Physics of the Interstellar and Intergalactic Medium

Errata in the first printing.
Updated 2023.05.23

Bruce T. Draine

Which printing of the book you have can be determined from the last line on the copyright page:

First printing:	13579108642
Second printing:	3579108642
Third printing:	357910864
Fourth printing:	57910864
Fifth printing:	5791086
Sixth printing:	791086
Seventh printing:	79108
Eighth printing:	Errata in the first printing.

- preface, p. xvii, typo: reaquaint \rightarrow reacquaint noted 2011.02 .13 by B. Hensley.
- Plate 5 caption, typo:
...seen in Plate $6 . \rightarrow$...seen in Plate 4. noted 2018.04.07 by L. Bouma.
- §1, p. 2, 1st paragraph, typo: nuclear transitions and π^{0} decays. \rightarrow nuclear transitions, π^{0} decays, and $e^{+}-e^{-}$annihilations. noted 2012.06.26
- §1.1, p. 6, Table 1.3: change range of densities for H II gas from 0.3 $10^{4} \mathrm{~cm}^{-3}$ to $0.2-10^{4} \mathrm{~cm}^{-3}$. noted 2011.09 .22 by B. Ménard.
- §1.2, p. 8, Table 1.4: change abundance of P from $N_{\mathrm{P}} / N_{\mathrm{H}}=3.23 \times$ $10^{-7 \pm 0.03}, M_{\mathrm{P}} / M_{\mathrm{H}}=1.00 \times 10^{-5}$ to $N_{\mathrm{P}} / N_{\mathrm{H}}=2.82 \times 10^{-7 \pm 0.03}, M_{\mathrm{P}} / M_{\mathrm{H}}=$ 8.73×10^{-6} noted 2013.10.21 by Bon-Chul Koo.
- §2, p. 11, 3rd paragraph, typo: three basic types \rightarrow four basic types noted 2012.06 .22 by F. van der Tak.
- §3.6, p. 28, Eq. 3.31, typo: factor of 2 error. Eq. (3.31) should read

$$
\begin{equation*}
\sigma_{\mathrm{rr}, u \ell}(E)=\frac{1}{2} \frac{g\left(X_{\ell}\right)}{g\left(X_{u}^{+}\right)} \frac{\left(I_{X, \ell u}+E\right)^{2}}{E m_{e} c^{2}} \sigma_{\mathrm{pi}, \ell u}\left(h \nu=I_{X, \ell u}+E\right), \tag{3.31}
\end{equation*}
$$

noted 2015.06.01 by E. B. Jenkins

- §3.7, p. 28, Eq. (3.33), typo: sign error. Change $e^{-I_{n} / k T} \rightarrow e^{I_{n} / k T}$. noted 2017.02.09
- §3.8, p. 31, Eq. (3.48), typo: change

$$
I_{n \alpha} \propto A_{n \alpha} h \nu_{n \alpha} \int n[\mathrm{H}(n)] d s \propto n^{-6} b_{n} \int n_{e} n\left(\mathrm{H}^{+}\right) d s
$$

$$
\rightarrow I_{n \alpha} \propto A_{n \alpha} h \nu_{n \alpha} \int n[\mathrm{H}(n+1)] d s \propto n^{-6} b_{n+1} \int n_{e} n\left(\mathrm{H}^{+}\right) d s
$$

noted 2019.02.06

- §5.2.2, p. 50, Fig. 5.5: add reference to caption: (Chandra et al. 1984) ref: Chandra, Kegel \& Varshalovich 1984, Astr. Astrophys. Suppl., 55, 51. noted 2011.11.03.
- §5.2.2, p. 50, 3rd paragraph, typos: change
para- $\mathrm{H}_{2} \mathrm{O}$ must have $K_{-1}+K_{+1}$ odd \rightarrow para- $\mathrm{H}_{2} \mathrm{O}$ must have $K_{-1}+K_{+1}$ even
and
ortho- $\mathrm{H}_{2} \mathrm{O}$ must have $K_{-1}+K_{+1}$ even \rightarrow ortho $-\mathrm{H}_{2} \mathrm{O}$ must have $K_{-1}+K_{+1}$ odd noted 2015.01.15 by Neal Evans.
- $\S 5.2 .2$, p. 50: the text should have made clear that the selection rules given were specifically for $\mathrm{H}_{2} \mathrm{O}$: change
The selection rules for electric dipole radiative transitions are $\Delta J=0, \pm 1$; $\Delta K_{-1}= \pm 1, \pm 3 ;$ and $\Delta K_{+1}= \pm 1, \pm 3$. to
The selection rules for electric dipole radiative transitions in $\mathrm{H}_{2} \mathrm{O}$ are $\Delta J=$ $0, \pm 1 ; \Delta K_{-1}= \pm 1, \pm 3$; and $\Delta K_{+1}= \pm 1, \pm 3$; for less symmetric molecules (e.g., HDO) additional transitions are allowed. noted 2011.11.03 by J. M. Shull.
- $\S 6.4$, p. 58 , Eq. (6.29), typo: replace $7618 \mathrm{~cm} \mathrm{~s}^{-1} \rightarrow 7616 \mathrm{~cm} \mathrm{~s}^{-1}$ and in the following line change $7618 \mathrm{~cm} \mathrm{~s}^{-1} \rightarrow 7616 \mathrm{~cm} \mathrm{~s}^{-1}$. noted 2011.08 .18 by K.-G. Lee.
- §6.4, p. 58, typos: change

HLyman $\alpha(\lambda=1215 \AA)$ has $. . . f_{\ell u}=0.4162$
\rightarrow
HLyman $\alpha(\lambda=1215.67 \AA)$ has $. . . f_{\ell u}=0.4164$, and in the following sentence, change $0.4162 \rightarrow 0.4164$. noted 2011.08.19

- §6.4, p. 60, Eq. (6.41), typo: replace

$$
2924\left[\frac{7618 \mathrm{~cm} \mathrm{~s}^{-1}}{\gamma_{u \ell} \lambda_{u \ell}} b_{6}\right] \rightarrow 2925\left[\frac{7616 \mathrm{~cm} \mathrm{~s}^{-1}}{\gamma_{u \ell} \lambda_{u \ell}} b_{6}\right]
$$

and in Eq. (6.42) change $7618 \mathrm{~cm} \mathrm{~s}^{-1} \rightarrow 7616 \mathrm{~cm} \mathrm{~s}^{-1}$. noted 2011.08.18 by K.-G. Lee.

- §7.5, p. 69, Eq. (7.29), typo: missing a factor n_{ℓ}. Should read

$$
\kappa_{\nu}=n_{\ell} \sigma_{\ell \rightarrow u}\left(1-\frac{n_{u} / g_{u}}{n_{\ell} / g_{\ell}}\right)<0
$$

noted 2020.10.12 by Yan Liang.

- §8.1, p. 71, 3 places: just before Eq. (8.4), just after Eq. (8.7), and between Eq. (8.8) and (8.9): change "absorption coefficient" \rightarrow "attenuation coefficient". noted 2011.03.07
- §8.1, p. 71, Eq. (8.9), typo: missing a factor $n(\mathrm{HI})$. Should read:

$$
\begin{equation*}
\kappa_{\nu}=\frac{3}{32 \pi} \frac{1}{\sqrt{2 \pi}} \frac{A_{u \ell} \lambda_{u \ell}^{2}}{\sigma_{V}} \frac{h c}{k T_{\text {spin }}} n(\mathrm{HI}) \mathrm{e}^{-u^{2} / 2 \sigma_{V}^{2}} \tag{8.9}
\end{equation*}
$$

noted 2011.03 .07 by P. Pattarakijwanich.

- §8.1, p. 71, Eq. (8.10), typo: omit the comma. noted 2010.02.09
- §8.2, p. 72, Eq. (8.17), typo: change $54.89 \rightarrow 55.17$ noted 2011.07.06 by R. Allen.
- §8.2, p. 73, Eq. (8.21), typo: change $(1+z) \rightarrow(1+z)^{-1}$ noted 2012.06.01 by B. Catinella and N. Evans.
- §8.3, p. 74, Eq. (8.26), typo: $T_{\text {sky }}(v) \rightarrow T_{\text {sky }}$ (two occurrences). noted 2011.02.10
- §8.3, p. 74, Eq. (8.26), typos: $T_{A}^{\text {on }}(v) \rightarrow T_{A}^{\text {off }}(v)$ (two occurrences). noted 2013.02.14 by Munan Gong.
- §9.4, p. 79, Eq. (9.21), the second "=" should be changed to " \approx ". noted 2011.08 .18 by K.-G. Lee.
- §9.8, p. 84, typo in line following Eq. (9.35): change $\left(v_{\mathrm{FWHM}} / 2 \mathrm{~km} \mathrm{~s}^{-1}\right)^{2} / 3 \rightarrow\left(v_{\mathrm{FWHM}} / 2 \mathrm{~km} \mathrm{~s}^{-1}\right)^{2 / 3}$. noted 2020.09.09 by Roohi Dalal.
- §9.10, Table 9.4, p. 88, typos: for CII and N III, change ${ }^{2} \mathrm{D}_{J}^{o} \rightarrow{ }^{2} \mathrm{D}_{J}$ for $J=3 / 2$ and $J=5 / 2$. noted 2015.02.12 by Semyeong Oh.
- §10.2, sentence preceding Eq. (10.5): change ...the Gaunt factor from quantum-mechanical calculations is approximately \rightarrow
...the Gaunt factor is approximately (Scheuer 1960) noted 2018.11.18 by S. Weinberg.
- §10.5, p. 96, Eq. (10.23), typo (extraneous factor of cm^{5}):

$$
\ldots \nu_{9}^{-2.118} \mathrm{~cm}^{5}\left(\frac{n_{i}}{n_{p}}\right) \frac{E M}{10^{25} \mathrm{~cm}^{-5}} \rightarrow \ldots \nu_{9}^{-2.118}\left(\frac{n_{i}}{n_{p}}\right) \frac{E M}{10^{25} \mathrm{~cm}^{-5}}
$$

noted 2011.03 .05 by B. Hensley and P. Pattarakijwanich.

- §10.5, p. 97, Eq. (10.25), typo (missing factor of 2): should read

$$
j_{\mathrm{fb}, \nu}=\frac{g_{\mathrm{b}}}{g_{e} g_{i}} \frac{2 h^{4} \nu^{3}}{\left(2 \pi m_{e} k T\right)^{3 / 2} c^{2}} \mathrm{e}^{\left(\mathrm{I}_{\mathrm{b}}-h \nu\right) / k T} \sigma_{\mathrm{b}, \mathrm{pi}}(\nu) n_{e} n_{i}
$$

noted 2021.02.14 by Shigenobu Hirose.

- §10.5, p. 97, foonote 3, typo: $5 \times 10^{6} \mathrm{~cm}^{-3} \mathrm{pc} \rightarrow 5 \times 10^{6} \mathrm{~cm}^{-6} \mathrm{pc}$. noted 2011.02 .15 by C. Petrovich.
- §11.4, p. 110, Eq. (11.35) should read

$$
\nu \ll \frac{e^{2}\left(\Delta n_{e}\right)_{L, \mathrm{rms}}}{2 \pi m_{e} c}(2 L D)^{1 / 2}=1 \times 10^{3} \mathrm{GHz} \frac{\left(\Delta n_{e}\right)_{L, \mathrm{rms}}}{10^{-3} \mathrm{~cm}^{-3}}\left(\frac{L}{10^{14} \mathrm{~cm}} \frac{D}{\mathrm{kpc}}\right)^{1 / 2} .
$$

noted 2013.02.03 by W. Vlemmings.

- §11.4, p. 110, Eq. (11.34), typo (was off by factor 10^{4}): should read

$$
=6.53 \times 10^{-5} \operatorname{arcsec}\left(\frac{D / \mathrm{kpc}}{L / 10^{14} \mathrm{~cm}}\right)^{1 / 2} \frac{\left(\Delta n_{e}\right)_{L, \mathrm{rms}}}{10^{-3} \mathrm{~cm}^{-3}} \nu_{9}^{-2}
$$

noted 2021.10.25 by I. Wasserman.

- §12.1, p. 120, Eq. (12.1), add: where $\nu_{9} \equiv \nu / \mathrm{GHz}$ noted 2012.06.22 by F. van der Tak.
- §12, p. 121, Table 12.1, typos:

CMB, $T=2.725 \mathrm{~K} \quad: \quad 4.19 \times 10^{-13} \rightarrow 4.17 \times 10^{-13}$
$T_{2}=4000 \mathrm{~K}, W_{2}=1.65 \times 10^{-13}: 3.19 \times 10^{-13} \rightarrow 3.20 \times 10^{-13}$
$T_{3}=7500 \mathrm{~K}, W_{3}=1 \times 10^{-14} \quad: \quad 2.29 \times 10^{-13} \rightarrow 2.39 \times 10^{-13}$
Starlight total : $1.05 \times 10^{-12} \rightarrow 1.06 \times 10^{-12}$ ISRF total : $2.19 \times 10^{-12} \rightarrow 1.98 \times 10^{-12}$.
noted 2012.11.08

- §12.5, p. 123, below eq. (12.4): change
$\ldots W_{1}$ by 40%, from $W_{1}=5 \times 10^{-13}$ to 7×10^{-13}. \rightarrow
$\ldots W_{1}$ by 75%, from $W_{1}=4 \times 10^{-13}$ to 7×10^{-13}, and raised W_{2} from 1.0×10^{-13} to 1.65×10^{-13}.
noted 2014.11 .11 by S. Bianchi.
- §13.1, pp. 128, eq. (13.1), (13.3), (13.4): for notational consistency with the rest of the chapter, change $\quad \sigma_{\mathrm{pe}} \rightarrow \sigma_{\mathrm{pi}}$ noted 2018.01.07 by L. Bouma.
- §13.1, p. 128, typo:

$$
\sigma_{\mathrm{pe}}\left(\mathrm{H}_{2}\right)=2.8 \sigma_{\mathrm{p} . \mathrm{i} .}(\mathrm{H}) \rightarrow \sigma_{\mathrm{pe}}\left(\mathrm{H}_{2}\right)=2.8 \sigma_{\mathrm{pe}}(\mathrm{H})
$$

noted 2011.03.06

- §13.1, p. 129, clarification:
...photoionization cross sections for $\mathrm{O} \ldots \quad \rightarrow$...photoionization cross sections σ_{pi} for $\mathrm{O} . .$. noted 2011.03.06
- §13.1, p. 130, Eq. (13.5), clarification:

$$
\zeta_{\mathrm{p} . \mathrm{i} .} \rightarrow \zeta_{\mathrm{pi}}, \quad \sigma_{\mathrm{pe}} \rightarrow \sigma_{\mathrm{pi}}
$$

noted 2011.03.06

- §13.1, p. 130, second paragraph, typo: ...to $3 \times 10^{-10} \mathrm{~s}^{-1}$ for $\mathrm{Si} \rightarrow$...to $3 \times 10^{-9} \mathrm{~s}^{-1}$ for Si noted 2017.03.05
- §13.1, p. 131, Table 13.1, typo: $\zeta_{\text {p.i. }} \rightarrow \zeta_{\text {pi }}, \quad \sigma_{\text {p.i. }} \rightarrow \sigma_{\text {pi }}$ noted 2011.03.06
- §13.4, p. 134, typos:

$$
\sigma_{\text {c.i. }} \rightarrow \sigma_{\mathrm{ci}}(4 \text { places }), \quad k_{\text {c.i. }} \rightarrow k_{\mathrm{ci}} \text { (2 places). }
$$

noted 2011.03.06

- §14.2, p. 138, Table 14.1. A reference to Burgess (1965; Mem. Royal Astr. Soc., $\mathbf{6 9}, 1)$ [the source of the hydrogenic radiative recombination rates] has been added in the table footnote. Upon recomputing the rates from Burgess, a few of the table entries had the last digit change by 1 . Some of the coefficients in the approximate fitting formulae have also changed slightly. Here is the revised version:

Table 14.1 Recombination Coefficients $\alpha_{n \ell}\left(\mathrm{~cm}^{3} \mathrm{~s}^{-1}\right)$ for $\mathrm{H} .{ }^{a}$ The approximation formulae are valid for $0.3 \lesssim T_{4} \lesssim 3$. For a broader range of T, see Eq. $(14.5,14.6)$.

Temperature T				
$\alpha_{n}\left(^{2} L\right)$	$5 \times 10^{3} \mathrm{~K}$	$1 \times 10^{4} \mathrm{~K}$	$2 \times 10^{4} \mathrm{~K}$	approximation
$\alpha_{1 s}$	2.28×10^{-13}	1.58×10^{-13}	1.08×10^{-13}	$1.58 \times 10^{-13} T_{4}^{-0.540-0.017 \ln T_{4}}$
$\alpha_{2 s}$	3.37×10^{-14}	2.34×10^{-14}	1.60×10^{-14}	$2.34 \times 10^{-14} T_{4}^{-0.537-0.019 \ln T_{4}}$
$\alpha_{2 p}$	8.33×10^{-14}	5.36×10^{-14}	3.24×10^{-14}	$5.36 \times 10^{-14} T_{4}^{-0.681-0.061 \ln T_{4}}$
α_{2}	1.17×10^{-13}	7.70×10^{-14}	4.84×10^{-14}	$7.70 \times 10^{-14} T_{4}^{-0.636-0.046 \ln T_{4}}$
$\alpha_{3 s}$	1.13×10^{-14}	7.82×10^{-15}	5.29×10^{-15}	$7.82 \times 10^{-15} T_{4}^{-0.547-0.024 \ln T_{4}}$
$\alpha_{3 p}$	3.17×10^{-14}	2.04×10^{-14}	1.23×10^{-14}	$2.04 \times 10^{-15} T_{4}^{-0.683-0.062 \ln T_{4}}$
$\alpha_{3 d}$	3.03×10^{-14}	1.73×10^{-14}	9.09×10^{-15}	$1.73 \times 10^{-14} T_{4}^{-0.868-0.093 \ln T_{4}}$
α_{3}	7.33×10^{-14}	4.55×10^{-14}	2.67×10^{-14}	$4.55 \times 10^{-14} T_{4}^{-0.729-0.060 \ln T_{4}}$
$\alpha_{4 s}$	5.23×10^{-15}	3.59×10^{-15}	2.40×10^{-15}	$3.59 \times 10^{-15} T_{4}^{-0.562-0.026 \ln T_{4}}$
$\alpha_{4 p}$	1.51×10^{-14}	9.66×10^{-15}	5.80×10^{-15}	$9.66 \times 10^{-15} T_{4}^{-0.691-0.064 \ln T_{4}}$
$\alpha_{4 d}$	1.90×10^{-14}	1.08×10^{-14}	5.67×10^{-15}	$1.08 \times 10^{-14} T_{4}^{-0.870-0.094 \ln T_{4}}$
$\alpha_{4 f}$	1.09×10^{-14}	5.54×10^{-15}	2.57×10^{-15}	$5.54 \times 10^{-15} T_{4}^{-1.041-0.100 \ln T_{4}}$
α_{4}	5.02×10^{-14}	2.96×10^{-14}	1.64×10^{-14}	$2.96 \times 10^{-14} T_{4}^{-0.805-0.065 \ln T_{4}}$
α_{A}	6.81×10^{-13}	4.17×10^{-13}	2.51×10^{-13}	$4.17 \times 10^{-13} T_{4}^{-0.721-0.018 \ln T_{4}}$
α_{B}	4.53×10^{-13}	2.59×10^{-13}	1.43×10^{-13}	$2.59 \times 10^{-13} T_{4}^{-0.833-0.035 \ln T_{4}}$
$\alpha_{n \ell}$ from Burgess (1965$) ; \alpha_{B}$ from Hummer \& Storey $(1987)\left(\right.$ for $\left.n_{e}=10^{3} \mathrm{~cm}^{-3}\right)$				

- §14.2, p. 139, typos: In Equations (14.3) and (14.4), the leading factor of Z should be to the first power, rather than Z^{2} : the equations should read

$$
\begin{align*}
& \alpha_{A}(T) \approx 4.13 \times 10^{-13} Z\left(T_{4} / Z^{2}\right)^{-0.7131-0.0115 \ln \left(T_{4} / Z^{2}\right)} \mathrm{cm}^{3} \mathrm{~s}^{-1}, \tag{14.3}\\
& \alpha_{B}(T) \approx 2.54 \times 10^{-13} Z\left(T_{4} / Z^{2}\right)^{-0.8163-0.0208 \ln \left(T_{4} / Z^{2}\right)} \mathrm{cm}^{3} \mathrm{~s}^{-1} . \tag{14.4}
\end{align*}
$$

noted 2012.01.04 by E. Jenkins.

- Fig. 14.1, p. 140, typos: the quantities plotted should be labelled $Z^{-2} T_{4}^{1 / 2} \alpha_{\mathrm{A}}$ and $Z^{-2} T_{4}^{1 / 2} \alpha_{\mathrm{B}}$ (rather than $Z^{-3} T_{4}^{1 / 2} \alpha_{\mathrm{A}}$ and $Z^{-3} T_{4}^{1 / 2} \alpha_{\mathrm{B}}$):

Figure 14.1 Case A and Case B rate coefficients α_{A} and α_{B} for radiative recombination of hydrogen, multiplied by $T_{4}^{1 / 2}$ (equations $14.5,14.6$). Note that no single power-law fit can reproduce the T-dependence over a wide range in T.
noted 2012.01 .04 by E. B. Jenkins.

- Table 14.2, p. 143, typo: Pfundt \rightarrow Pfund noted 2011.03 .05 by B. Hensley.
- §14.2.4, p. 144, Eq. (14.11), typo: $1880 \mathrm{~cm}^{-3} \rightarrow 1.55 \times 10^{4} \mathrm{~cm}^{-3}$ noted 2011.03.17
- §14.5, p. 151, typo: [OIII]4959,5007 \rightarrow [OIII]4960,5008 noted 2012.06.22 by F. van der Tak.
- §14.6, p. 153, typo: ...from the wave function of $A B \ldots \quad \rightarrow \quad$...from the wave function of $A B^{+} \ldots$ noted 2011.03 .05 by P. Pattarakijwanich.
- §14.6, p. 154, Table 14.8 update: replace $\mathrm{H}_{3}^{+}+e^{-} \rightarrow \mathrm{H}_{2}+\mathrm{H} \quad 1.1 \times 10^{-7} T_{2}^{-0.56} \quad$ McCall et al. (2004) with

8

$$
\begin{array}{lll}
\mathrm{H}_{3}^{+}+e^{-} \rightarrow \mathrm{H}+\mathrm{H}+\mathrm{H} & 8.9 \times 10^{-8} T_{2}^{-0.48} & \text { McCall et al. (2004) } \\
\mathrm{H}_{3}^{+}+e^{-} \rightarrow \mathrm{H}_{2}+\mathrm{H} & 5.0 \times 10^{-8} T_{2}^{-0.48} & \text { McCall et al. (2004) }
\end{array}
$$

noted 2013.04.03

- §14.7.1, p. 155, typo:

$$
\left.I_{\mathrm{O}\left({ }^{3} \mathrm{P}_{0}\right)}=13.6181 \mathrm{eV}, \quad \rightarrow \quad I_{\mathrm{O}\left({ }^{3} \mathrm{P}_{2}\right)}=13.6181 \mathrm{eV}\right),
$$

noted 2011.02.22 by Xu Huang.

- §14.7.1, p. 156, Eq. (14.21), typo:

$$
\underset{\mathrm{R}}{\mathrm{H}\left({ }^{1} \mathrm{~S}_{1 / 2}\right)} \rightarrow \mathrm{H}\left({ }^{2} \mathrm{~S}_{1 / 2}\right)
$$

noted 2022.07.06 by S. R. Kulkarni.

- §14.7.1, p. 156, Eq. (14.31), for notational consistency: $n(H) \rightarrow n\left(\mathrm{H}^{0}\right)$ noted 2011.05.15 by E. B. Jenkins.
- §14.7.1, p. 156, just before Eq. (14.35), typo: In the low density limit... \rightarrow In the high density limit... noted 2011.05 .15 by E. B. Jenkins.
- §14.7.1, p. 157, Figure 14.5: plotted curves were numerically incorrect. Corrected Figure 14.5:

Figure 14.5 Dependence of oxygen ionization fraction on hydrogen ionization fraction due to charge exchange. The low-density limit applies for $n_{\mathrm{H}} \lesssim 10^{4} \mathrm{~cm}^{-3}$. noted 2011.05 .18 by E. B. Jenkins.

- §14.9, p. 159, typo: factor of 2 error. Eq. (14.41) should read

$$
\begin{equation*}
\sigma_{\mathrm{rr}}(E)=\frac{g_{\ell}}{2 g_{u}} \frac{(I+E)^{2}}{E m_{e} c^{2}} \sigma_{\mathrm{pi}}(h \nu=I+E) . \tag{14.41}
\end{equation*}
$$

noted 2015.06 .01 by E. B. Jenkins.

- §14.9, p. 160, typo: factor of 2 error. Eq. (14.43) should read

$$
\begin{equation*}
\frac{\langle\sigma v\rangle_{\mathrm{rr}}}{\langle\sigma v\rangle_{\mathrm{ci}}} \approx 2 \pi \alpha^{3} \frac{f_{\mathrm{pi}}}{C} \frac{I}{k T} e^{I / k T} \tag{14.43}
\end{equation*}
$$

noted 2015.06 .01 by E. B. Jenkins.

- §14.9, p. 160, typo: factor of 2 error. Eq. (14.44) and following should read

$$
\begin{equation*}
\frac{I}{k T} e^{I / k T}=\frac{C}{2 \pi f_{\mathrm{pi}}} \frac{1}{\alpha^{3}} \tag{14.44}
\end{equation*}
$$

If $C \approx 1$ and $f_{\mathrm{pi}} \approx 1$, this has solution $I / k T \approx 10.6 \ldots$ noted 2015.06 .01 by E. B. Jenkins.

- §15.1, p. 163, typo: $\sigma_{\text {p.i. }} \rightarrow \sigma_{\text {pi }}$ (two places) noted 2011.03.05
- §15.1.2, p. 163, change
the Case B radiative recombination rate for $\mathrm{He}^{+}+e^{-} \rightarrow \mathrm{He}^{0}$ is ~ 1.9 times larger than for hydrogen.
$\alpha_{\text {eff }}(\mathrm{He}) / \alpha_{B}(\mathrm{H}) \approx 1.1-1.7$, depending on the fraction y of $h \nu>24.6 \mathrm{eV}$ photons that are absorbed by H . noted 2011.03.17
- Table 15.1, p. 164, typo: M / M_{\odot} for O6.5V star: $38.0 \rightarrow 28.0$ noted 2013.01.31
- §15.1.2, p. 165, change
will be $\sim 18 \% \rightarrow$ will be $\sim 14 \%$ noted 2011.03.17
- §15.1.2, p. 165, change if $Q_{1}<0.18 Q_{0}, \rightarrow$ if $Q_{1} \lesssim 0.14 Q_{0}$, noted 2011.03.17
- §15.1.2, p. 165, change
$Q_{1} / Q_{0} \geq 0.18, \rightarrow \quad Q_{1} / Q_{0} \gtrsim 0.14$, noted 2011.03.17
- §15.1.2, p. 165, change

O6.1 V and earlier, O5.3 III and earlier, and O4I and earlier - have $Q_{1} / Q_{0} \gtrsim$ 0.18 .
\rightarrow
O6.9 V and earlier, O6.5 III and earlier, and O6I and earlier - have $Q_{1} / Q_{0} \gtrsim$ 0.14 .
noted 2011.03.17

- §15.4, p. 168, Eq. (15.19), typo: $\sigma_{d} \rightarrow \sigma_{\text {dust }}$ noted 2011.02.24 by Xu Huang.
- §15.3, p. 166, Eqs. (15.10, 15.11), typo: $\sigma_{\text {p.i. }} \rightarrow \sigma_{\text {pi }}$ noted 2011.03.06
- §15.3, p. 167, Eq. (15.12), typo: $\sigma_{\text {p.i. }} \rightarrow \sigma_{\text {pi }}$ noted 2011.03.06
- §15.3, p. 167, Eq. (15.13), typo:

$$
3360\left(Q_{0,49}\right)^{1 / 3} n_{2}^{1 / 3} \rightarrow 2880\left(Q_{0,49}\right)^{1 / 3} n_{2}^{1 / 3} T_{4}^{0.28}
$$

where we have taken $\sigma_{\mathrm{pi}}=2.95 \times 10^{-18} \mathrm{~cm}^{2}$.
noted 2011.03.17

- §15.4, p. 169, Eq. (15.27) (twice) and following paragraph (twice): typo:
$\sigma_{d} \rightarrow \sigma_{\text {dust }}$
noted 2011.03 .05 by B. Hensley.
- §15.4, p. 170, Eq. (15.30), typo: $\sigma_{d} \rightarrow \sigma_{\text {dust }}$ noted 2011.03 .05 by B. Hensley.
- §15.4, p. 170, following Eq. (15.30), add:
where $\sigma_{d,-21} \equiv \sigma_{\text {dust }} / 10^{-21} \mathrm{~cm}^{2}$.
noted 2011.03.05
- §15.5, p. 172, line 4, typo: ... about the He ... \rightarrow... above the He ... noted 2011.03.06 by S. Ferraro
- §15.5, p. 174, sentence preceding Eq. (15.36), typo: $N\left(\mathrm{He}^{+}\right) / N\left(\mathrm{H}^{+}\right)<n_{\mathrm{H}} / n_{\mathrm{He}} \rightarrow N\left(\mathrm{He}^{+}\right) / N\left(\mathrm{H}^{+}\right)<n_{\mathrm{He}} / n_{\mathrm{H}}$ noted 2020.09.29 by H. Jia
- §15.7.1, p. 179, Eq. (15.53), typo: $\sigma_{d} \rightarrow \sigma_{\text {dust }}$ noted 2011.03.05
- §15.7, p. 180, typo: substantially reduced \rightarrow substantially increased noted 2011.02.24
- §15.8, p. 180, Eq. (15.59), typo: there is a spurious factor of c in the denominator. It should read
noted 2011.03 .06 by S. Ferraro.

$$
U \equiv \frac{1}{n_{\mathrm{H}}} \int_{\nu_{0}}^{\infty} \frac{u_{\nu} d \nu}{h \nu}
$$

- §16.4, p. 186, Eq. (16.9, 16.10), update: change

$$
\begin{aligned}
& \mathrm{H}_{3}^{+}+e^{-} \rightarrow \mathrm{H}_{2}+\mathrm{H} \quad, \quad k_{16.9}=4.1 \times 10^{-8} T_{2}^{-0.52} \mathrm{~cm}^{3} \mathrm{~s}^{-1}, \\
& \mathrm{H}_{3}^{+}+e^{-} \rightarrow \mathrm{H}+\mathrm{H}+\mathrm{H} \quad, \quad k_{16.10}=7.7 \times 10^{-8} T_{2}^{-0.52} \mathrm{~cm}^{3} \mathrm{~s}^{-1},
\end{aligned}
$$

to

$$
\begin{aligned}
& \mathrm{H}_{3}^{+}+e^{-} \rightarrow \mathrm{H}_{2}+\mathrm{H} \quad, \quad k_{16.9}=5.0 \times 10^{-8} T_{2}^{-0.48} \mathrm{~cm}^{3} \mathrm{~s}^{-1}, \\
& \mathrm{H}_{3}^{+}+e^{-} \rightarrow \mathrm{H}+\mathrm{H}+\mathrm{H} \quad, \quad k_{16.10}=8.9 \times 10^{-8} T_{2}^{-0.48} \mathrm{~cm}^{3} \mathrm{~s}^{-1},
\end{aligned}
$$

and cite McCall et al. (2004) for $k_{16.9}$ and $k_{16.10}$.
noted 2013.04.03

- §16.4, p. 187, typo: in paragraph below Eq. (16.15), change
$x_{e} \approx x_{M} \approx 1.9 \times 10^{-4} \quad \rightarrow \quad x_{e} \approx x_{M} \approx 1.1 \times 10^{-4}($ see Eq. 16.3 $)$ noted 2013.04.04
- §16.5, p. 188, Eq. (16.16), typo: should read

$$
\mathrm{H}_{2}+\mathrm{CR} \rightarrow \mathrm{H}_{2}^{+}+e^{-}+\mathrm{CR}
$$

noted 2020.09.29 by R. Córdova

- §16.5, p. 188, Eq. (16.18), added information:

$$
\begin{equation*}
\mathrm{H}_{3}^{+}+M \rightarrow M \mathrm{H}^{+}+\mathrm{H}_{2}: \quad k_{16.18} \approx 2 \times 10^{-9} \mathrm{~cm}^{3} \mathrm{~s}^{-1} \tag{16.18}
\end{equation*}
$$

noted 2011.04.03

- §16.5, p. 189, Eq. (16.25), typo: in numerator of RHS, replace $k_{16.19} \rightarrow A$, so that it reads

$$
\begin{equation*}
\frac{n_{e}}{n_{\mathrm{H}}}=\frac{\left[B^{2}+4 A \zeta_{\mathrm{CR}}\left(1+\phi_{s}\right) / n_{\mathrm{H}}\right]^{1 / 2}-B}{2 k_{16.19}} \tag{16.25}
\end{equation*}
$$

noted 2011.03.30 by C. Hill.

- §16.5, p. 189, Fig. 16.3. The original figure was evaluated with a too-large rate for $k_{16.19}$. The figure has been redone, now also showing the result if $\zeta_{\mathrm{CR}}=1 \times 10^{-17} \mathrm{~s}^{-1}$:

Figure 16.3 Fractional ionization in a dark cloud, estimated using Eq. (16.25), with the grain recombination rate coefficients set to $k_{16.20}=k_{16.22}=10^{-14} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$ (see Fig. 14.6). The dashed line is a simple power-law approximation $x_{e} \approx 2 \times$ $10^{-5}\left(n_{\mathrm{H}} / \mathrm{cm}^{-3}\right)^{-1 / 2}$.
noted 2013.03.05.

- §17.2, p. 192, Table 17.1. This has been revised to include critical densities for both H and e^{-}:

Table 17.1 Critical Densities for Fine-Structure Excitation in HI Regions

Ion	ℓ	u	$\begin{gathered} E_{\ell} / k \\ (\mathrm{~K}) \end{gathered}$	$\begin{gathered} E_{u} / k \\ (\mathrm{~K}) \end{gathered}$	$\begin{gathered} \lambda_{u \ell} \\ (\mu \mathrm{~m}) \end{gathered}$	$n_{\text {crit, }, u}(\mathrm{H})$		$n_{\text {crit }, u}\left(e^{-}\right)$	
						$\begin{gathered} T=100 \mathrm{~K} \\ \left(\mathrm{~cm}^{-3}\right) \end{gathered}$	$\begin{gathered} T=5000 \mathrm{~K} \\ \left(\mathrm{~cm}^{-3}\right) \end{gathered}$	$\begin{gathered} T=100 \mathrm{~K} \\ \left(\mathrm{~cm}^{-3}\right) \end{gathered}$	$\begin{gathered} T=5000 \mathrm{~K} \\ \left(\mathrm{~cm}^{-3}\right) \end{gathered}$
C II	${ }^{2} \mathrm{P}_{1 / 2}^{\mathrm{o}}$	${ }^{2} \mathrm{P}_{3 / 2}^{\mathrm{o}}$	0	91.21	157.74	2.7×10^{3}	1.5×10^{3}	6.8	40.
CI	${ }^{3} \mathrm{P}_{0}$	${ }^{3} \mathrm{P}_{1}$	0	23.60	609.7	620	170	76.	6.4
	${ }^{3} \mathrm{P}_{1}$	${ }^{3} \mathrm{P}_{2}$	23.60	62.44	370.37	720	150	75.	6.3
OI	${ }^{3} \mathrm{P}_{2}$	${ }^{3} \mathrm{P}_{1}$	0	227.71	63.185	2.5×10^{5}	4.9×10^{4}	1.8×10^{5}	4.8×10^{4}
	${ }^{3} \mathrm{P}_{1}$	${ }^{3} \mathrm{P}_{0}$	227.71	326.57	145.53	2.4×10^{4}	8.6×10^{3}	2.3×10^{4}	5.8×10^{3}
Si II	${ }^{2} \mathrm{P}_{1 / 2}^{\text {o }}$	${ }^{2} \mathrm{P}_{3 / 2}^{\circ}$	0	413.28	34.814	2.5×10^{5}	1.2×10^{5}	140.	1.5×10^{3}
SiI	${ }^{3} \mathrm{P}_{0}$	${ }^{3} \mathrm{P}_{1}$	0	110.95	129.68	4.8×10^{4}	2.8×10^{4}	2.9×10^{4}	830.
	${ }^{3} \mathrm{P}_{1}$	${ }^{3} \mathrm{P}_{2}$	110.95	321.07	68.473	9.9×10^{4}	3.6×10^{4}	4.4×10^{4}	1.9×10^{3}

noted 2011.03.06

- §17.3, p. 195, footnote 3, typos:
...frequency $\sim 8 \times 10^{10} \mathrm{~Hz} . . . \rightarrow$..frequency $\sim 1.1 \times 10^{10} \mathrm{~Hz} .$. .
$\ldots \sim 10^{2}$ precession periods. $\rightarrow \ldots \sim 18$ precession periods.
noted 2020.10.02
- §17.5, p. 197, Eq. (17.27) should read

$$
\begin{equation*}
R_{12}=\left(g_{2} / g_{1}\right)\left[C_{21} e^{-E_{21} / k T}+n_{\gamma, 21} A_{21}\right] . \tag{17.27}
\end{equation*}
$$

noted 2010.11.27

- §17.7, p. 199, top line, typo: $n_{\mathrm{H}, \text { crit }} \rightarrow n_{\text {crit }}(\mathrm{H})$ noted 2011.03.10
- §18.1.2, Fig. 18.3, p. 208, two typos: The ground states of S II and Ar IV should both have degeneracy $g_{0}=4$ noted 2012.11.12 by A. Natta
- §18.4.1, p. 212: Replace wavelength in air with wavelength in vacuo: "Balmer jump" at $\lambda=3645.1 \AA \rightarrow$ "Balmer jump" at $\lambda=3647.0 \AA$ noted 2011.03.11
- §18.4.1, p. 212: Refine wavelength midway between H 20 and H 21 lines: $\lambda_{\mathrm{BJ}, \text { red }}=3682.6 \AA \rightarrow \lambda_{\mathrm{BJ}, \text { red }}=3682.1 \AA$ noted 2011.03.11
- §18.5, p. 214, Eq. (18.11): Change
... Ω_{03} is approximately independent of T_{e}, we have

$$
\begin{equation*}
\frac{n(\mathrm{O} \mathrm{III})}{n\left(\mathrm{H}^{+}\right)}=C \frac{I([\mathrm{OIII}] 5008)}{I(\mathrm{H} \beta)} T_{4}^{-0.37} \mathrm{e}^{2.917 / T_{4}}, \tag{18.11}
\end{equation*}
$$

to
$\ldots \Omega_{03} \propto T_{4}^{0.12}$ (see Appendix F), we have

$$
\begin{equation*}
\frac{n(\mathrm{O} \mathrm{III})}{n\left(\mathrm{H}^{+}\right)}=C \frac{I([\mathrm{O} \mathrm{III}] 5008)}{I(\mathrm{H} \beta)} T_{4}^{-0.49} \mathrm{e}^{2.917 / T_{4}}, \tag{18.11}
\end{equation*}
$$

noted 2015.02.27

- $\S 19.3$, p. 222: revise value for A_{10} : replace
$A_{10}=6.78 \times 10^{-8} \mathrm{~s}^{-1} \rightarrow A_{10}=7.16 \times 10^{-8} \mathrm{~s}^{-1}$ (see Eq. 5.7). noted 2013.04.17
- §19.3, p. 223: revised numbers according to revised value for A_{10} :

Eq. (19.15): $281 \rightarrow 297$, Eq. (19.17): $281 \rightarrow 297$, Eq. (19.19): $46 \rightarrow 50$ noted 2013.04.17

- §19.4, p. 224, typo: functon \rightarrow function noted 2011.03 .11 by C. Petrovich
- §20.1, p. 229, typo just below Eq. (20.2): replace ...unit time that level x will... \rightarrow...unit time the level u will... noted 2020.10.12 by Yan Liang
- §21.3, p. 242, typo: ...into the UV. whereas... \rightarrow...into the UV, whereas... noted 2011.03.21
- §21.6.1, p. 244, typo: $k^{2}=\epsilon_{\mathrm{ISM}} \omega^{2} c^{2} \rightarrow k^{2}=\epsilon_{\mathrm{ISM}} \omega^{2} / c^{2}$ noted 2011.03.28
- §21.6.1, p. 244, Eq. (21.12), typo:

$$
\begin{align*}
& n_{\mathrm{gr}} C_{\mathrm{ext}}(\omega)=2 \operatorname{Im}(k)=2 \omega c \operatorname{Im}\left(\sqrt{\epsilon_{\mathrm{ISM}}}\right) \approx \omega c \operatorname{Im}\left(\epsilon_{\mathrm{ISM}}\right) \tag{21.12}\\
& \rightarrow \\
& n_{\mathrm{gr}} C_{\mathrm{ext}}(\omega)=2 \operatorname{Im}(k)=2(\omega / c) \operatorname{Im}\left(\sqrt{\epsilon_{\mathrm{ISM}}}\right) \approx(\omega / c) \operatorname{Im}\left(\epsilon_{\mathrm{ISM}}\right) \tag{21.12}
\end{align*}
$$

noted 2011.03.28

- §22.4.2, p. 252, Eq. (22.27), typo: $4 \pi \rightarrow 9 \pi$.
noted 2012.06.26
- §22.6, p. 256, footnote 6: the DDSCAT website has moved. Change http://code.google.com/p/ddscat \rightarrow http://www.ddscat.org noted 2019.03.25
- §23.1, p. 265, typo:
lower oscillator strength $f(\mathrm{CII}] 2325 \AA)=1.0 \times 10^{-7}$ \rightarrow
larger oscillator strength $f(\mathrm{CII}] 2325 \AA)=1.0 \times 10^{-7}$ noted 2012.12.27
- §23.1, p. 266, typo: $\mathrm{Mg}_{2} x \mathrm{Fe}_{2-2 x} \mathrm{SiO}_{4} \rightarrow \mathrm{Mg}_{2 x} \mathrm{Fe}_{2-2 x} \mathrm{SiO}_{4}$ noted 2011.03.24 by C. Petrovich
- §23.3.2, p. 268, typo: Si-O-Si bending mode $\rightarrow \mathrm{O}-\mathrm{Si}-\mathrm{O}$ bending mode noted 2020.10.12
- §23.3, p. 269, typo: ...that the at most... \rightarrow...that at most... noted 2011.03.23
- §23.4, p. 272, Fig. 23.5 caption, typo: Lowe panels:... \rightarrow Lower panels:... noted 2011.03.23
- §23.10, p. 280, typo: varyies \rightarrow varies noted 2011.03.23
- §23.10, p. 283, typo: totaly \rightarrow total noted 2011.03.23
- §24.2, p. 293, typo: ...does not extend below $\sim 23 \mathrm{~K} . \rightarrow$...does not extend below $\sim 35 \mathrm{~K}$.
noted 2011.03.24
- §24.2, p. 293, typo:
...corresponds the grain... \rightarrow...corresponds to the grain... noted 2011.03.25
- §25.3, p. 299, typo following Eq. (25.11): change
...charge $Z_{\mathrm{gr}}=U a$ can $\ldots \rightarrow$...charge $Z_{\mathrm{gr}}=U a / e$ can... noted 2021.06.25 by Yu Fung Wong.
- §26.2, p. 308, Eq. (26.23), numerical error: should read

$$
\begin{equation*}
\frac{\omega}{2 \pi}=4.6 \mathrm{GHz}\left(\frac{T_{\text {rot }}}{100 \mathrm{~K}}\right)^{1 / 2}\left(\frac{0.001 \mu \mathrm{~m}}{a}\right)^{5 / 2} \tag{26.23}
\end{equation*}
$$

noted 2014.06.27 by B. Jiang.

- §26.2.2, p. 309, Fig. 26.2: the rightmost abscissa label should read " 100 ", not " 10 ".
noted 2011.03 .29 by B. Hensley.
- §26.3.1, p. 311, Eq. (26.24), typo:

$$
\mu=\frac{Q a^{2} \omega}{3} \rightarrow \mu=\frac{Q a^{2} \omega}{3 c}
$$

noted 2011.05 .01 by P. Pattarakijwanich.

- §26.3.1, p. 311, Eq. (26.25), typos: The equation should read

$$
\begin{equation*}
\Omega_{L}=\frac{5 U B}{8 \pi \rho a^{2} c}=3.7 \times 10^{-10}\left(\frac{3 \mathrm{~g} \mathrm{~cm}^{-3}}{\rho}\right)\left(\frac{U}{\mathrm{Volt}}\right)\left(\frac{B}{5 \mu \mathrm{G}}\right)\left(\frac{0.1 \mu \mathrm{~m}}{a}\right)^{2} \mathrm{~s}^{-1} \tag{26.25}
\end{equation*}
$$

noted 2011.05.01 by P. Pattarakijwanich.

- §26.3.1, p. 311, after Eq. (26.25), typo: $2 \pi / \Omega_{L} \approx 10 \mathrm{yr} \rightarrow 2 \pi / \Omega_{L} \approx 500 \mathrm{yr}$ noted 2011.05.01 by P. Pattarakijwanich.
- §27.1, p. 315, 2nd paragraph, typo:
...resulting photoelectron will... \rightarrow...resulting photoelectrons will... noted 2011.03.31
- §27.1, p. 317, typo: ...injection of photoelectron energy rate... \rightarrow...injection of photoelectron energy... noted 2012.06.22 by F. van der Tak.
- §27.1, p. 317, typo: ...nebulae dust are dusty,... \rightarrow...nebulae are dusty,... noted 2011.03.31
- §27.3.1, p 320, typos in coefficient of $\ln \left(T_{4} / Z^{2}\right)$ term: Eq. (27.19) and (27.20) should read

$$
\begin{align*}
\gamma_{A} & =-1.2130-0.0115 \ln \left(T_{4} / Z^{2}\right) \tag{27.19}\\
\gamma_{B} & =-1.3163-0.0208 \ln \left(T_{4} / Z^{2}\right) \tag{27.20}
\end{align*}
$$

and (27.22) and (27.23) should read

$$
\begin{align*}
\left\langle E_{\mathrm{rr}}\right\rangle_{A} & =\left[0.787-0.0115 \ln \left(T_{4} / Z^{2}\right)\right] k T \tag{27.21}\\
\left\langle E_{\mathrm{rr}}\right\rangle_{B} & =\left[0.684-0.0208 \ln \left(T_{4} / Z^{2}\right)\right] k T \tag{27.22}
\end{align*}
$$

noted 2023.01.29 by S. R. Kulkarni.

- §28.1, p. 326, 2nd paragraph, typo: ...form the the... \rightarrow...form the... noted 2011.03.31
- §28.2, p. 327, 2nd paragraph, typo:
$E M \approx 5 \times 10^{6} \mathrm{~cm}^{-3} \mathrm{pc} \rightarrow E M \approx 5 \times 10^{6} \mathrm{~cm}^{-6} \mathrm{pc}$ noted 2011.03.31 by C. Petrovich.
- §28.3, p. 328, 4th paragraph, typo: change distance from Θ_{1} OriC to the Orion Bar ionization front: $\sim 7.8 \times 10^{18} \mathrm{~cm} \rightarrow \sim 7.8 \times 10^{17} \mathrm{~cm}$ noted 2020.10.26
- §29.1, p. 332, 1st paragraph, typo: $b=0 \rightarrow b=90^{\circ}$, so that the 2 nd sentence reads
\ldots vary as $N(\mathrm{HI}, b)=N\left(\mathrm{HI}, b=90^{\circ}\right) / \sin |b|=N_{0} \mathrm{csc}|b|$. noted 2012.11.04 by R. Simons.
- §29.4, p. 335, typo:
...found $n T \approx 2800 \mathrm{~cm}^{-3} \mathrm{~K} \ldots \quad \rightarrow \quad \ldots$ found $n T \approx 3800 \mathrm{~cm}^{-3} \mathrm{~K} \ldots$ noted 2011.04.05
- §29.4, p. 335, typo: ...implies $n_{\mathrm{H}} \approx 35 \mathrm{~cm}^{-3}$. \rightarrow...implies $n_{\mathrm{H}} \approx$ $50 \mathrm{~cm}^{-3}$.
noted 2011.04.05
- §30.2, p. 339, typo: ...near threshold are... \rightarrow near-threshold yields are... noted 2011.04.05 by B. Hensley.
- §31.4, p. 349, Eq. (31.24), typo: on RHS, change

$$
\frac{\pi e^{2}}{m_{e} c^{2} h} \sum_{u} f_{\ell u} \lambda_{\ell u}^{3} u_{\lambda} f_{\text {shield }, \ell u} \rightarrow \frac{\pi e^{2}}{m_{e} c^{2} h} \sum_{u} f_{\ell u} \lambda_{\ell u}^{3} u_{\lambda} f_{\text {shield }, \ell u} p_{\text {diss }, u}
$$

noted 2013.04 .12 by Ai-Lei Sun.

- $\S 31.4$, p. 349, Eq. (31.25), typo: $\tau_{1000} \rightarrow \tau_{d, 1000}$ noted 2012.07.10
- §32.1, p. 357, 1st paragraph, typo: ...a their... \rightarrow...their... noted 2012.06 .22 by F. van der Tak.
- §32.1, p. 357, 2nd paragraph, typo: (see Plate 15). \rightarrow (see Plate 11). noted 2011.06.07 by S. Lorenz Martins.
- §32.9, p. 368, typo: magntic \rightarrow magnetic noted 2011.04.11
- §32.9, p. 368, just before eq. (32.11), typo: change $A_{V} / N_{\mathrm{H}}=1.87 \times 10^{21} \mathrm{~cm}^{2} \rightarrow A_{V} / N_{\mathrm{H}}=5.3 \times 10^{-22} \mathrm{mag} \mathrm{cm}^{2}$. noted 2016.03.04 by Ilsang Yoon.
- §32.11, p. 372, prepenultimate paragraph: terminological correction. Change "core" to "clump" (three occurrences). noted 2015.04.16
- §33.1, p. 375, typo: photodisociation \rightarrow photodissociation noted 2011.04.11
- §33.1, p. 375, typo: occuring \rightarrow occurring noted 2011.04 .25 by B. Hensley.
- §33.2.2, p. 378, typo: reaction products should be $\mathrm{OH}^{+}+\mathrm{H}_{2}$ noted 2011.04.12
- §34.4, p. 386, Eq. (34.10): sign mistake on RHS; change

$$
-4 \pi r^{2} \kappa \frac{d T}{d r} \quad \rightarrow \quad 4 \pi r^{2} \kappa \frac{d T}{d r}
$$

noted 2019.04.18 by G. Halevi.

- §34.4, p. 387, typo: Eq. (34.17) is off by a factor 3, and should read
$t_{\text {evap }}=\frac{3 M}{2 \dot{M}}=\frac{25 \times 2.3\left(n_{\mathrm{H}}\right)_{c} R_{c}^{2} m_{e}^{1 / 2} e^{4} \ln \Lambda}{8 \times 0.87\left(k T_{h}\right)^{2.5}}$
Eq. (34.18) is numerically correct, but should have shown the dependence on $\ln \Lambda$:

$$
\begin{equation*}
=5.1 \times 10^{4} \mathrm{yr}\left(\frac{\left(n_{\mathrm{H}}\right)_{c}}{30 \mathrm{~cm}^{-3}}\right)\left(\frac{R_{c}}{\mathrm{pc}}\right)^{2}\left(\frac{T_{h}}{10^{7} \mathrm{~K}}\right)^{-2.5}\left(\frac{\ln \Lambda}{30}\right) . \tag{34.18}
\end{equation*}
$$

noted 2013.01.05 by B. Hensley.

- §35.3, p. 392, typo: rate-of-change \mathbf{v} of... \rightarrow rate-of-change of \mathbf{v}... noted 2011.04.14
- §36.1, p. 397, typo: occuring \rightarrow occurring noted 2011.04.26
- §36.2.2, p. 399, Eq. (36.8), two corrections: $8 \pi \rightarrow 4 \pi$ and $B_{x} B_{z} v_{x} \rightarrow B_{x} B_{z} v_{z}$. The equation should read

$$
\begin{align*}
\frac{\partial}{\partial x}\left[\frac{1}{2} \rho v_{x} v^{2}+U v_{x}+p v_{x}\right. & +\frac{\left(B_{y}^{2}+B_{z}^{2}\right)}{4 \pi} v_{x}-\frac{B_{x} B_{y} v_{y}}{4 \pi}-\frac{B_{x} B_{z} v_{z}}{4 \pi} \\
& \left.-v_{j} \sigma_{j x}-\kappa \frac{d T}{d x}+\rho v_{x} \Phi_{\mathrm{grav}}\right]=\Gamma-\Lambda . \tag{36.8}
\end{align*}
$$

noted 2011.04.19

- §36.2.3, p. 400 , Eq. (36.10): $8 \pi \rightarrow 4 \pi$ (twice)
noted 2011.04.19
v_{x} multiplying $B_{y} B_{x}$ should be v_{y}, and v_{x} multiplying $B_{z} B_{x}$ should be v_{z}. noted 2015.12.17 by J. Miralda-Escudé.
The equation should read

$$
\begin{align*}
& \left\{\left[\frac{\rho v^{2}}{2}+\frac{\gamma p}{(\gamma-1)}\right] v_{x}+\frac{\left(B_{y}^{2}+B_{z}^{2}\right)}{4 \pi} v_{x}-\frac{\left(B_{x} B_{y} v_{y}+B_{x} B_{z} v_{z}\right)}{4 \pi}-\kappa \frac{d T}{d x}\right\}_{1}= \\
& \left\{\left[\frac{\rho v^{2}}{2}+\frac{\gamma p}{(\gamma-1)}\right] v_{x}+\frac{\left(B_{y}^{2}+B_{z}^{2}\right)}{4 \pi} v_{x}-\frac{\left(B_{x} B_{y} v_{y}+B_{x} B_{z} v_{z}\right)}{4 \pi}-\kappa \frac{d T}{d x}\right\}_{2} . \tag{36.10}
\end{align*}
$$

- §36.2.5, p. 401, Eq. (36.16): $8 \pi \rightarrow 4 \pi$ (twice). The equation should read

$$
\begin{equation*}
\frac{\rho_{1} u_{1}^{3}}{2}+\frac{\gamma}{\gamma-1} u_{1} p_{1}+\frac{u_{1} B_{1}^{2}}{4 \pi}=\frac{\rho_{2} u_{2}^{3}}{2}+\frac{\gamma}{\gamma-1} u_{2} p_{2}+\frac{u_{2} B_{2}^{2}}{4 \pi} \tag{36.16}
\end{equation*}
$$

noted 2011.04.19

- §36.2.5, p. 401 , Eq. (36.19): $8 \pi \rightarrow 4 \pi$ (twice). The equation should read

$$
\begin{equation*}
\frac{1}{2} \rho_{1} v_{s}^{3}+\frac{\gamma}{\gamma-1} p_{1} v_{s}+\frac{B_{1}^{2}}{4 \pi} v_{s}=\frac{1}{2} \frac{\rho_{1} v_{s}^{3}}{x^{2}}+\frac{\gamma}{\gamma-1} \frac{p_{2} v_{s}}{x}+\frac{B_{1}^{2}}{4 \pi} v_{s} x \tag{1}
\end{equation*}
$$

noted 2011.04.19

- §36.2.5, p. 402, Eq. (36.27), typo:

$$
\frac{3}{16} \mu v_{s}^{2} \rightarrow \frac{3}{16} \frac{\mu v_{s}^{2}}{k}
$$

noted 2011.05 .17 by P. Pattarakijwanich.

- §36.6, p. 409, typo: occuring \rightarrow occurring noted 2011.04 .25 by B. Hensley.
- §37.1, p. 413, 2nd paragraph: Change

Cases of astrophysical interest will normally have..
\rightarrow
Many cases of astrophysical interest will have... noted 2018.04.09.

- §37.1, p. 413, typo just above Eq. (37.3):
$J h \nu / c=\rho_{1} u_{1} h \nu / \mu_{i} c \ll \rho_{1}\left(u_{1}^{2}+c_{1}^{2}+B_{1}^{2} / 8 \pi\right)$.
\rightarrow
$J h \nu / c=\rho_{1} u_{1} h \nu / \mu_{i} c \ll \rho_{1}\left(u_{1}^{2}+c_{1}^{2}\right)+B_{1}^{2} / 8 \pi$.
noted 2016.12.08 by Ryohei Nakatani.
- $\S 37.1$, Eq. (37.8): The correction terms for $u_{R}, x_{R}, u_{\mathrm{D}}$, and x_{D} can be improved by analyzing the full cubic equation (37.3): change

$$
\begin{aligned}
u_{\mathrm{R}} \approx 2 c_{2} & \rightarrow \quad u_{\mathrm{R}} \approx 2 c_{2}\left[1-\frac{2 c_{1}^{2}-3 v_{A 1}^{2}}{8 c_{2}^{2}}\right] \\
x_{\mathrm{R}} \approx \frac{1}{2}+\frac{2 c_{1}^{2}+v_{A 1}^{2}}{16 c_{2}^{2}} & \rightarrow \quad x_{\mathrm{R}} \approx \frac{1}{2} \\
u_{\mathrm{D}} \approx \frac{2 c_{1}^{2}+v_{A 1}^{2}}{4 c_{2}} & \rightarrow \frac{2 c_{1}^{2}+v_{A 1}^{2}}{4 c_{2}}\left[1+\frac{2 c_{1}^{2}+v_{A 1}^{2}}{8 c_{2}^{2}}\right] \\
x_{\mathrm{D}} \approx \frac{4 c_{2}^{2}}{2 c_{1}^{2}+v_{A 1}^{2}} & \rightarrow \quad x_{\mathrm{D}} \approx \frac{4 c_{2}^{2}}{2 c_{1}^{2}+v_{A 1}^{2}}\left[1-\frac{v_{A 1}^{2}}{8 c_{2}^{2}}\right]
\end{aligned}
$$

noted 2018.02.19 by Woong-Tae Kim.

- §37.1 and §37.2, pp. 414-416: the mathematics is correct, but the "weaktype", and "strong-type" terminology was unfortunately inverted: all occurrences of "weak-type" should be changed to "strong-type", and vice-versa:
- §37.1.1, p. 414, first paragraph: ...are called strong R-type. Strong R-type solutions... \rightarrow ...are called weak R-type. Weak R-type solutions...
- §37.1.1, p. 414, second paragraph:
\ldots...eferred to as weak R-type,... \rightarrow...referred to as strong R-type,...
- §37.1.1, p. 414, second paragraph:

Hence, only strong R-type I-fronts are physically relevant.
\rightarrow
Hence, only weak R-type I-fronts are physically relevant.

- §37.1.2, p. 414, first paragraph:
...is termed weak D-type. \rightarrow...is termed strong D-type.
- §37.1.2, p. 414, second paragraph:
...is termed strong D-type. \rightarrow...is termed weak D-type.
- Fig. 37.1 and caption should be:

Figure $37.1 u_{2} / u_{1}=\rho_{1} / \rho_{2}$, as a function of the velocity u_{1} of the I-front relative to the neutral gas just ahead of the I-front, for D-type and R-type ionization front solutions (see text) for an example with $c_{1}=1 \mathrm{~km} \mathrm{~s}^{-1}, v_{A 1}=2 \mathrm{~km} \mathrm{~s}^{-1}$, and $c_{2}=$ $11.4 \mathrm{~km} \mathrm{~s}^{-1}$. The astrophysically relevant solutions are the strong D-type and weak R -type cases, shown as heavy curves. There are no solutions with u_{1} between u_{D} and u_{R}.

- §37.1, p. 416, first paragraph:
...will be strong R-type, ... $\rightarrow \quad$...will be weak R-type, ...
- §37.1, p. 417, fourth line:
...will now be weak D-type, ... \rightarrow...will now be strong D-type, ... noted 2016.12.06 by Ryohei Nakatani.
- §37.2, p. 418, typos:
...moving at a speed v_{s} that will be close to (just slightly larger than) the speed of the I-front:

$$
\begin{equation*}
v_{s} \approx V_{i} . \tag{37.21}
\end{equation*}
$$

\rightarrow
...moving at a speed V_{s} that will be close to (just slightly larger than) the speed of the I-front:

$$
\begin{equation*}
V_{s} \approx V_{i} . \tag{37.21}
\end{equation*}
$$

noted 2016.12.08 by Ryohei Nakatani.

- §38.3, p. 428, last paragraph, typo:
$\dot{M}_{w} \approx 2 \times 10^{-5} \mathrm{~km} \mathrm{~s}^{-1} \rightarrow \dot{M}_{w} \approx 2 \times 10^{-5} M_{\odot} \mathrm{yr}^{-1}$
noted 2015.12.17 by J. Miralda-Escudé.
- §39.1.1, p. 430, typo: case of Type II supernova \rightarrow case of Type II supernovae
noted 2011.04.21
- §39.1.1, p. 430, typo: relative dense \rightarrow relatively dense noted 2011.04.21
- §39.1.1, p. 430, typo: Plate $11 \rightarrow$ Plate 12 noted 2011.04.21 by C. Petrovich.
- §39.1.2, p. 433, Eqs. (39.22, 39.23, 39.24), typos: the factor $\left(E_{51} / n_{0}^{2}\right)$ should be ($E_{51} n_{0}^{2}$), so that the equations should read

$$
\begin{align*}
v_{s}\left(t_{\mathrm{rad}}\right) & =188 \mathrm{~km} \mathrm{~s}^{-1}\left(E_{51} n_{0}^{2}\right)^{0.07}, \tag{39.22}\\
T_{s}\left(t_{\mathrm{rad}}\right) & =4.86 \times 10^{5} \mathrm{~K}\left(E_{51} n_{0}^{2}\right)^{0.13}, \tag{39.23}\\
k T_{s}\left(t_{\mathrm{rad}}\right) & =41 \mathrm{eV}\left(E_{51} n_{0}^{2}\right)^{0.13} . \tag{39.24}
\end{align*}
$$

noted 2012.10.02 by G.B. Field.

- §39.2, p. 435, footnote 1, typo (twice): occuring \rightarrow occurring noted 2011.04.12 by B. Hensley.
- §39.4, p. 438, Eqs. (39.35) and (39.36), typos: they should read

$$
\begin{align*}
N_{\mathrm{SN}} & =0.24 S_{-13} E_{51}^{1.26} n_{0}^{-1.47} c_{s, 6}^{-13 / 5} \tag{39.35}\\
& =0.48 S_{-13} E_{51}^{1.26} n_{0}^{-0.17} p_{4}^{-1.30}, p_{4} \equiv \frac{p / k}{10^{4} \mathrm{~cm}^{-3} \mathrm{~K}} \tag{39.36}
\end{align*}
$$

noted 2014.06.27 by B. Jiang.

- §39.4, p. 438, Eq. (39.37), typos: Eq. (39.37) should read

$$
\begin{equation*}
\frac{p}{k}=S_{-13}^{0.77} E_{51}^{0.97} n_{0}^{-0.13} \times 5700 \mathrm{~cm}^{-3} \mathrm{~K} \tag{39.37}
\end{equation*}
$$

noted 2014.06.27 by B. Jiang.

- §39.4, p. 439, typo: neighboorhood \rightarrow neighborhood noted 2011.04.14
- §40.2, p. 442, typo: with a increased energy \rightarrow with an increased energy noted 2011.04.26
- §40.5, p. 447, typo: protons with $E \lesssim 10^{5} \mathrm{GeV}$ have $R_{\text {gyro }}<10^{-4} \mathrm{pc} \rightarrow$ protons with $E \lesssim 10^{3} \mathrm{GeV}$ have $R_{\text {gyro }}<10^{-4} \mathrm{pc}$ noted 2011.04.26
- §40.9, p. 450, typo: $e^{+} \mathrm{H} \rightarrow \mathrm{H}^{+}+2 \gamma \rightarrow e^{+}+\mathrm{H} \rightarrow \mathrm{H}^{+}+2 \gamma$ noted 2011.04.27
- §41.3, p. 456, typo: missing factor of G. Eq. (41.36) should read

$$
\begin{equation*}
E_{\text {grav }}=-\frac{G}{2} \int d V_{1} \int d V_{2} \frac{\rho\left(\mathbf{r}_{1}\right) \rho\left(\mathbf{r}_{2}\right)}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} \tag{41.36}
\end{equation*}
$$

noted 2015.04.30 by J. Greco.

- §41.3.2, p. 457, Eq. (41.46), typo: replace

$$
E_{\mathrm{mag}}=\frac{B_{\mathrm{rms}}^{2}-B_{0}^{2}}{8 \pi} V \quad \rightarrow \quad E_{\mathrm{mag}}=\frac{B_{\mathrm{rms}}^{2}}{8 \pi} V
$$

noted 2011.04.28

- §41.4, p. 460, Eq. (41.55), typo: $\langle\sigma v\rangle \rightarrow\langle\sigma v\rangle_{\mathrm{mt}}$ noted 2012.04.16
- §41.4, p. 460, Eq. (41.55), typo: $m_{m} \rightarrow m_{n}$ noted 2013.04 .30 by K. Silsbee
- §41.4, p. 461, Eq. (41.56), typo: $\langle\sigma v\rangle \rightarrow\langle\sigma v\rangle_{\mathrm{mt}}$ noted 2012.04.16
- §41.6, p. 463, typo: ... the allows the \rightarrow... this allows the noted 2011.04 .28 by B. Hensley
- §41.6, p. 463, typo: magenetic \rightarrow magnetic noted 2011.01.10
- §42, p. 465, typo: Stahler \& Palla (2005) \rightarrow Stahler \& Palla (2004) (also corrected in Bibliography) noted 2012.06.22 by F. van der Tak.
- §42.2, p. 467, last paragraph, typo: ...face-on it, may... \rightarrow...face-on, it may... noted 2012.06.22 by F. van der Tak.
- §42.4, p. 470, 3rd paragraph should read ... to be $Q_{0, \mathrm{MW}}=(3.2 \pm 0.5) \times 10^{53} \mathrm{~s}^{-1}$, after... noted 2011.01.04
- §42.5, p. 471, Eq. (42.9) typo: dsik \rightarrow disk noted 2011.01.04
- Plate 5 caption: 2nd sentence should read
... synchrotron emission seen in Plate 4. noted 2011.01.12
- Appendix A, p. 473 , typo: entry for a_{0} should read ...Bohr radius $\equiv \hbar^{2} / m_{e} e^{2}=\ldots$ noted 2013.03.05 by Wenhua Ju.
- Appendix A, p. 475: entry for $R M$ should read $R M$... see Eq. (11.23) noted 2011.01.05
- Appendix B, p. 476: typo: incorrect units for Stefan-Boltzmann constant σ : $5.67040 \times 10^{-5} \mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-3} \mathrm{~K}^{-4} \rightarrow 5.67040 \times 10^{-5} \mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \mathrm{~K}^{-4}$ noted 2019.05.14 by Aaron Tran.
- Appendix D, p. 481: corrected typos:

F VI \rightarrow VII: $\quad I=147.163 \rightarrow 157.163$
Ne VI \rightarrow VII: $\quad I=154.214 \rightarrow 157.934$
Ti III \rightarrow IV: $\quad I=24.492 \rightarrow 27.492$
$\mathrm{Ti} \mathrm{V} \rightarrow \mathrm{VI}: \quad I=123.7 \rightarrow 99.299$
Zn VI \rightarrow VII: $\quad I=133.903 \rightarrow 108.0$
noted 2015.07.10 by Guangtun Ben Zhu.

- Appendix E, p. 483, typo: Pfundt \rightarrow Pfund noted 2011.04 .28 by B. Hensley.
- Appendix E, p. 484: diagram for CIV: the wavelength labels 1548.2 and 1550.8 should be interchanged.
noted 2011.03.11
- Appendix E, p. 485: diagrams for NIV and O V: the levels shown as ${ }^{2} \mathrm{P}_{1}^{o}$ and ${ }^{2} \mathrm{P}_{2}^{o}$ should be ${ }^{3} \mathrm{P}_{1}^{o}$ and ${ }^{3} \mathrm{P}_{2}^{o}$, respectively.
noted 2023.05.23
- Appendix E, p. 486: labelling of the fine-structure excited state for C II, N III, and OIV should have $J=3 / 2$ (not $J=1 / 2$). noted 2012.01.29 by E.B. Jenkins.
- Appendix E, p. 488: inadvertent omisssionof ${ }^{2} \mathrm{P}_{1 / 2}^{o} \rightarrow{ }^{2} \mathrm{D}_{5 / 2}^{o}$ emission lines for NI, O II, and Ne IV. Corrected figure:

noted 2023.04.16 by S.R. Kulkarni
- Appendix E, p. 494: inadvertent omission of ${ }^{1} \mathrm{~S}_{0} \rightarrow{ }^{1} \mathrm{D}_{2}$ emission lines for

Si I and S III. Corrected figure:

noted 2023.04.16 by S.R. Kulkarni

- Appendix E, p. 495: ${ }^{2} \mathrm{D}_{3 / 2,5 / 2}^{o}$ energy levels were misplotted for SII and ArIV.
noted 2013.10.21 by Bon-Chul Koo.
Corrected figure [Opportunity taken to update energy ArIV energy levels
using latest values from NIST Atomic Spectra Database (ver. 5.1 [Online])]:

- Appendix F, Table F.2, p. 497, typo: the first transition listed for S III: change ${ }^{3} \mathrm{P}_{0}-{ }^{1} \mathrm{P}_{0} \rightarrow{ }^{3} \mathrm{P}_{0}-{ }^{3} \mathrm{P}_{1}$ noted 2016.10.03 by C.D. Kreisch.
- Appendix F, Table F.3, p. 498: updated electron collision strengths for O I:

Ion	$\ell-u$	$\Omega_{u \ell}$	Note	
OI	${ }^{3} \mathrm{P}_{2}-{ }^{3} \mathrm{P}_{1}$	$0.0105 T_{4}^{0.4861+0.0054 \ln T_{4}}$	a	
$"$	${ }^{3} \mathrm{P}_{2}-{ }^{3} \mathrm{P}_{0}$	$0.00459 T_{4}^{0.4507-0.0066 \ln T_{4}}$	a	
$"$	${ }^{3} \mathrm{P}_{1}-{ }^{3} \mathrm{P}_{0}$	$0.00015 T_{4}^{0.4709-0.1396 \ln T_{4}}$	a	
$"$	${ }^{3} \mathrm{P}_{J}-{ }^{1} \mathrm{D}_{2}$	$0.0312(2 J+1) T_{4}^{0.945-0.001 \ln T_{4}}$	b	
$"$	${ }^{3} \mathrm{P}_{J}-{ }^{1} \mathrm{~S}_{0}$	$0.00353(2 J+1) T_{4}^{1.000-0.135 \ln T_{4}}$	b	
$"$	${ }^{1} \mathrm{D}_{2}-{ }^{1} \mathrm{~S}_{0}$	$0.0893 T_{4}^{0.662-0.089 \ln T_{4}}$	b	

a fit to Bell et al. (1998)
b fit to Zatsarriny \& Tayal (2003)
noted 2015.02.27

- Appendix F, Table F.5, p. 500: Level u in the fourth line in the table should be ${ }^{2} \mathrm{P}_{3 / 2}^{o}$ rather than ${ }^{2} \mathrm{P}_{5 / 2}^{o}$.
noted 2022.09 .03 by S. R. Kulkarni
- Appendix F, Table F.6, p. 501: The table title should be "Rate Coefficients for ... Deexcitation..." rather than "... Excitation...".
noted 2015.07.03
- Appendix F, Table F.6, p. 501: incorrect powers of 10 in lines 5 and 6: $k_{u \ell}$ for $\ell-u={ }^{3} \mathrm{P}_{0}-{ }^{3} \mathrm{P}_{1}$ should read $1.26 \times 10^{-10} T_{2}^{0.115+0.057 \ln T_{2}}$ $k_{u \ell}$ for $\ell-u={ }^{3} \mathrm{P}_{0}-{ }^{3} \mathrm{P}_{2}$ should read $2.64 \times 10^{-10} T_{2}^{0.231+0.046 \ln T_{2}}$
NB!: See also erratum below on inadvertent interchange of ${ }^{3} \mathrm{P}_{0}-{ }^{3} \mathrm{P}_{2}$ and ${ }^{3} \mathrm{P}_{1}-{ }^{3} \mathrm{P}_{2}$ deexcitation rates.
noted 2012.05.02 by M.J. Wolfire
- Appendix F, Table F.6, p. 501: the rates for entries 5 and 6 should be interchanged, so that entries 4-6 read

H	CI	${ }^{3} \mathrm{P}_{0}-{ }^{3} \mathrm{P}_{1}$	$1.26 \times 10^{-10} T_{2}^{0.115+0.057 \ln T_{2}}$	b
H	C I	${ }^{3} \mathrm{P}_{0}-{ }^{3} \mathrm{P}_{2}$	$8.90 \times 10^{-11} T_{2}^{0.228+0.046 \ln T_{2}}$	b
H	CI	${ }^{3} \mathrm{P}_{1}-{ }^{3} \mathrm{P}_{2}$	$2.64 \times 10^{-10} T_{2}^{0.231+0.046 \ln T_{2}}$	b

noted 2015.07.03 by Munan Gong.

- Appendix F, Table F.6, p. 501: the rates for entries 23-28 should be changed to

H_{2} (para)	O I	${ }^{3} \mathrm{P}_{2}-{ }^{3} \mathrm{P}_{1}$	$1.49 \times 10^{-10} T_{2}^{0.369-0.026} \ln T_{2}$	h
H_{2} (ortho)	O I	${ }^{3} \mathrm{P}_{2}-{ }^{3} \mathrm{P}_{1}$	$1.37 \times 10^{-10} T_{2}^{0.395-0.005 \ln T_{2}}$	h
H_{2} (para)	O I	${ }^{3} \mathrm{P}_{2}-{ }^{3} \mathrm{P}_{0}$	$2.37 \times 10^{-10} T_{2}^{0.255+0.016 \ln T_{2}}$	h
H_{2} (ortho)	O I	${ }^{3} \mathrm{P}_{2}-{ }^{3} \mathrm{P}_{0}$	$2.23 \times 10^{-10} T_{2}^{0.284+0.035 \ln T_{2}}$	h
H_{2} (para)	O I	${ }^{3} \mathrm{P}_{1}-{ }^{3} \mathrm{P}_{0}$	$2.10 \times 10^{-12} T_{2}^{1.117+0.070 \ln T_{2}}$	h
H_{2} (ortho)	O I	${ }^{3} \mathrm{P}_{1}-{ }^{3} \mathrm{P}_{0}$	$3.00 \times 10^{-12} T_{2}^{0.792+0.188 \ln T_{2}}$	h

- Appendix G, p. 503, typo just before Eq. (G.7): change \ldots..solution $x_{0}=e^{-i \omega t} \quad \rightarrow \quad$...solution $x=x_{0} e^{-i \omega t}$. noted 2019.02.11
- Appendix I, p. 506, typo: ... a time $\sim E_{u \ell} / h \rightarrow \ldots$ a time $\sim h / E_{u \ell}$ noted 2013.02.07 by Munan Gong.
- Appendix I, p. 507, typo (missing ${ }^{1 / 2}$): Eq. (I.4) should read

$$
\begin{equation*}
b_{\text {crit }}(v)=W a_{0}\left[1+\frac{Z e^{2} / W a_{0}}{m_{e} v^{2} / 2}\right]^{1 / 2} \tag{I.4}
\end{equation*}
$$

noted 2011.02.08 by B. Hensley.

- Appendix I, p. 507, typo (15.78 $\rightarrow 31.56$): Eq. (I.7) should read

$$
\frac{Z e^{2}}{a_{0} k T}=\frac{31.56 Z}{T_{4}}
$$

noted 2019.01.14.

- Appendix J, p. 508, Eq. (J.3), typo in line 3:

$$
\ldots+\int d V \frac{\partial}{\partial j}\left(v_{j} \rho v_{i} x_{i}\right) \quad \rightarrow \quad \ldots+\int d V \frac{\partial}{\partial x_{j}}\left(v_{j} \rho v_{i} x_{i}\right)
$$

noted 2011.02.14 by Xu Huang.

- Appendix J, p. 510, Eq. (J.8): missing sign:

$$
\begin{gathered}
Y_{3}=E_{\text {grav }}=\frac{1}{2} \int d V_{1} \int d V_{2} G \frac{\rho\left(\mathbf{r}_{1}\right) \rho\left(\mathbf{r}_{2}\right)}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} \\
Y_{3}=E_{\text {grav }}=-\frac{1}{2} \int d V_{1} \int d V_{2} G \frac{\rho\left(\mathbf{r}_{1}\right) \rho\left(\mathbf{r}_{2}\right)}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|}
\end{gathered}
$$

noted 2020.11.13

- Appendix J, p. 510, Eq. (J.13), typo:

$$
\Pi_{0} \equiv \oint d \mathbf{S} \cdot \mathbf{r} p \quad \rightarrow \quad \Pi_{0} \equiv \frac{1}{3} \oint d \mathbf{S} \cdot \mathbf{r} p
$$

noted 2017.03.08.

