## Physics of the Interstellar and Intergalactic Medium

Errata in the second and third printings.

Updated 2024.12.08

## Bruce T. Draine



PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD

Which printing of the book you have can be determined from the last line on the copyright page:

First printing: 1 3 5 7 9 10 8 6 4 2 Second printing: 3579108642 Third printing: 357910864 57910864 Fourth printing: Fifth printing: 5791086 Sixth printing: 791086 Seventh printing: 79108 Eighth printing: 9 10 8 Ninth printing: 9 10

## Errata in the second and third printings.

- Plate 5 caption, typo:
   ...seen in Plate 6. → ...seen in Plate 4.
   noted 2018.04.07 by L. Bouma.
- §1.2, p. 8, Table 1.4: change abundance of P from  $N_{\rm P}/N_{\rm H}=3.23\times 10^{-7\pm0.03},\,M_{\rm P}/M_{\rm H}=1.00\times 10^{-5}\,{\rm to}\,N_{\rm P}/N_{\rm H}=2.82\times 10^{-7\pm0.03},\,M_{\rm P}/M_{\rm H}=8.73\times 10^{-6}$  noted 2013.10.21 by Bon-Chul Koo.
- §3.6, p. 28, Eq. 3.31, typo: factor of 2 error. Eq. (3.31) should read

$$\sigma_{\text{rr},u\ell}(E) = \frac{1}{2} \frac{g(X_{\ell})}{g(X_{u}^{+})} \frac{(I_{X,\ell u} + E)^{2}}{E m_{e} c^{2}} \sigma_{\text{pi},\ell u}(h\nu = I_{X,\ell u} + E) , \quad (3.31)$$

noted 2015.06.01 by E. B. Jenkins

- §3.7, p. 28, Eq. (3.33), typo: sign error. Change  $e^{-I_n/kT} \rightarrow e^{I_n/kT}$  noted 2017.02.09
- §3.8, p. 31, Eq. (3.48), typo: change

$$I_{n\alpha} \propto A_{n\alpha}h\nu_{n\alpha} \int n[\mathrm{H}(n)]ds \propto n^{-6}b_n \int n_e n(\mathrm{H}^+)ds$$

$$\to I_{n\alpha} \propto A_{n\alpha}h\nu_{n\alpha} \int n[\mathrm{H}(n+1)]ds \propto n^{-6}b_{n+1} \int n_e n(\mathrm{H}^+)ds$$

noted 2019.02.06

• §5.2.2, p. 50, 3rd paragraph, typos: change para- $H_2O$  must have  $K_{-1}+K_{+1}$  odd  $\rightarrow$  para- $H_2O$  must have  $K_{-1}+K_{+1}$  even and ortho- $H_2O$  must have  $K_{-1}+K_{+1}$  even  $\rightarrow$  ortho- $H_2O$  must have  $K_{-1}+K_{+1}$  odd noted 2015.01.15 by Neal Evans.

$$\kappa_{\nu} = n_{\ell} \sigma_{\ell \to u} \left( 1 - \frac{n_u / g_u}{n_{\ell} / g_{\ell}} \right) < 0$$

noted 2020.10.12 by Yan Liang.

- §8.3, p. 74, Eq. (8.26), typos:  $T_A^{\rm on}(v) \to T_A^{\rm off}(v)$  (two occurrences). noted 2013.02.14 by Munan Gong.
- §9.8, p. 84, typo in line following Eq. (9.35): change  $(v_{\rm FWHM}/2\,{\rm km\,s}^{-1})^2/3 \rightarrow (v_{\rm FWHM}/2\,{\rm km\,s}^{-1})^{2/3}$ . noted 2020.09.09 by Roohi Dalal.
- §9.10, Table 9.4, p. 88, typos: for C II and N III, change  $^2\mathrm{D}_J^o \to ^2\mathrm{D}_J$  for J=3/2 and J=5/2. noted 2015.02.12 by Semyeong Oh.
- §10.2, sentence preceding Eq. (10.5): change
   ...the Gaunt factor from quantum-mechanical calculations is approximately
   the Gaunt factor is approximately (Scheuer 1960)

...the Gaunt factor is approximately (Scheuer 1960) noted 2018.11.18 by S. Weinberg.

• §10.5, p. 97, Eq. (10.25), typo (missing factor of 2): should read

$$j_{{\rm fb},\nu} = \frac{g_{\rm b}}{g_e g_i} \frac{2 \, h^4 \nu^3}{(2\pi m_e k T)^{3/2} c^2} \, {\rm e}^{(I_{\rm b} - h \nu)/kT} \, \sigma_{\rm b,pi}(\nu) n_e n_i$$

noted 2021.02.14 by Shigenobu Hirose.

• §11.4, p. 110, Eq. (11.35) should read

$$\nu \ll \frac{e^2 (\Delta n_e)_{L,\text{rms}}}{2\pi m_e c} (2LD)^{1/2} = 1 \times 10^3 \,\text{GHz} \frac{(\Delta n_e)_{L,\text{rms}}}{10^{-3} \,\text{cm}^{-3}} \left( \frac{L}{10^{14} \,\text{cm}} \frac{D}{\text{kpc}} \right)^{1/2}.$$

noted 2013.02.03 by W. Vlemmings.

• §11.4, p. 110, Eq. (11.34), typo (was off by factor 10<sup>4</sup>): should read

$$= 6.53 \times 10^{-5} \operatorname{arcsec} \left( \frac{D/\operatorname{kpc}}{L/10^{14} \operatorname{cm}} \right)^{1/2} \frac{(\Delta n_e)_{L, \operatorname{rms}}}{10^{-3} \operatorname{cm}^{-3}} \nu_9^{-2}$$

noted 2021.10.25 by I. Wasserman.

• §12, p. 121, Table 12.1, typos:

- §12.5, p. 123, below eq. (12.4): change ...  $W_1$  by 40%, from  $W_1=5\times 10^{-13}$  to  $7\times 10^{-13}$ .  $\rightarrow$  ...  $W_1$  by 75%, from  $W_1=4\times 10^{-13}$  to  $7\times 10^{-13}$ , and raised  $W_2$  from  $1.0\times 10^{-13}$  to  $1.65\times 10^{-13}$ . noted 2014.11.11 by S. Bianchi.
- §13.1, pp. 128, eq. (13.1), (13.3), (13.4): for notational consistency with the rest of the chapter, change  $\sigma_{\rm pe} \to \sigma_{\rm pi}$  noted 2018.01.07 by L. Bouma.
- §13.1, p. 130, second paragraph, typo: ...to  $3\times10^{-10}~\rm s^{-1}$  for Si  $\rightarrow$  ...to  $3\times10^{-9}~\rm s^{-1}$  for Si noted 2017.03.05
- §14.2.4, p. 145, Eq. (14.13), typo (was off by factor of 10): should read

$$\tau_0(\text{Ly}\alpha) = 8.02 \times 10^3 \left(\frac{15 \text{ km s}^{-1}}{b}\right) \tau(\text{Ly cont})$$

noted 2024.06.11 by D. Chernoff.

- §14.7.1, p. 156, Eq. (14.21), typo:  ${\rm H}(^1{\rm S}_{1/2}) \ \to \ {\rm H}(^2{\rm S}_{1/2})$  noted 2022.07.06 by S. R. Kulkarni.
- §14.9, p. 159, typo: factor of 2 error. Eq. (14.41) should read

$$\sigma_{\rm rr}(E) = \frac{g_{\ell}}{2g_{\nu}} \frac{(I+E)^2}{Em_e c^2} \sigma_{\rm pi}(h\nu = I+E) . \qquad (14.41)$$

noted 2015.06.01 by E. B. Jenkins.

• §14.9, p. 160, typo: factor of 2 error. Eq. (14.43) should read

$$\frac{\langle \sigma v \rangle_{\rm rr}}{\langle \sigma v \rangle_{\rm ci}} \approx 2\pi \alpha^3 \frac{f_{\rm pi}}{C} \frac{I}{kT} e^{I/kT} ,$$
 (14.43)

noted 2015.06.01 by E. B. Jenkins.

• §14.9, p. 160, typo: factor of 2 error. Eq. (14.44) and following should read

$$\frac{I}{kT}e^{I/kT} = \frac{C}{2\pi f_{\rm pi}} \frac{1}{\alpha^3} . {14.44}$$

If  $C\approx 1$  and  $f_{\rm pi}\approx 1$ , this has solution  $I/kT\approx 10.6.$  ... noted 2015.06.01 by E. B. Jenkins.

- §15.5, p. 174, sentence preceding Eq. (15.36), typo:  $N({\rm He^+})/N({\rm H^+}) < n_{\rm H}/n_{\rm He} \rightarrow N({\rm He^+})/N({\rm H^+}) < n_{\rm He}/n_{\rm He}$  noted 2020.09.29 by H. Jia
- §16.4, p. 186, Eq. (16.9, 16.10), update: change

$$\begin{split} & {\rm H_3^+} + e^- \rightarrow {\rm H_2 + H} \quad , \quad k_{16.9} = 4.1 \times 10^{-8} T_2^{-0.52} \, {\rm cm^3 \, s^{-1}} \; , \\ & {\rm H_3^+} + e^- \rightarrow {\rm H + H + H} \quad , \quad k_{16.10} = 7.7 \times 10^{-8} T_2^{-0.52} \, {\rm cm^3 \, s^{-1}} \; , \end{split}$$

to

$$\begin{split} \mathrm{H_3^+} + e^- &\to \mathrm{H_2} + \mathrm{H} \quad , \quad k_{16.9} = 5.0 \times 10^{-8} T_2^{-0.48} \, \mathrm{cm^3 \, s^{-1}} \; , \\ \mathrm{H_3^+} + e^- &\to \mathrm{H} + \mathrm{H} + \mathrm{H} \quad , \quad k_{16.10} = 8.9 \times 10^{-8} T_2^{-0.48} \, \mathrm{cm^3 \, s^{-1}} \; , \end{split}$$

and cite McCall et al. (2004) for  $k_{16.9}$  and  $k_{16.10}$ . noted 2013.04.03

- §16.4, p. 187, typo: in paragraph below Eq. (16.15), change  $x_e \approx x_M \approx 1.9 \times 10^{-4}$   $\rightarrow$   $x_e \approx x_M \approx 1.1 \times 10^{-4}$  (see Eq. 16.3) noted 2013.04.04
- §16.5, p. 188, Eq. (16.16), typo: should read

$$H_2 + CR \to H_2^+ + e^- + CR$$

noted 2020.09.29 by R. Córdova

• §16.5, p. 189, Fig. 16.3. The original figure was evaluated with a too-large rate for  $k_{16.19}$ . The figure has been redone, now also showing the result if  $\zeta_{\rm CR} = 1 \times 10^{-17} \, {\rm s}^{-1}$ :



**Figure 16.3** Fractional ionization in a dark cloud, estimated using Eq. (16.25), with the grain recombination rate coefficients set to  $k_{16.20}=k_{16.22}=10^{-14}\,\mathrm{cm^3\,s^{-1}}$  (see Fig. 14.6). The dashed line is a simple power-law approximation  $x_e\approx2\times10^{-5}(n_{\mathrm{H}}/\mathrm{cm^{-3}})^{-1/2}$ .

noted 2013.03.05.

- §17.3, p. 195, footnote 3, typos: ...frequency  $\sim\!\!8\!\times\!10^{10}~\mathrm{Hz}...\to$  ...frequency  $\sim\!\!1.1\!\times\!10^{10}~\mathrm{Hz}...$  ... $\sim\!10^2$  precession periods.  $\to$  ... $\sim\!18$  precession periods. noted 2020.10.02
- §18.5, p. 214, Eq. (18.11): Change ...  $\Omega_{03}$  is approximately independent of  $T_e$ , we have

$$\frac{n(\text{O III})}{n(\text{H}^+)} = C \frac{I([\text{O III}]5008)}{I(\text{H}\beta)} T_4^{-0.37} e^{2.917/T_4} , \qquad (18.11)$$

to

...  $\Omega_{03} \propto T_4^{0.12}$  (see Appendix F), we have

$$\frac{n(\text{O III})}{n(\text{H}^+)} = C \frac{I([\text{O III}]5008)}{I(\text{H}\beta)} T_4^{-0.49} e^{2.917/T_4} , \qquad (18.11)$$

noted 2015.02.27

• §19.3, p. 222: revise value for  $A_{10}$ : replace  $A_{10}=6.78\times 10^{-8}\,{\rm s}^{-1}\to A_{10}=7.16\times 10^{-8}\,{\rm s}^{-1}$  (see Eq. 5.7). noted 2013.04.17

- §19.3, p. 223: revised numbers according to revised value for  $A_{10}$ : Eq. (19.15):  $281\to297$  , Eq. (19.17):  $281\to297$  , Eq. (19.19):  $46\to50$  noted 2013.04.17
- §20.1, p. 229, typo just below Eq. (20.2): replace ...unit time that level x will...  $\rightarrow$  ...unit time the level u will... noted 2020.10.12 by Yan Liang
- §22.6, p. 256, footnote 6: the DDSCAT website has moved. Change http://code.google.com/p/ddscat → http://www.ddscat.org noted 2019.03.25
- §23.1, p. 265, typo: lower oscillator strength  $f(\text{C II}]2325\,\text{Å}) = 1.0 \times 10^{-7}$   $\rightarrow$  larger oscillator strength  $f(\text{C II}]2325\,\text{Å}) = 1.0 \times 10^{-7}$  noted 2012.12.27
- §23.3.2, p. 268, typo: Si-O-Si bending mode  $\rightarrow$  O-Si-O bending mode noted 2020.10.12
- §25.3, p. 299, typo following Eq. (25.11): change ...charge  $Z_{\rm gr}=Ua$  can...  $\to$  ...charge  $Z_{\rm gr}=Ua/e$  can... noted 2021.06.25 by Yu Fung Wong.
- §26.2, p. 308, Eq. (26.23), numerical error: should read

$$\frac{\omega}{2\pi} = 4.6 \,\text{GHz} \left(\frac{T_{\text{rot}}}{100 \,\text{K}}\right)^{1/2} \left(\frac{0.001 \,\mu\text{m}}{a}\right)^{5/2}$$
 (26.23)

noted 2014.06.27 by B. Jiang.

• §27.3.1, p 320, typos in coefficient of  $\ln(T_4/Z^2)$  term: Eq. (27.19) and (27.20) should read

$$\gamma_A = -1.2130 - 0.0115 \ln(T_4/Z^2) \tag{27.19}$$

$$\gamma_B = -1.3163 - 0.0208 \ln(T_4/Z^2) \tag{27.20}$$

and (27.22) and (27.23) should read

$$\langle E_{\rm rr} \rangle_A = [0.787 - 0.0115 \ln(T_4/Z^2)] kT$$
 (27.21)

$$\langle E_{\rm rr} \rangle_B = \left[ 0.684 - 0.0208 \ln(T_4/Z^2) \right] kT$$
 (27.22)

noted 2023.01.29 by S. R. Kulkarni.

• §28.3, p. 328, 4th paragraph, typo: change distance from  $\Theta_1$ Ori C to the Orion Bar ionization front:  $\sim 7.8 \times 10^{18}\,\mathrm{cm} \rightarrow \sim 7.8 \times 10^{17}\,\mathrm{cm}$  noted 2020.10.26

• §29.1, p. 332, 1st paragraph, typo:  $b=0 \rightarrow b=90^{\circ}$ , so that the 2nd sentence reads

...vary as  $N({\rm H\,I},b) = N({\rm H\,I},b = 90^{\circ})/\sin|b| = N_0 \csc|b|$ . noted 2012.11.04 by R. Simons.

• §31.4, p. 349, Eq. (31.24), typo: on RHS, change

$$\frac{\pi e^2}{m_e c^2 h} \sum_{u} f_{\ell u} \lambda_{\ell u}^3 u_{\lambda} f_{\text{shield},\ell u} \to \frac{\pi e^2}{m_e c^2 h} \sum_{u} f_{\ell u} \lambda_{\ell u}^3 u_{\lambda} f_{\text{shield},\ell u} \, p_{\text{diss},u}$$

noted 2013.04.12 by Ai-Lei Sun.

- §32.9, p. 368, just before eq. (32.11), typo: change  $A_V/N_{\rm H}=1.87\times 10^{21}\,{\rm cm^2}\, \to\, A_V/N_{\rm H}=5.3\times 10^{-22}{\rm mag\,cm^2}.$  noted 2016.03.04 by Ilsang Yoon.
- §32.11, p. 372, prepenultimate paragraph: terminological correction. Change "core" to "clump" (three occurrences). noted 2015.04.16
- §34.4, p. 386, Eq. (34.10): sign mistake on RHS; change

$$-4\pi r^2 \kappa \frac{dT}{dr} \quad \to \quad 4\pi r^2 \kappa \frac{dT}{dr}$$

noted 2019.04.18 by G. Halevi.

• §34.4, p. 387, typo: Eq. (34.17) is off by a factor 3, and should read

$$t_{\text{evap}} = \frac{3M}{2\dot{M}} = \frac{25 \times 2.3(n_{\text{H}})_c R_c^2 m_e^{1/2} e^4 \ln \Lambda}{8 \times 0.87(kT_h)^{2.5}}$$
(34.17)

Eq. (34.18) is numerically correct, but should have shown the dependence on  $\ln \Lambda$  :

$$= 5.1 \times 10^4 \,\mathrm{yr} \left(\frac{(n_{\rm H})_c}{30 \,\mathrm{cm}^{-3}}\right) \left(\frac{R_c}{\mathrm{pc}}\right)^2 \left(\frac{T_h}{10^7 \,\mathrm{K}}\right)^{-2.5} \left(\frac{\ln \Lambda}{30}\right) . \quad (34.18)$$

noted 2013.01.05 by B. Hensley.

• §36.2.3, p. 400, Eq. (36.10):  $v_x$  multiplying  $B_yB_x$  should be  $v_y$ , and  $v_x$  multiplying  $B_zB_x$  should be  $v_z$ . noted 2015.12.17 by J. Miralda-Escudé. The equation should read

$$\left\{ \left[ \frac{\rho v^2}{2} + \frac{\gamma p}{(\gamma - 1)} \right] v_x + \frac{(B_y^2 + B_z^2)}{4\pi} v_x - \frac{(B_x B_y v_y + B_x B_z v_z)}{4\pi} - \kappa \frac{dT}{dx} \right\}_1 = \left\{ \left[ \frac{\rho v^2}{2} + \frac{\gamma p}{(\gamma - 1)} \right] v_x + \frac{(B_y^2 + B_z^2)}{4\pi} v_x - \frac{(B_x B_y v_y + B_x B_z v_z)}{4\pi} - \kappa \frac{dT}{dx} \right\}_2 \right\}. (36.10)$$

• §37.1, p. 413, 2nd paragraph: Change Cases of astrophysical interest will normally have...

Many cases of astrophysical interest will have... noted 2018.04.09.

• §37.1, p. 413, typo just above Eq. (37.3):  $Jh\nu/c = \rho_1 u_1 h\nu/\mu_i c \ll \rho_1 (u_1^2 + c_1^2 + B_1^2/8\pi).$   $\rightarrow$   $Jh\nu/c = \rho_1 u_1 h\nu/\mu_i c \ll \rho_1 (u_1^2 + c_1^2) + B_1^2/8\pi.$  noted 2016.12.08 by Ryohei Nakatani.

• §37.1, Eq. (37.8): The correction terms for  $u_R$ ,  $x_R$ ,  $u_D$ , and  $x_D$  can be improved by analyzing the full cubic equation (37.3): change

$$\begin{split} u_{\mathrm{R}} &\approx 2c_{2} \quad \rightarrow \quad u_{\mathrm{R}} \approx 2c_{2} \left[ 1 - \frac{2c_{1}^{2} - 3v_{A1}^{2}}{8c_{2}^{2}} \right] \\ x_{\mathrm{R}} &\approx \frac{1}{2} + \frac{2c_{1}^{2} + v_{A1}^{2}}{16c_{2}^{2}} \quad \rightarrow \quad x_{\mathrm{R}} \approx \frac{1}{2} \\ u_{\mathrm{D}} &\approx \frac{2c_{1}^{2} + v_{A1}^{2}}{4c_{2}} \quad \rightarrow \quad \frac{2c_{1}^{2} + v_{A1}^{2}}{4c_{2}} \left[ 1 + \frac{2c_{1}^{2} + v_{A1}^{2}}{8c_{2}^{2}} \right] \\ x_{\mathrm{D}} &\approx \frac{4c_{2}^{2}}{2c_{1}^{2} + v_{A1}^{2}} \quad \rightarrow \quad x_{\mathrm{D}} \approx \frac{4c_{2}^{2}}{2c_{1}^{2} + v_{A1}^{2}} \left[ 1 - \frac{v_{A1}^{2}}{8c_{2}^{2}} \right] \end{split}$$

noted 2018.02.19 by Woong-Tae Kim.

- §37.1 and §37.2, pp. 414-416: the mathematics is correct, but the "weak-type", and "strong-type" terminology was unfortunately inverted: all occurrences of "weak-type" should be changed to "strong-type", and vice-versa:
  - §37.1.1, p. 414, first paragraph:

...are called **strong R-type**. Strong R-type solutions...

 $\rightarrow$ 

...are called **weak R-type**. Weak R-type solutions...

• §37.1.1, p. 414, second paragraph:

...referred to as weak R-type,...  $\rightarrow$  ...referred to as strong R-type,...

• §37.1.1, p. 414, second paragraph:

Hence, only strong R-type I-fronts are physically relevant.

\_\_\_\_\_

Hence, only weak R-type I-fronts are physically relevant.

- §37.1.2, p. 414, first paragraph:
  - ...is termed weak D-type.  $\rightarrow$  ...is termed strong D-type.
- §37.1.2, p. 414, second paragraph:
  - ...is termed strong D-type.  $\rightarrow$  ...is termed weak D-type.
- Fig. 37.1 and caption should be:



Figure 37.1  $u_2/u_1=\rho_1/\rho_2$ , as a function of the velocity  $u_1$  of the I-front relative to the neutral gas just ahead of the I-front, for D-type and R-type ionization front solutions (see text) for an example with  $c_1=1\,\mathrm{km\,s^{-1}}$ ,  $v_{A1}=2\,\mathrm{km\,s^{-1}}$ , and  $c_2=11.4\,\mathrm{km\,s^{-1}}$ . The astrophysically relevant solutions are the strong D-type and weak R-type cases, shown as heavy curves. There are no solutions with  $u_1$  between  $u_D$  and  $u_R$ .

- §37.1, p. 416, first paragraph:
  ...will be strong R-type, ... → ...will be weak R-type, ...
- §37.1, p. 417, fourth line: ...will now be weak D-type, ...  $\rightarrow$  ...will now be strong D-type, ... noted 2016.12.06 by Ryohei Nakatani.
- §37.2, p. 418, typos: ...moving at a speed  $v_s$  that will be close to (just slightly larger than) the speed of the I-front:

$$v_s \approx V_i$$
 . (37.21)

\_

...moving at a speed  ${\cal V}_s$  that will be close to (just slightly larger than) the speed of the I-front:

$$V_s \approx V_i$$
 . (37.21)

noted 2016.12.08 by Ryohei Nakatani.

• §38.3, p. 428, last paragraph, typo:  $\dot{M}_w \approx 2 \times 10^{-5} \, \mathrm{km \, s^{-1}} \rightarrow \dot{M}_w \approx 2 \times 10^{-5} \, M_{\odot} \, \mathrm{yr^{-1}}$  noted 2015.12.17 by J. Miralda-Escudé.

• §39.1.2, p. 433, Eqs. (39.22, 39.23, 39.24), typos: the factor  $(E_{51}/n_0^2)$  should be  $(E_{51}n_0^2)$ , so that the equations should read

$$v_s(t_{\rm rad}) = 188 \,\mathrm{km \, s}^{-1} (E_{51} n_0^2)^{0.07} \,$$
, (39.22)

$$T_s(t_{\rm rad}) = 4.86 \times 10^5 \,\mathrm{K}(E_{51}n_0^2)^{0.13}$$
 , (39.23)

$$kT_s(t_{\rm rad}) = 41 \,\text{eV}(E_{51}n_0^2)^{0.13}$$
 (39.24)

noted 2012.10.02 by G.B. Field.

• §39.4, p. 438, Eqs. (39.35) and (39.36), typos: they should read

$$N_{\rm SN} = 0.24 S_{-13} E_{51}^{1.26} n_0^{-1.47} c_{s.6}^{-13/5}$$
(39.35)

= 
$$0.48S_{-13}E_{51}^{1.26}n_0^{-0.17}p_4^{-1.30}$$
,  $p_4 \equiv \frac{p/k}{10^4 \,\mathrm{cm}^{-3}\,\mathrm{K}}$  (39.36)

noted 2014.06.27 by B. Jiang.

• §39.4, p. 438, Eq. (39.37), typos: Eq. (39.37) should read

$$\frac{p}{k} = S_{-13}^{0.77} E_{51}^{0.97} n_0^{-0.13} \times 5700 \,\mathrm{cm}^{-3} \,\mathrm{K}$$
 (39.37)

noted 2014.06.27 by B. Jiang.

- §40.5, p. 447, typo: protons with  $E\lesssim 10^5~{\rm GeV}$  have  $R_{\rm gyro}<10^{-4}~{\rm pc}\to$  protons with  $E\lesssim 10^3~{\rm GeV}$  have  $R_{\rm gyro}<10^{-4}~{\rm pc}$  noted 2011.04.26
- §41.1, p. 453, typos: Eq. (41.17) should read

$$M_{\rm J} \equiv \frac{4\pi}{3} \rho_0 \left(\frac{\lambda_{\rm J}}{2}\right)^3 = \frac{\pi}{6} \left(\frac{\pi kT}{G\mu}\right)^{3/2} \frac{1}{\rho_0^{1/2}}$$
$$= 1.34 \, M_{\odot} \left(\frac{T}{10 \,\rm K}\right)^{3/2} \left(\frac{m_{\rm H}}{\mu}\right)^{3/2} \left(\frac{10^6 \,\rm cm^{-3}}{n_{\rm H}}\right)^{1/2} . \tag{41.17}$$

noted 2024.07.09 by Zhang Zhijun.

• §41.3, p. 456, typo: missing factor of G. Eq. (41.36) should read

$$E_{\text{grav}} = -\frac{G}{2} \int dV_1 \int dV_2 \frac{\rho(\mathbf{r}_1)\rho(\mathbf{r}_2)}{|\mathbf{r}_1 - \mathbf{r}_2|}$$
(41.36)

noted 2015.04.30 by J. Greco.

• §41.3.2, p. 457, Eq. (41.46), typo: replace

$$E_{\text{mag}} = \frac{B_{\text{rms}}^2 - B_0^2}{8\pi} V \quad \rightarrow \quad E_{\text{mag}} = \frac{B_{\text{rms}}^2}{8\pi} V$$

noted 2011.04.28

- §41.4, p. 460, Eq. (41.55), typo:  $m_m \to m_n$  noted 2013.04.30 by K. Silsbee
- Appendix A, p. 473, typo: entry for  $a_0$  should read ...Bohr radius  $\equiv \hbar^2/m_e e^2 = ...$  noted 2013.03.05 by Wenhua Ju.
- Appendix B, p. 476: typo: incorrect units for Stefan-Boltzmann constant  $\sigma$ :  $5.67040\times10^{-5}\,\mathrm{erg\,s^{-1}\,cm^{-3}\,K^{-4}}$   $\rightarrow$   $5.67040\times10^{-5}\,\mathrm{erg\,s^{-1}\,cm^{-2}\,K^{-4}}$  noted 2019.05.14 by Aaron Tran.
- Appendix D, p. 481: corrected typos:  $F\, VI \rightarrow VII: \quad I = 147.163 \rightarrow 157.163 \\ Ne\, VI \rightarrow VII: \quad I = 154.214 \rightarrow 157.934 \\ Ti\, III \rightarrow IV: \quad I = 24.492 \rightarrow 27.492 \\ Ti\, V \rightarrow VI: \quad I = 123.7 \rightarrow 99.299 \\ Zn\, VI \rightarrow VII: \quad I = 133.903 \rightarrow 108.0 \\ noted 2015.07.10 \ by \ Guangtun \ Ben \ Zhu.$
- Appendix E, p. 485: diagrams for N IV and O V: the levels shown as  $^2P_1^o$  and  $^2P_2^o$  should be  $^3P_1^o$  and  $^3P_2^o$ , respectively. noted 2023.05.23
- Appendix E, p. 485, diagrams for CIII, NIV, and OV: The weak (spin-forbidden magnetic dipole) <sup>1</sup>S<sub>0</sub>-<sup>3</sup>P<sub>2</sub> transitions were inadvertently omitted. Very weak <sup>1</sup>S<sub>0</sub>-<sup>3</sup>P<sub>0</sub> transitions occur only if hyperfine-induced by nucleus with nonzero spin (now noted in figure). Corrected figure:



noted 2024.12.06 by S.R. Kulkarni

• Appendix E., p. 486: The weak (spin-forbidden magnetic dipole)  $^1S_0$ - $^3P_2$  transitions were inadvertently omitted. Very weak  $^1S_0$ - $^3P_0$  transitions can occur if hyperfine-induced by nuclei with nonzero spin (now noted in figure). Corrected figure:



• Appendix E, p. 488: inadvertent omission of  ${}^2P^o_{1/2} \rightarrow {}^2D^o_{5/2}$  emission lines for N I, O II, and Ne IV. Corrected figure:



noted 2023.04.16 by S.R. Kulkarni.

• Appendix E, p. 494: inadvertent omission of  ${}^1S_0 \rightarrow {}^1D_2$  emission lines for Si I and S III. Corrected figure:



• Appendix E, p. 495:  $^2\mathrm{D}^o_{3/2,5/2}$  energy levels were misplotted for S II and Ar IV.

noted 2013.10.21 by Bon-Chul Koo.

Corrected figure [Opportunity taken to update energy Ar IV energy levels using latest values from NIST Atomic Spectra Database (ver. 5.1 [Online])]:



- Appendix F, Table F.2, p. 497, typo: the first transition listed for S III: change  $^3P_0-^1P_0 \rightarrow ^3P_0-^3P_1$  noted 2016.10.03 by C.D. Kreisch.
- Appendix F, Table F.3, p. 498: updated electron collision strengths for O I:

| Ion | $\ell - u$                  | $\Omega_{u\ell}$                                       | Note |
|-----|-----------------------------|--------------------------------------------------------|------|
| OI  | ${}^{3}P_{2} - {}^{3}P_{1}$ | $0.0105 T_4^{0.4861+0.0054 \ln T_4}$                   | а    |
| ,,  | ${}^{3}P_{2} - {}^{3}P_{0}$ | $0.00459  T_4^{0.4507 - 0.0066 \ln T_4}$               | a    |
| ,,  | ${}^{3}P_{1} - {}^{3}P_{0}$ | $0.00015  T_4^{\stackrel{4}{0}.4709 - 0.1396 \ln T_4}$ | a    |
| ,,  | ${}^{3}P_{J} - {}^{1}D_{2}$ | $0.0312(2J+1) T_4^{0.945-0.001 \ln T_4}$               | b    |
| ,,  | ${}^{3}P_{J}-{}^{1}S_{0}$   | $0.00353(2J+1) T_4^{1.000-0.135 \ln T_4}$              | b    |
| ,,  | $^{1}D_{2}-^{1}S_{0}$       | $0.0893\ T_4^{0.662-0.089\ln T_4}$                     | b    |
|     |                             |                                                        |      |

*a* fit to Bell et al. (1998)

b fit to Zatsarriny & Tayal (2003)

noted 2015.02.27

• Appendix F, Table F.5, p. 500: Level u in the fourth line in the table should be  ${}^2\mathrm{P}^o_{3/2}$  rather than  ${}^2\mathrm{P}^o_{5/2}$ .

noted 2022.09.03 by S. R. Kulkarni

- Appendix F, Table F.6, p. 501: The table title should be "Rate Coefficients for ... Deexcitation..." rather than "... Excitation...". noted 2015.07.03
- Appendix F, Table F.6, p. 501: the rates for entries 5 and 6 should be interchanged, so that entries 4-6 read

 Appendix F, Table F.6, p. 501: the rates for entries 23-28 should be changed to

- Appendix G, p. 503, typo just before Eq. (G.7): change ...solution  $x_0=e^{-i\omega t}$   $\rightarrow$  ...solution  $x=x_0e^{-i\omega t}$ . noted 2019.02.11
- Appendix I, p. 506, typo: ...a time  $\sim E_{u\ell}/h \to$  ...a time  $\sim h/E_{u\ell}$  noted 2013.02.07 by Munan Gong.
- Appendix I, p. 507, typo (15.78 $\rightarrow$ 31.56): Eq. (I.7) should read  $\frac{Ze^2}{a_0kT} = \frac{31.56Z}{T_A}$

noted 2019.01.14.

• Appendix J, p. 510, Eq. (J.8): missing sign:

$$Y_3 = E_{\text{grav}} = \frac{1}{2} \int dV_1 \int dV_2 G \frac{\rho(\mathbf{r}_1)\rho(\mathbf{r}_2)}{|\mathbf{r}_1 - \mathbf{r}_2|}$$
$$Y_3 = E_{\text{grav}} = -\frac{1}{2} \int dV_1 \int dV_2 G \frac{\rho(\mathbf{r}_1)\rho(\mathbf{r}_2)}{|\mathbf{r}_1 - \mathbf{r}_2|}$$

noted 2020.11.13

• Appendix J, p. 510, Eq. (J.13), typo:

$$\Pi_0 \equiv \oint d\mathbf{S} \cdot \mathbf{r} p \quad \rightarrow \quad \Pi_0 \equiv \frac{1}{3} \oint d\mathbf{S} \cdot \mathbf{r} p$$

noted 2017.03.08.