}$$

noted 2019.04.18 by G. Halevi.

§36.2.3, p. 400, Eq. (36.10): v<sub>x</sub> multiplying B<sub>y</sub>B<sub>x</sub> should be v<sub>y</sub>, and v<sub>x</sub> multiplying B<sub>z</sub>B<sub>x</sub> should be v<sub>z</sub>.
 noted 2015.12.17 by J. Miralda-Escudé.
 The equation should read

$$\left\{ \left[ \frac{\rho v^2}{2} + \frac{\gamma p}{(\gamma - 1)} \right] v_x + \frac{(B_y^2 + B_z^2)}{4\pi} v_x - \frac{(B_x B_y v_y + B_x B_z v_z)}{4\pi} - \kappa \frac{dT}{dx} \right\}_1 = \left\{ \left[ \frac{\rho v^2}{2} + \frac{\gamma p}{(\gamma - 1)} \right] v_x + \frac{(B_y^2 + B_z^2)}{4\pi} v_x - \frac{(B_x B_y v_y + B_x B_z v_z)}{4\pi} - \kappa \frac{dT}{dx} \right\}_2. (36.10)$$

 §37.1, p. 413, 2nd paragraph: Change Cases of astrophysical interest will normally have..
 →

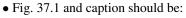
Many cases of astrophysical interest will have... noted 2018.04.09.

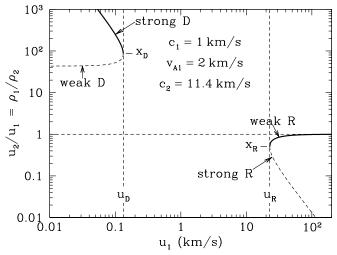
- §37.1, p. 413, typo just above Eq. (37.3):  $Jh\nu/c = \rho_1 u_1 h\nu/\mu_i c \ll \rho_1 (u_1^2 + c_1^2 + B_1^2/8\pi).$   $\rightarrow$   $Jh\nu/c = \rho_1 u_1 h\nu/\mu_i c \ll \rho_1 (u_1^2 + c_1^2) + B_1^2/8\pi.$ 
  - noted 2016.12.08 by Ryohei Nakatani.
- §37.1, Eq. (37.8): The correction terms for  $u_{\rm R}$ ,  $x_{\rm R}$ ,  $u_{\rm D}$ , and  $x_{\rm D}$  can be improved by analyzing the full cubic equation (37.3): change

$$u_{\rm R} \approx 2c_2 \quad \rightarrow \quad u_{\rm R} \approx 2c_2 \left[ 1 - \frac{2c_1^2 - 3v_{A1}^2}{8c_2^2} \right]$$

$$\begin{aligned} x_{\rm R} &\approx \frac{1}{2} + \frac{2c_1^2 + v_{A1}^2}{16c_2^2} \quad \to \quad x_{\rm R} \approx \frac{1}{2} \\ u_{\rm D} &\approx \frac{2c_1^2 + v_{A1}^2}{4c_2} \quad \to \quad \frac{2c_1^2 + v_{A1}^2}{4c_2} \left[ 1 + \frac{2c_1^2 + v_{A1}^2}{8c_2^2} \right] \\ x_{\rm D} &\approx \frac{4c_2^2}{2c_1^2 + v_{A1}^2} \quad \to \quad x_{\rm D} \approx \frac{4c_2^2}{2c_1^2 + v_{A1}^2} \left[ 1 - \frac{v_{A1}^2}{8c_2^2} \right] \end{aligned}$$

noted 2018.02.19 by Woong-Tae Kim.


- §37.1 and §37.2, pp. 414-416: the mathematics is correct, but the "weak-type", and "strong-type" terminology was unfortunately inverted: all occurrences of "weak-type" should be changed to "strong-type", and vice-versa:
  - §37.1.1, p. 414, first paragraph: ...are called **strong R-type**. Strong R-type solutions...
    - ... are called weak R-type. Weak R-type solutions...
  - §37.1.1, p. 414, second paragraph:


 $\rightarrow$ 

- ...referred to as weak R-type,...  $\rightarrow$  ...referred to as strong R-type,...
- §37.1.1, p. 414, second paragraph: Hence, only strong P, type I fronts are physic
  - Hence, only strong R-type I-fronts are physically relevant.  $\rightarrow$

Hence, only weak R-type I-fronts are physically relevant.

- §37.1.2, p. 414, first paragraph:
  - ...is termed weak D-type.  $\rightarrow$  ...is termed strong D-type.
- §37.1.2, p. 414, second paragraph:
- ...is termed strong D-type.  $\rightarrow$  ...is termed weak D-type.





**Figure 37.1**  $u_2/u_1 = \rho_1/\rho_2$ , as a function of the velocity  $u_1$  of the I-front relative to the neutral gas just ahead of the I-front, for D-type and R-type ionization front

solutions (see text) for an example with  $c_1 = 1 \text{ km s}^{-1}$ ,  $v_{A1} = 2 \text{ km s}^{-1}$ , and  $c_2 = 11.4 \text{ km s}^{-1}$ . The astrophysically relevant solutions are the strong D-type and weak R-type cases, shown as heavy curves. There are no solutions with  $u_1$  between  $u_D$  and  $u_R$ .

• §37.1, p. 416, first paragraph:

...will be strong R-type, ...  $\rightarrow$  ...will be weak R-type, ... • §37.1, p. 417, fourth line:

...will now be weak D-type, ...  $\rightarrow$  ...will now be strong D-type, ... noted 2016.12.06 by Ryohei Nakatani.

• §37.2, p. 418, typos:

...moving at a speed  $v_s$  that will be close to (just slightly larger than) the speed of the I-front:

$$v_s \approx V_i$$
 . (37.21)

 $\rightarrow$ 

...moving at a speed  $V_s$  that will be close to (just slightly larger than) the speed of the I-front:

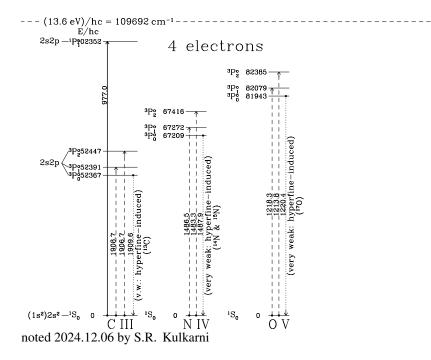
$$V_s \approx V_i$$
 . (37.21)

noted 2016.12.08 by Ryohei Nakatani.

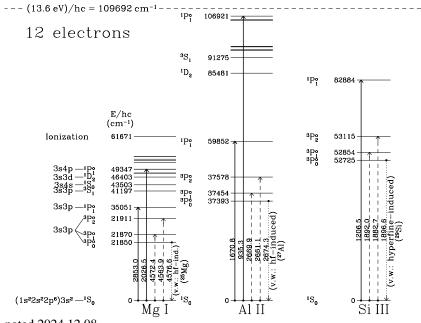
- §38.3, p. 428, last paragraph, typo:  $\dot{M}_w \approx 2 \times 10^{-5} \,\mathrm{km \, s^{-1}} \rightarrow \dot{M}_w \approx 2 \times 10^{-5} \, M_\odot \,\mathrm{yr^{-1}}$ noted 2015.12.17 by J. Miralda-Escudé.
- §41.1, p. 453, typos: Eq. (41.17) should read

$$M_{\rm J} \equiv \frac{4\pi}{3} \rho_0 \left(\frac{\lambda_{\rm J}}{2}\right)^3 = \frac{\pi}{6} \left(\frac{\pi kT}{G\mu}\right)^{3/2} \frac{1}{\rho_0^{1/2}}$$
$$= 1.34 \, M_\odot \left(\frac{T}{10 \,\rm K}\right)^{3/2} \left(\frac{m_{\rm H}}{\mu}\right)^{3/2} \left(\frac{10^6 \,\rm cm^{-3}}{n_{\rm H}}\right)^{1/2} \quad . \tag{41.17}$$

noted 2024.07.09 by Zhang Zhijun.

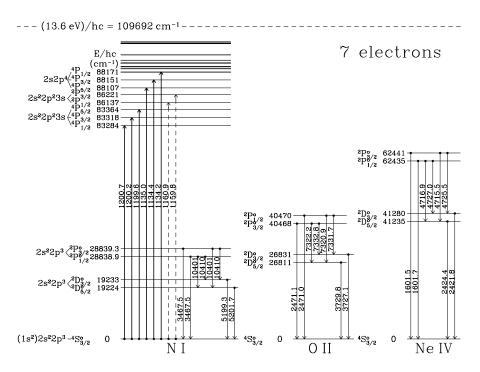

• §41.3, p. 456, typo: missing factor of G. Eq. (41.36) should read

$$E_{\rm grav} = -\frac{G}{2} \int dV_1 \int dV_2 \frac{\rho(\mathbf{r}_1)\rho(\mathbf{r}_2)}{|\mathbf{r}_1 - \mathbf{r}_2|}$$
(41.36)


noted 2015.04.30 by J. Greco.

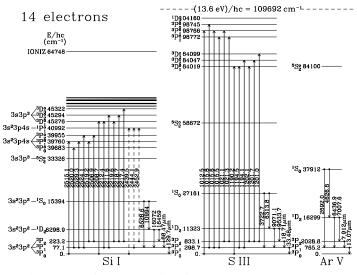
• Appendix B, p. 476: typo: incorrect units for Stefan-Boltzmann constant  $\sigma$ :  $5.67040 \times 10^{-5} \mathrm{erg \, s^{-1} \, cm^{-3} \, K^{-4}} \rightarrow 5.67040 \times 10^{-5} \mathrm{erg \, s^{-1} \, cm^{-2} \, K^{-4}}$ noted 2019.05.14 by Aaron Tran.

- Appendix D, p. 481: corrected typos:  $F VI \rightarrow VII: I = 147.163 \rightarrow 157.163$   $Ne VI \rightarrow VII: I = 154.214 \rightarrow 157.934$   $Ti III \rightarrow IV: I = 24.492 \rightarrow 27.492$   $Ti V \rightarrow VI: I = 123.7 \rightarrow 99.299$   $Zn VI \rightarrow VII: I = 133.903 \rightarrow 108.0$ noted 2015.07.10 by Guangtun Ben Zhu.
- Appendix E, p. 485: diagrams for N IV and O V: the levels shown as <sup>2</sup>P<sub>1</sub><sup>o</sup> and <sup>2</sup>P<sub>2</sub><sup>o</sup> should be <sup>3</sup>P<sub>1</sub><sup>o</sup> and <sup>3</sup>P<sub>2</sub><sup>o</sup>, respectively. noted 2023.05.23
- Appendix E, p. 485, diagrams for CIII, NIV, and OV: The weak (spinforbidden magnetic dipole)  ${}^{1}S_{0}$ - ${}^{3}P_{2}$  transitions were inadvertently omitted. Very weak  ${}^{1}S_{0}$ - ${}^{3}P_{0}$  transitions occur only if hyperfine-induced by nucleus with nonzero spin (now noted in figure). Corrected figure:




• Appendix E., p. 486: The weak (spin-forbidden magnetic dipole)  ${}^{1}S_{0}$ - ${}^{3}P_{2}$  transitions were inadvertently omitted. Very weak  ${}^{1}S_{0}$ - ${}^{3}P_{0}$  transitions can occur if hyperfine-induced by nuclei with nonzero spin (now noted in figure). Corrected figure:




noted 2024.12.08

• Appendix E, p. 488: inadvertent omission of  ${}^{2}P_{1/2}^{o} \rightarrow {}^{2}D_{5/2}^{o}$  emission lines for N I, O II, and Ne IV. Corrected figure:



noted 2023.04.16 by S.R. Kulkarni.

• Appendix E, p. 494: inadvertent omission of  $^1S_0 {\rightarrow} ^1D_2$  emission lines for Si I and S III. Corrected figure:



noted 2023.04.16 by S.R. Kulkarni.

- Appendix F, Table F.2, p. 497, typo: the first transition listed for S III: change  ${}^{3}P_{0}-{}^{1}P_{0} \rightarrow {}^{3}P_{0}-{}^{3}P_{1}$ noted 2016.10.03 by C.D. Kreisch.
- Appendix F, Table F.5, p. 500: Level u in the fourth line in the table should be  ${}^{2}P_{3/2}^{o}$  rather than  ${}^{2}P_{5/2}^{o}$ . noted 2022.09.03 by S. R. Kulkarni
- Appendix F, Table F.6, p. 501: The table title should be "Rate Coefficients for ... Deexcitation..." rather than "... Excitation...". noted 2015.07.03
- Appendix F, Table F.6, p. 501: the rates for entries 5 and 6 should be interchanged, so that entries 4-6 read

| Н                               | CI | ${}^{3}P_{0} - {}^{3}P_{1}$ | $1.26 \times 10^{-10} T_2^{0.115+0.057 \ln T_2}$ | b |
|---------------------------------|----|-----------------------------|--------------------------------------------------|---|
| Н                               | CI | ${}^{3}P_{0} - {}^{3}P_{2}$ | $8.90 \times 10^{-11} T_2^{0.228+0.046 \ln T_2}$ | b |
| Н                               | CI | ${}^{3}P_{1} - {}^{3}P_{2}$ | $2.64 \times 10^{-10} T_2^{0.231+0.046 \ln T_2}$ | b |
| noted 2015.07.03 by Munan Gong. |    |                             |                                                  |   |

• Appendix F, Table F.6, p. 501: the rates for entries 23-28 should be changed to

 $1.49 \times 10^{-10} T_2^{0.369 - 0.026 \ln T_2}$  ${}^{3}P_{2} - {}^{3}P_{1}$ ΟI h  $H_2(para)$  $1.37 \times 10^{-10} T_2^{0.395 - 0.005 \ln T_2}$  ${}^{3}P_{2} - {}^{3}P_{1}$  $H_2(ortho) OI$ h  $2.37 \times 10^{-10} T_2^{0.255+0.016 \ln T_2}$  ${}^{3}P_{2} - {}^{3}P_{0}$  $H_2(para)$ ΟI h  $2.23 \times 10^{-10} T_2^{0.284+0.035 \ln T_2}$  ${}^{3}P_{2} - {}^{3}P_{0}$  $H_2(ortho)$ ΟI h  $2.10 \times 10^{-12} T_2^{1.117+0.070 \ln T_2}$  ${}^{3}P_{1} - {}^{3}P_{0}$  ${}^{3}P_{1} - {}^{3}P_{0}$  $H_2(para)$ ΟI h  $3.00 \times 10^{-12} T_2^{0.792+0.188 \ln T_2}$  $H_2(ortho) OI$ h noted 2015.08.24 by E.B. Jenkins.

- Appendix G, p. 503, typo just before Eq. (G.7): change ...solution  $x_0 = e^{-i\omega t} \rightarrow$  ...solution  $x = x_0 e^{-i\omega t}$ . noted 2019.02.11
- Appendix I, p. 507, typo (15.78→31.56): Eq. (I.7) should read

$$\frac{Ze^2}{a_0kT} = \frac{31.56Z}{T_4}$$

noted 2019.01.14.

• Appendix J, p. 510, Eq. (J.8): missing sign:

$$Y_3 = E_{\text{grav}} = \frac{1}{2} \int dV_1 \int dV_2 \, G \, \frac{\rho(\mathbf{r}_1)\rho(\mathbf{r}_2)}{|\mathbf{r}_1 - \mathbf{r}_2|}$$

 $\rightarrow$ 

$$Y_3 = E_{\text{grav}} = -\frac{1}{2} \int dV_1 \int dV_2 \, G \, \frac{\rho(\mathbf{r}_1)\rho(\mathbf{r}_2)}{|\mathbf{r}_1 - \mathbf{r}_2|}$$

noted 2020.11.13

• Appendix J, p. 510, Eq. (J.13), typo:

$$\Pi_0 \equiv \oint d\mathbf{S} \cdot \mathbf{r}p \quad \rightarrow \quad \Pi_0 \equiv \frac{1}{3} \oint d\mathbf{S} \cdot \mathbf{r}p$$

noted 2017.03.08.