Physics of the Interstellar and Intergalactic Medium

Errata in the second and third printings.
Updated 2023.05.23

Bruce T. Draine

2

Which printing of the book you have can be determined from the last line on the copyright page:
First printing:
13579108642
Second printing: 3579108642
Third printing: 357910864
Fourth printing: 57910864
Fifth printing: 5791086
Sixth printing: 791086
Seventh printing:
79108
Eighth printing: 9108

Errata in the second and third printings.

- Plate 5 caption, typo:
...seen in Plate 6. \rightarrow...seen in Plate 4.
noted 2018.04.07 by L. Bouma.
- §1.2, p. 8, Table 1.4: change abundance of P from $N_{\mathrm{P}} / N_{\mathrm{H}}=3.23 \times$ $10^{-7 \pm 0.03}, M_{\mathrm{P}} / M_{\mathrm{H}}=1.00 \times 10^{-5}$ to $N_{\mathrm{P}} / N_{\mathrm{H}}=2.82 \times 10^{-7 \pm 0.03}, M_{\mathrm{P}} / M_{\mathrm{H}}=$ 8.73×10^{-6}
noted 2013.10.21 by Bon-Chul Koo.
- §3.6, p. 28, Eq. 3.31, typo: factor of 2 error. Eq. (3.31) should read

$$
\begin{equation*}
\sigma_{\mathrm{rr}, u \ell}(E)=\frac{1}{2} \frac{g\left(X_{\ell}\right)}{g\left(X_{u}^{+}\right)} \frac{\left(I_{X, \ell u}+E\right)^{2}}{E m_{e} c^{2}} \sigma_{\mathrm{pi}, \ell u}\left(h \nu=I_{X, \ell u}+E\right), \tag{3.31}
\end{equation*}
$$

noted 2015.06 .01 by E. B. Jenkins

- §3.7, p. 28, Eq. (3.33), typo: sign error. Change $e^{-I_{n} / k T} \rightarrow e^{I_{n} / k T}$. noted 2017.02.09
- §3.8, p. 31, Eq. (3.48), typo: change

$$
\begin{aligned}
I_{n \alpha} & \propto A_{n \alpha} h \nu_{n \alpha} \int n[\mathrm{H}(n)] d s \propto n^{-6} b_{n} \int n_{e} n\left(\mathrm{H}^{+}\right) d s \\
\rightarrow & I_{n \alpha} \propto A_{n \alpha} h \nu_{n \alpha} \int n[\mathrm{H}(n+1)] d s \propto n^{-6} b_{n+1} \int n_{e} n\left(\mathrm{H}^{+}\right) d s
\end{aligned}
$$

noted 2019.02.06

- §5.2.2, p. 50, 3rd paragraph, typos: change para- $\mathrm{H}_{2} \mathrm{O}$ must have $K_{-1}+K_{+1}$ odd \rightarrow para- $\mathrm{H}_{2} \mathrm{O}$ must have $K_{-1}+K_{+1}$ even and
ortho- $\mathrm{H}_{2} \mathrm{O}$ must have $K_{-1}+K_{+1}$ even \rightarrow ortho- $\mathrm{H}_{2} \mathrm{O}$ must have $K_{-1}+K_{+1}$ odd noted 2015.01.15 by Neal Evans.
- §7.5, p. 69, Eq. (7.29), typo: missing a factor n_{ℓ}. Should read

$$
\kappa_{\nu}=n_{\ell} \sigma_{\ell \rightarrow u}\left(1-\frac{n_{u} / g_{u}}{n_{\ell} / g_{\ell}}\right)<0
$$

noted 2020.10.12 by Yan Liang.

- §8.3, p. 74, Eq. (8.26), typos: $T_{A}^{\text {on }}(v) \rightarrow T_{A}^{\text {off }}(v)$ (two occurrences). noted 2013.02.14 by Munan Gong.
- §9.8, p. 84, typo in line following Eq. (9.35): change $\left(v_{\mathrm{FWHM}} / 2 \mathrm{~km} \mathrm{~s}^{-1}\right)^{2} / 3 \rightarrow\left(v_{\mathrm{FWHM}} / 2 \mathrm{~km} \mathrm{~s}^{-1}\right)^{2 / 3}$. noted 2020.09.09 by Roohi Dalal.
- §9.10, Table 9.4, p. 88, typos: for CII and N III, change ${ }^{2} \mathrm{D}_{J}^{o} \rightarrow{ }^{2} \mathrm{D}_{J}$ for $J=3 / 2$ and $J=5 / 2$.
noted 2015.02.12 by Semyeong Oh.
- §10.2, sentence preceding Eq. (10.5): change ...the Gaunt factor from quantum-mechanical calculations is approximately \rightarrow
...the Gaunt factor is approximately (Scheuer 1960)
noted 2018.11.18 by S. Weinberg.
- §10.5, p. 97, Eq. (10.25), typo (missing factor of 2): should read

$$
j_{\mathrm{fb}, \nu}=\frac{g_{\mathrm{b}}}{g_{e} g_{i}} \frac{2 h^{4} \nu^{3}}{\left(2 \pi m_{e} k T\right)^{3 / 2} c^{2}} \mathrm{e}^{\left(\mathrm{I}_{\mathrm{b}}-h \nu\right) / k T} \sigma_{\mathrm{b}, \mathrm{pi}}(\nu) n_{e} n_{i}
$$

noted 2021.02.14 by Shigenobu Hirose.

- §11.4, p. 110, Eq. (11.35) should read

$$
\nu \ll \frac{e^{2}\left(\Delta n_{e}\right)_{L, \mathrm{rms}}}{2 \pi m_{e} c}(2 L D)^{1 / 2}=1 \times 10^{3} \mathrm{GHz} \frac{\left(\Delta n_{e}\right)_{L, \mathrm{rms}}}{10^{-3} \mathrm{~cm}^{-3}}\left(\frac{L}{10^{14} \mathrm{~cm}} \frac{D}{\mathrm{kpc}}\right)^{1 / 2} .
$$

noted 2013.02.03 by W. Vlemmings.

- §11.4, p. 110, Eq. (11.34), typo (was off by factor 10^{4}): should read

$$
=6.53 \times 10^{-5} \operatorname{arcsec}\left(\frac{D / \mathrm{kpc}}{L / 10^{14} \mathrm{~cm}}\right)^{1 / 2} \frac{\left(\Delta n_{e}\right)_{L, \mathrm{rms}}}{10^{-3} \mathrm{~cm}^{-3}} \nu_{9}^{-2}
$$

noted 2021.10.25 by I. Wasserman.

- §12, p. 121, Table 12.1, typos:

CMB, $T=2.725 \mathrm{~K} \quad: \quad 4.19 \times 10^{-13} \rightarrow 4.17 \times 10^{-13}$
$T_{2}=4000 \mathrm{~K}, W_{2}=1.65 \times 10^{-13} \quad: \quad 3.19 \times 10^{-13} \rightarrow 3.20 \times 10^{-13}$ $T_{3}=7500 \mathrm{~K}, W_{3}=1 \times 10^{-14}: \quad 2.29 \times 10^{-13} \rightarrow 2.39 \times 10^{-13}$ Starlight total : $1.05 \times 10^{-12} \rightarrow 1.06 \times 10^{-12}$ ISRF total : $2.19 \times 10^{-12} \rightarrow 1.98 \times 10^{-12}$. noted 2012.11.08

- $\S 12.5$, p. 123, below eq. (12.4): change
$\ldots W_{1}$ by 40%, from $W_{1}=5 \times 10^{-13}$ to $7 \times 10^{-13} . \rightarrow$
$\ldots W_{1}$ by 75%, from $W_{1}=4 \times 10^{-13}$ to 7×10^{-13}, and raised W_{2} from 1.0×10^{-13} to 1.65×10^{-13}.
noted 2014.11 .11 by S . Bianchi.
- §13.1, pp. 128, eq. (13.1), (13.3), (13.4): for notational consistency with the rest of the chapter, change $\quad \sigma_{\mathrm{pe}} \rightarrow \sigma_{\mathrm{pi}}$ noted 2018.01.07 by L. Bouma.
- §13.1, p. 130, second paragraph, typo: ...to $3 \times 10^{-10} \mathrm{~s}^{-1}$ for $\mathrm{Si} \rightarrow \quad$...to $3 \times 10^{-9} \mathrm{~s}^{-1}$ for Si noted 2017.03.05
- §14.6, p. 154, Table 14.8 update: replace

$$
\mathrm{H}_{3}^{+}+e^{-} \rightarrow \mathrm{H}_{2}+\mathrm{H} \quad 1.1 \times 10^{-7} T_{2}^{-0.56} \quad \text { McCall et al. (2004) }
$$

with

$$
\mathrm{H}_{3}^{+}+e^{-} \rightarrow \mathrm{H}+\mathrm{H}+\mathrm{H} \quad 8.9 \times 10^{-8} T_{2}^{-0.48} \quad \text { McCall et al. (2004) }
$$

$$
\mathrm{H}_{3}^{+}+e^{-} \rightarrow \mathrm{H}_{2}+\mathrm{H} \quad 5.0 \times 10^{-8} T_{2}^{-0.48} \quad \text { McCall et al. (2004) }
$$

noted 2013.04.03

- §14.7.1, p. 156, Eq. (14.21), typo:

$$
\mathrm{H}\left({ }^{1} \mathrm{~S}_{1 / 2}\right) \rightarrow \mathrm{H}\left({ }^{2} \mathrm{~S}_{1 / 2}\right)
$$

noted 2022.07.06 by S. R. Kulkarni.

- §14.9, p. 159, typo: factor of 2 error. Eq. (14.41) should read

$$
\begin{equation*}
\sigma_{\mathrm{rr}}(E)=\frac{g_{\ell}}{2 g_{u}} \frac{(I+E)^{2}}{E m_{e} c^{2}} \sigma_{\mathrm{pi}}(h \nu=I+E) . \tag{14.41}
\end{equation*}
$$

noted 2015.06 .01 by E. B. Jenkins.

- §14.9, p. 160, typo: factor of 2 error. Eq. (14.43) should read

$$
\begin{equation*}
\frac{\langle\sigma v\rangle_{\mathrm{rr}}}{\langle\sigma v\rangle_{\mathrm{ci}}} \approx 2 \pi \alpha^{3} \frac{f_{\mathrm{pi}}}{C} \frac{I}{k T} e^{I / k T} \tag{14.43}
\end{equation*}
$$

noted 2015.06 .01 by E. B. Jenkins.

- §14.9, p. 160, typo: factor of 2 error. Eq. (14.44) and following should read

$$
\begin{equation*}
\frac{I}{k T} e^{I / k T}=\frac{C}{2 \pi f_{\mathrm{pi}}} \frac{1}{\alpha^{3}} \tag{14.44}
\end{equation*}
$$

If $C \approx 1$ and $f_{\mathrm{pi}} \approx 1$, this has solution $I / k T \approx 10.6 . \ldots$ noted 2015.06 .01 by E. B. Jenkins.

- Table 15.1, p. 164, typo: M / M_{\odot} for O6.5V star: $38.0 \rightarrow 28.0$ noted 2013.01.31
- §15.5, p. 174, sentence preceding Eq. (15.36), typo: $N\left(\mathrm{He}^{+}\right) / N\left(\mathrm{H}^{+}\right)<n_{\mathrm{H}} / n_{\mathrm{He}} \rightarrow N\left(\mathrm{He}^{+}\right) / N\left(\mathrm{H}^{+}\right)<n_{\mathrm{He}} / n_{\mathrm{H}}$ noted 2020.09.29 by H. Jia
- §16.4, p. 186, Eq. $(16.9,16.10)$, update: change

$$
\begin{aligned}
& \mathrm{H}_{3}^{+}+e^{-} \rightarrow \mathrm{H}_{2}+\mathrm{H} \quad, \quad k_{16.9}=4.1 \times 10^{-8} T_{2}^{-0.52} \mathrm{~cm}^{3} \mathrm{~s}^{-1}, \\
& \mathrm{H}_{3}^{+}+e^{-} \rightarrow \mathrm{H}+\mathrm{H}+\mathrm{H} \quad, \quad k_{16.10}=7.7 \times 10^{-8} T_{2}^{-0.52} \mathrm{~cm}^{3} \mathrm{~s}^{-1},
\end{aligned}
$$

to

$$
\begin{aligned}
& \mathrm{H}_{3}^{+}+e^{-} \rightarrow \mathrm{H}_{2}+\mathrm{H} \quad, \quad k_{16.9}=5.0 \times 10^{-8} T_{2}^{-0.48} \mathrm{~cm}^{3} \mathrm{~s}^{-1} \\
& \mathrm{H}_{3}^{+}+e^{-} \rightarrow \mathrm{H}+\mathrm{H}+\mathrm{H} \quad, \quad k_{16.10}=8.9 \times 10^{-8} T_{2}^{-0.48} \mathrm{~cm}^{3} \mathrm{~s}^{-1}
\end{aligned}
$$

and cite McCall et al. (2004) for $k_{16.9}$ and $k_{16.10}$. noted 2013.04.03

- §16.4, p. 187, typo: in paragraph below Eq. (16.15), change $x_{e} \approx x_{M} \approx 1.9 \times 10^{-4} \quad \rightarrow \quad x_{e} \approx x_{M} \approx 1.1 \times 10^{-4}$ (see Eq. 16.3) noted 2013.04.04
- §16.5, p. 188, Eq. (16.16), typo: should read

$$
\mathrm{H}_{2}+\mathrm{CR} \rightarrow \mathrm{H}_{2}^{+}+e^{-}+\mathrm{CR}
$$

noted 2020.09.29 by R. Córdova

- §16.5, p. 189, Fig. 16.3. The original figure was evaluated with a too-large rate for $k_{16.19}$. The figure has been redone, now also showing the result if $\zeta_{\mathrm{CR}}=1 \times 10^{-17} \mathrm{~s}^{-1}$:

Figure 16.3 Fractional ionization in a dark cloud, estimated using Eq. (16.25), with the grain recombination rate coefficients set to $k_{16.20}=k_{16.22}=10^{-14} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$ (see Fig. 14.6). The dashed line is a simple power-law approximation $x_{e} \approx 2 \times$ $10^{-5}\left(n_{\mathrm{H}} / \mathrm{cm}^{-3}\right)^{-1 / 2}$.
noted 2013.03.05.

- §17.3, p. 195, footnote 3, typos:
...frequency $\sim 8 \times 10^{10} \mathrm{~Hz} . . . \rightarrow$...frequency $\sim 1.1 \times 10^{10} \mathrm{~Hz} .$. . $\ldots \sim 10^{2}$ precession periods. $\rightarrow \ldots \sim 18$ precession periods. noted 2020.10.02
- §18.5, p. 214, Eq. (18.11): Change
... Ω_{03} is approximately independent of T_{e}, we have

$$
\begin{equation*}
\frac{n(\mathrm{O} \mathrm{III})}{n\left(\mathrm{H}^{+}\right)}=C \frac{I([\mathrm{O} \mathrm{III}] 5008)}{I(\mathrm{H} \beta)} T_{4}^{-0.37} \mathrm{e}^{2.917 / T_{4}} \tag{18.11}
\end{equation*}
$$

to
$\ldots \Omega_{03} \propto T_{4}^{0.12}$ (see Appendix F), we have

$$
\begin{equation*}
\frac{n(\mathrm{O} \mathrm{III})}{n\left(\mathrm{H}^{+}\right)}=C \frac{I([\mathrm{O} \mathrm{III}] 5008)}{I(\mathrm{H} \beta)} T_{4}^{-0.49} \mathrm{e}^{2.917 / T_{4}} \tag{18.11}
\end{equation*}
$$

noted 2015.02.27

- §19.3, p. 222: revise value for A_{10} : replace $A_{10}=6.78 \times 10^{-8} \mathrm{~s}^{-1} \rightarrow A_{10}=7.16 \times 10^{-8} \mathrm{~s}^{-1}$ (see Eq. 5.7). noted 2013.04.17
- §19.3, p. 223: revised numbers according to revised value for A_{10} : Eq. (19.15): $281 \rightarrow 297$, Eq. (19.17): $281 \rightarrow 297$, Eq. (19.19): $46 \rightarrow 50$ noted 2013.04.17
- §20.1, p. 229, typo just below Eq. (20.2): replace ...unit time that level x will... \rightarrow...unit time the level u will... noted 2020.10.12 by Yan Liang
- §22.6, p. 256, footnote 6: the DDSCAT website has moved. Change http://code.google.com/p/ddscat \rightarrow http://www.ddscat.org noted 2019.03.25
- §23.1, p. 265, typo:
lower oscillator strength $f(\mathrm{C} \mathrm{II}] 2325 \AA)=1.0 \times 10^{-7}$
\rightarrow
larger oscillator strength $f(\mathrm{C} \mathrm{II}] 2325 \AA)=1.0 \times 10^{-7}$
noted 2012.12.27
- §23.3.2, p. 268, typo: Si-O-Si bending mode \rightarrow O-Si-O bending mode noted 2020.10.12
- §25.3, p. 299, typo following Eq. (25.11): change ...charge $Z_{\mathrm{gr}}=U a$ can... \rightarrow...charge $Z_{\mathrm{gr}}=U a / e$ can... noted 2021.06 .25 by Yu Fung Wong.
- §26.2, p. 308, Eq. (26.23), numerical error: should read

$$
\begin{equation*}
\frac{\omega}{2 \pi}=4.6 \mathrm{GHz}\left(\frac{T_{\mathrm{rot}}}{100 \mathrm{~K}}\right)^{1 / 2}\left(\frac{0.001 \mu \mathrm{~m}}{a}\right)^{5 / 2} \tag{26.23}
\end{equation*}
$$

noted 2014.06.27 by B. Jiang.

- §27.3.1, p 320, typos in coefficient of $\ln \left(T_{4} / Z^{2}\right)$ term: Eq. (27.19) and (27.20) should read

$$
\begin{align*}
& \gamma_{A}=-1.2130-0.0115 \ln \left(T_{4} / Z^{2}\right) \tag{27.19}\\
& \gamma_{B}=-1.3163-0.0208 \ln \left(T_{4} / Z^{2}\right) \tag{27.20}
\end{align*}
$$

and (27.22) and (27.23) should read

$$
\begin{align*}
\left\langle E_{\text {rr }}\right\rangle_{A} & =\left[0.787-0.0115 \ln \left(T_{4} / Z^{2}\right)\right] k T \tag{27.21}\\
\left\langle E_{\mathrm{rr}}\right\rangle_{B} & =\left[0.684-0.0208 \ln \left(T_{4} / Z^{2}\right)\right] k T \tag{27.22}
\end{align*}
$$

noted 2023.01 .29 by S. R. Kulkarni.

- $\S 28.3$, p. 328, 4th paragraph, typo: change distance from Θ_{1} OriC to the Orion Bar ionization front: $\sim 7.8 \times 10^{18} \mathrm{~cm} \rightarrow \sim 7.8 \times 10^{17} \mathrm{~cm}$ noted 2020.10.26
- §29.1, p. 332, 1st paragraph, typo: $b=0 \rightarrow b=90^{\circ}$, so that the 2 nd sentence reads
\ldots vary as $N(\mathrm{HI}, b)=N\left(\mathrm{HI}, b=90^{\circ}\right) / \sin |b|=N_{0} \mathrm{csc}|b|$.
noted 2012.11.04 by R. Simons.
- §31.4, p. 349, Eq. (31.24), typo: on RHS, change

$$
\frac{\pi e^{2}}{m_{e} c^{2} h} \sum_{u} f_{\ell u} \lambda_{\ell u}^{3} u_{\lambda} f_{\text {shield }, \ell u} \rightarrow \frac{\pi e^{2}}{m_{e} c^{2} h} \sum_{u} f_{\ell u} \lambda_{\ell u}^{3} u_{\lambda} f_{\text {shield }, \ell u} p_{\text {diss }, u}
$$

noted 2013.04.12 by Ai-Lei Sun.

- §32.9, p. 368, just before eq. (32.11), typo: change $A_{V} / N_{\mathrm{H}}=1.87 \times 10^{21} \mathrm{~cm}^{2} \rightarrow A_{V} / N_{\mathrm{H}}=5.3 \times 10^{-22} \mathrm{mag} \mathrm{cm}{ }^{2}$. noted 2016.03.04 by Ilsang Yoon.
- §32.11, p. 372, prepenultimate paragraph: terminological correction. Change "core" to "clump" (three occurrences). noted 2015.04.16
- §34.4, p. 386, Eq. (34.10): sign mistake on RHS; change

$$
-4 \pi r^{2} \kappa \frac{d T}{d r} \quad \rightarrow \quad 4 \pi r^{2} \kappa \frac{d T}{d r}
$$

noted 2019.04.18 by G. Halevi.

- §34.4, p. 387, typo: Eq. (34.17) is off by a factor 3, and should read
$t_{\text {evap }}=\frac{3 M}{2 \dot{M}}=\frac{25 \times 2.3\left(n_{\mathrm{H}}\right)_{c} R_{c}^{2} m_{e}^{1 / 2} e^{4} \ln \Lambda}{8 \times 0.87\left(k T_{h}\right)^{2.5}}$
Eq. (34.18) is numerically correct, but should have shown the dependence on $\ln \Lambda$:

$$
\begin{equation*}
=5.1 \times 10^{4} \mathrm{yr}\left(\frac{\left(n_{\mathrm{H}}\right)_{c}}{30 \mathrm{~cm}^{-3}}\right)\left(\frac{R_{c}}{\mathrm{pc}}\right)^{2}\left(\frac{T_{h}}{10^{7} \mathrm{~K}}\right)^{-2.5}\left(\frac{\ln \Lambda}{30}\right) . \tag{34.18}
\end{equation*}
$$

noted 2013.01.05 by B. Hensley.

- §36.2.3, p. 400, Eq. (36.10): $\quad v_{x}$ multiplying $B_{y} B_{x}$ should be v_{y}, and v_{x} multiplying $B_{z} B_{x}$ should be v_{z}.
noted 2015.12.17 by J. Miralda-Escudé.
The equation should read

$$
\begin{align*}
& \left\{\left[\frac{\rho v^{2}}{2}+\frac{\gamma p}{(\gamma-1)}\right] v_{x}+\frac{\left(B_{y}^{2}+B_{z}^{2}\right)}{4 \pi} v_{x}-\frac{\left(B_{x} B_{y} v_{y}+B_{x} B_{z} v_{z}\right)}{4 \pi}-\kappa \frac{d T}{d x}\right\}_{1}= \\
& \left\{\left[\frac{\rho v^{2}}{2}+\frac{\gamma p}{(\gamma-1)}\right] v_{x}+\frac{\left(B_{y}^{2}+B_{z}^{2}\right)}{4 \pi} v_{x}-\frac{\left(B_{x} B_{y} v_{y}+B_{x} B_{z} v_{z}\right)}{4 \pi}-\kappa \frac{d T}{d x}\right\}_{2} . \tag{36.10}
\end{align*}
$$

- §37.1, p. 413, 2nd paragraph: Change

Cases of astrophysical interest will normally have..
\rightarrow
Many cases of astrophysical interest will have...
noted 2018.04.09.

- §37.1, p. 413, typo just above Eq. (37.3):
$J h \nu / c=\rho_{1} u_{1} h \nu / \mu_{i} c \ll \rho_{1}\left(u_{1}^{2}+c_{1}^{2}+B_{1}^{2} / 8 \pi\right)$.
\rightarrow
$J h \nu / c=\rho_{1} u_{1} h \nu / \mu_{i} c \ll \rho_{1}\left(u_{1}^{2}+c_{1}^{2}\right)+B_{1}^{2} / 8 \pi$.
noted 2016.12.08 by Ryohei Nakatani.
- §37.1, Eq. (37.8): The correction terms for $u_{\mathrm{R}}, x_{\mathrm{R}}, u_{\mathrm{D}}$, and x_{D} can be improved by analyzing the full cubic equation (37.3): change

$$
u_{\mathrm{R}} \approx 2 c_{2} \quad \rightarrow \quad u_{\mathrm{R}} \approx 2 c_{2}\left[1-\frac{2 c_{1}^{2}-3 v_{A 1}^{2}}{8 c_{2}^{2}}\right]
$$

$$
\begin{aligned}
& x_{\mathrm{R}} \approx \frac{1}{2}+\frac{2 c_{1}^{2}+v_{A 1}^{2}}{16 c_{2}^{2}} \quad \rightarrow \quad x_{\mathrm{R}} \approx \frac{1}{2} \\
& u_{\mathrm{D}} \approx \frac{2 c_{1}^{2}+v_{A 1}^{2}}{4 c_{2}} \quad \rightarrow \quad \frac{2 c_{1}^{2}+v_{A 1}^{2}}{4 c_{2}}\left[1+\frac{2 c_{1}^{2}+v_{A 1}^{2}}{8 c_{2}^{2}}\right] \\
& x_{\mathrm{D}} \approx \frac{4 c_{2}^{2}}{2 c_{1}^{2}+v_{A 1}^{2}} \quad \rightarrow \quad x_{\mathrm{D}} \approx \frac{4 c_{2}^{2}}{2 c_{1}^{2}+v_{A 1}^{2}}\left[1-\frac{v_{A 1}^{2}}{8 c_{2}^{2}}\right]
\end{aligned}
$$

noted 2018.02.19 by Woong-Tae Kim.

- §37.1 and $\S 37.2$, pp. 414-416: the mathematics is correct, but the "weaktype", and "strong-type" terminology was unfortunately inverted: all occurrences of "weak-type" should be changed to "strong-type", and vice-versa:
- §37.1.1, p. 414, first paragraph:
...are called strong R-type. Strong R-type solutions...
\rightarrow
...are called weak R-type. Weak R-type solutions...
- §37.1.1, p. 414, second paragraph:
...referred to as weak R-type,... \rightarrow...referred to as strong R-type,...
- §37.1.1, p. 414, second paragraph:

Hence, only strong R-type I-fronts are physically relevant.

$$
\rightarrow
$$

Hence, only weak R-type I-fronts are physically relevant.

- §37.1.2, p. 414, first paragraph:
...is termed weak D-type. \rightarrow...is termed strong D-type.
- §37.1.2, p. 414, second paragraph:
\ldots is termed strong D-type. $\rightarrow \quad$...is termed weak D-type.
- Fig. 37.1 and caption should be:

Figure $37.1 u_{2} / u_{1}=\rho_{1} / \rho_{2}$, as a function of the velocity u_{1} of the I-front relative to the neutral gas just ahead of the I-front, for D-type and R-type ionization front
solutions (see text) for an example with $c_{1}=1 \mathrm{~km} \mathrm{~s}^{-1}, v_{A 1}=2 \mathrm{~km} \mathrm{~s}^{-1}$, and $c_{2}=$ $11.4 \mathrm{~km} \mathrm{~s}^{-1}$. The astrophysically relevant solutions are the strong D-type and weak R-type cases, shown as heavy curves. There are no solutions with u_{1} between u_{D} and u_{R}.

- §37.1, p. 416, first paragraph:
...will be strong R-type, ... \rightarrow...will be weak R-type, ...
- §37.1, p. 417, fourth line:
...will now be weak D-type, ... $\rightarrow \quad$...will now be strong D-type, ... noted 2016.12.06 by Ryohei Nakatani.
- §37.2, p. 418, typos:
...moving at a speed v_{s} that will be close to (just slightly larger than) the speed of the I-front:

$$
\begin{equation*}
v_{s} \approx V_{i} . \tag{37.21}
\end{equation*}
$$

\rightarrow
...moving at a speed V_{s} that will be close to (just slightly larger than) the speed of the I-front:

$$
\begin{equation*}
V_{s} \approx V_{i} . \tag{37.21}
\end{equation*}
$$

noted 2016.12.08 by Ryohei Nakatani.

- §38.3, p. 428, last paragraph, typo:
$\dot{M}_{w} \approx 2 \times 10^{-5} \mathrm{~km} \mathrm{~s}^{-1} \rightarrow \dot{M}_{w} \approx 2 \times 10^{-5} M_{\odot} \mathrm{yr}^{-1}$
noted 2015.12.17 by J. Miralda-Escudé.
- §39.1.2, p. 433, Eqs. (39.22, 39.23, 39.24), typos: the factor $\left(E_{51} / n_{0}^{2}\right)$ should be ($E_{51} n_{0}^{2}$), so that the equations should read

$$
\begin{align*}
v_{s}\left(t_{\mathrm{rad}}\right) & =188 \mathrm{~km} \mathrm{~s}^{-1}\left(E_{51} n_{0}^{2}\right)^{0.07}, \tag{39.22}\\
T_{s}\left(t_{\mathrm{rad}}\right) & =4.86 \times 10^{5} \mathrm{~K}\left(E_{51} n_{0}^{2}\right)^{0.13}, \tag{39.23}\\
k T_{s}\left(t_{\mathrm{rad}}\right. & =41 \mathrm{eV}\left(E_{51} n_{0}^{2}\right)^{0.13} \tag{39.24}
\end{align*}
$$

noted 2012.10.02 by G.B. Field.

- §39.4, p. 438, Eqs. (39.35) and (39.36), typos: they should read

$$
\begin{align*}
N_{\mathrm{SN}} & =0.24 S_{-13} E_{51}^{1.26} n_{0}^{-1.47} c_{s, 6}^{-13 / 5} \tag{39.35}\\
& =0.48 S_{-13} E_{51}^{1.26} n_{0}^{-0.17} p_{4}^{-1.30}, p_{4} \equiv \frac{p / k}{10^{4} \mathrm{~cm}^{-3} \mathrm{~K}} \tag{39.36}
\end{align*}
$$

noted 2014.06.27 by B. Jiang.

- §39.4, p. 438, Eq. (39.37), typos: Eq. (39.37) should read

$$
\begin{equation*}
\frac{p}{k}=S_{-13}^{0.77} E_{51}^{0.97} n_{0}^{-0.13} \times 5700 \mathrm{~cm}^{-3} \mathrm{~K} \tag{39.37}
\end{equation*}
$$

noted 2014.06 .27 by B. Jiang.

- §40.5, p. 447, typo: protons with $E \lesssim 10^{5} \mathrm{GeV}$ have $R_{\text {gyro }}<10^{-4} \mathrm{pc} \rightarrow$ protons with $E \lesssim 10^{3} \mathrm{GeV}$ have $R_{\text {gyro }}<10^{-4} \mathrm{pc}$ noted 2011.04.26
- §41.3, p. 456, typo: missing factor of G. Eq. (41.36) should read

$$
\begin{equation*}
E_{\text {grav }}=-\frac{G}{2} \int d V_{1} \int d V_{2} \frac{\rho\left(\mathbf{r}_{1}\right) \rho\left(\mathbf{r}_{2}\right)}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} \tag{41.36}
\end{equation*}
$$

noted 2015.04.30 by J. Greco.

- §41.3.2, p. 457, Eq. (41.46), typo: replace

$$
E_{\mathrm{mag}}=\frac{B_{\mathrm{rms}}^{2}-B_{0}^{2}}{8 \pi} V \quad \rightarrow \quad E_{\mathrm{mag}}=\frac{B_{\mathrm{rms}}^{2}}{8 \pi} V
$$

noted 2011.04.28

- §41.4, p. 460, Eq. (41.55), typo: $m_{m} \rightarrow m_{n}$
noted 2013.04 .30 by K. Silsbee
- Appendix A, p. 473, typo: entry for a_{0} should read
\ldots Bohr radius $\equiv \hbar^{2} / m_{e} e^{2}=\ldots$
noted 2013.03.05 by Wenhua Ju.
- Appendix B, p. 476: typo: incorrect units for Stefan-Boltzmann constant σ : $5.67040 \times 10^{-5} \mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-3} \mathrm{~K}^{-4} \rightarrow 5.67040 \times 10^{-5} \mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \mathrm{~K}^{-4}$ noted 2019.05.14 by Aaron Tran.
- Appendix D, p. 481: corrected typos:

F VI \rightarrow VII: $\quad I=147.163 \rightarrow 157.163$
Ne VI \rightarrow VII: $\quad I=154.214 \rightarrow 157.934$
Ti III $\rightarrow \mathrm{IV}: \quad I=24.492 \rightarrow 27.492$
$\mathrm{Ti} \mathrm{V} \rightarrow \mathrm{VI}: \quad I=123.7 \rightarrow 99.299$
Zn VI \rightarrow VII: $\quad I=133.903 \rightarrow 108.0$
noted 2015.07.10 by Guangtun Ben Zhu.

- Appendix E, p. 485: diagrams for NIV and O V: the levels shown as ${ }^{2} \mathrm{P}_{1}^{o}$ and ${ }^{2} \mathrm{P}_{2}^{o}$ should be ${ }^{3} \mathrm{P}_{1}^{o}$ and ${ }^{3} \mathrm{P}_{2}^{o}$, respectively. noted 2023.05.23
- Appendix E, p. 488: inadvertent omisssionof ${ }^{2} \mathrm{P}_{1 / 2}^{o} \rightarrow{ }^{2} \mathrm{D}_{5 / 2}^{o}$ emission lines for NI, O II, and Ne IV. Corrected figure:

noted 2023.04.16 by S.R. Kulkarni
- Appendix E, p. 494: inadvertent omission of ${ }^{1} \mathrm{~S}_{0} \rightarrow{ }^{1} \mathrm{D}_{2}$ emission lines for

Si I and S III. Corrected figure:

noted 2023.04.16 by S.R. Kulkarni

- Appendix E, p. 495: ${ }^{2} \mathrm{D}_{3 / 2,5 / 2}^{o}$ energy levels were misplotted for S II and ArIV.
noted 2013.10.21 by Bon-Chul Koo.
Corrected figure [Opportunity taken to update energy ArIV energy levels
using latest values from NIST Atomic Spectra Database (ver. 5.1 [Online])]:

- Appendix F, Table F.2, p. 497, typo: the first transition listed for S III: change ${ }^{3} \mathrm{P}_{0}-{ }^{1} \mathrm{P}_{0} \rightarrow{ }^{3} \mathrm{P}_{0}-{ }^{3} \mathrm{P}_{1}$ noted 2016.10.03 by C.D. Kreisch.
- Appendix F, Table F.3, p. 498: updated electron collision strengths for O I:

Ion	$\ell-u$	$\Omega_{u \ell}$	Note	
OI	${ }^{3} \mathrm{P}_{2}-{ }^{3} \mathrm{P}_{1}$	$0.0105 T_{4}^{0.4861+0.0054 \ln T_{4}}$	a	
$"$	${ }^{3} \mathrm{P}_{2}-{ }^{3} \mathrm{P}_{0}$	$0.00459 T_{4}^{0.4507-0.0066 \ln T_{4}}$	a	
$"$	${ }^{3} \mathrm{P}_{1}-{ }^{3} \mathrm{P}_{0}$	$0.00015 T_{4}^{0.4709-0.1396 \ln T_{4}}$	a	
$"$	${ }^{3} \mathrm{P}_{J}-{ }^{1} \mathrm{D}_{2}$	$0.0312(2 J+1) T_{4}^{0.945-0.001 \ln T_{4}}$	b	
$"$	${ }^{3} \mathrm{P}_{J}-{ }^{1} \mathrm{~S}_{0}$	$0.00353(2 J+1) T_{4}^{1.000-0.135 \ln T_{4}}$	b	
$"$	${ }^{1} \mathrm{D}_{2}-{ }^{1} \mathrm{~S}_{0}$	$0.0893 T_{4}^{0.662-0.089 \ln T_{4}}$	b	
	\ldots			

a fit to Bell et al. (1998)
b fit to Zatsarriny \& Tayal (2003)
noted 2015.02.27

- Appendix F, Table F.5, p. 500: Level u in the fourth line in the table should be ${ }^{2} \mathrm{P}_{3 / 2}^{o}$ rather than ${ }^{2} \mathrm{P}_{5 / 2}^{o}$.
noted 2022.09 .03 by S. R. Kulkarni
- Appendix F, Table F.6, p. 501: The table title should be "Rate Coefficients for ... Deexcitation..." rather than "... Excitation...".
noted 2015.07.03
- Appendix F, Table F.6, p. 501: the rates for entries 5 and 6 should be interchanged, so that entries 4-6 read

H	CI	${ }^{3} \mathrm{P}_{0}-{ }^{3} \mathrm{P}_{1}$	$1.26 \times 10^{-10} T_{2}^{0.115+0.057 \ln T_{2}}$	b
H	CI	${ }^{3} \mathrm{P}_{0}-{ }^{3} \mathrm{P}_{2}$	$8.90 \times 10^{-11} T_{2}^{0.228+0.046 \ln T_{2}}$	b
H	CI	${ }^{3} \mathrm{P}_{1}-{ }^{3} \mathrm{P}_{2}$	$2.64 \times 10^{-10} T_{2}^{0.231+0.046 \ln T_{2}}$	b

noted 2015.07.03 by Munan Gong.

- Appendix F, Table F.6, p. 501: the rates for entries 23-28 should be changed to
H_{2} (para) O I $\quad{ }^{3} \mathrm{P}_{2}-{ }^{3} \mathrm{P}_{1} \quad 1.49 \times 10^{-10} T_{2}^{0.369-0.026 \ln T_{2}} \quad h$
H_{2} (ortho) OI $\quad{ }^{3} \mathrm{P}_{2}-{ }^{3} \mathrm{P}_{1} \quad 1.37 \times 10^{-10} T_{2}^{0.395-0.005 \ln T_{2}} \quad h$
H_{2} (para) OI $\quad{ }^{3} \mathrm{P}_{2}-{ }^{3} \mathrm{P}_{0} \quad 2.37 \times 10^{-10} T_{2}^{0.255+0.016 \ln T_{2}} \quad h$
H_{2} (ortho) OI $\quad{ }^{3} \mathrm{P}_{2}-{ }^{3} \mathrm{P}_{0} \quad 2.23 \times 10^{-10} T_{2}^{0.284+0.035} \ln T_{2} \quad h$
H_{2} (para) OI $\quad{ }^{3} \mathrm{P}_{1}-{ }^{3} \mathrm{P}_{0} \quad 2.10 \times 10^{-12} T_{2}^{1.117+0.070} \ln T_{2} \quad h$
H_{2} (ortho) O I $\quad{ }^{3} \mathrm{P}_{1}-{ }^{3} \mathrm{P}_{0} \quad 3.00 \times 10^{-12} T_{2}^{0.792+0.188 \ln T_{2}} \quad h$ noted 2015.08 .24 by E.B. Jenkins.
- Appendix G, p. 503, typo just before Eq. (G.7): change
...solution $x_{0}=e^{-i \omega t} \quad \rightarrow \quad$...solution $x=x_{0} e^{-i \omega t}$. noted 2019.02.11
- Appendix I, p. 506, typo: ...a time $\sim E_{u \ell} / h \rightarrow \ldots$ a time $\sim h / E_{u \ell}$ noted 2013.02.07 by Munan Gong.
- Appendix I, p. 507, typo (15.78 $\rightarrow 31.56$): Eq. (I.7) should read

$$
\frac{Z e^{2}}{a_{0} k T}=\frac{31.56 Z}{T_{4}}
$$

noted 2019.01.14.

- Appendix J, p. 510, Eq. (J.8): missing sign:

$$
\begin{aligned}
Y_{3} & =E_{\text {grav }}=\frac{1}{2} \int d V_{1} \int d V_{2} G \frac{\rho\left(\mathbf{r}_{1}\right) \rho\left(\mathbf{r}_{2}\right)}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} \\
Y_{3} & =E_{\text {grav }}=-\frac{1}{2} \int d V_{1} \int d V_{2} G \frac{\rho\left(\mathbf{r}_{1}\right) \rho\left(\mathbf{r}_{2}\right)}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|}
\end{aligned}
$$

noted 2020.11.13

- Appendix J, p. 510, Eq. (J.13), typo:

$$
\Pi_{0} \equiv \oint d \mathbf{S} \cdot \mathbf{r} p \quad \rightarrow \quad \Pi_{0} \equiv \frac{1}{3} \oint d \mathbf{S} \cdot \mathbf{r} p
$$

noted 2017.03.08.

