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ABSTRACT. Multiwavelength study of extended astronomical objects requires combining images from instru-
ments with differing point-spread functions (PSFs). We describe the construction of convolution kernels that allow
one to generate (multiwavelength) images with a common PSF, thus preserving the colors of the astronomical
sources. We generate convolution kernels for the cameras of Spitzer,Herschel Space Observatory,Galaxy Evolution
Explorer (GALEX), Wide-field Infrared Survey Explorer (WISE), ground-based optical telescopes (Moffat functions
and sum of Gaussians), and Gaussian PSFs. Kernels for other telescopes including IRAS, AKARI, and Planck, are
currently being constructed. These kernels allow the study of the spectral energy distribution (SED) of extended
objects, preserving the characteristic SED in each pixel. The convolution kernels and the IDL packages used to
construct and use them are made publicly available.

Online material: color figures

1. INTRODUCTION

Spectral energy distribution studies of astronomical objects
provide insight into the ongoing physical processes. In order to
achieve a wide range of wavelengths, it is often necessary to
combine observations from cameras with very different point-
spread functions (PSFs), in some cases with full width at
half-maximum (FWHM) differing by factors of 100. Direct
comparison (e.g., ratios) of images with structures on multiple
angular/spatial scales obtained with different PSFs can result in
unphysical intensity ratios (i.e., colors). To preserve colors, in-
tensity ratios should be calculated from images with a common
PSF. We therefore require convolution kernels that will trans-
form the images taken with several instruments into a common
PSF, so we can generate image cubes (i.e., a collection of
images expressed in the same sky coordinates grid) in which
each pixel corresponds to the same sky region for all the cam-
eras used.

By “camera” we refer to the combination of telescope op-
tics and physical detector, including the effect of atmospheric
“seeing” if applicable. The PSF Ψjðx; y; x0; y0Þ of a camera j
gives the measured intensity at ðx; yÞ produced by a point
source with unit flux at the point ðx0; y0Þ, where we use the
Cartesian coordinates ðx; yÞ to denote positions in a small re-
gion of the sky. With this definition, the PSF has normalization

ZZ
Ψjðx; y; x0; y0Þdxdy ¼ 1; (1)

for any source position ðx0; y0Þ.
It is often possible to approximate the PSF (denoted as Ψ

from now on) as constant across the useful field of view of
the camera, so Ψjðx; y; x0; y0Þ ¼ Ψjðx$ x0; y$ y0Þ. The ob-
served image Ijðx; yÞ will then be the convolution of the source
Sðx; yÞ with the PSF Ψ:

Ijðx; yÞ ¼
ZZ

Sðx0; y0ÞΨjðx$ x0; y$ y0Þdx0dy0

¼ ðS⋆ΨjÞðx; yÞ: (2)

Clearly, given two cameras A and B, with (different) PSFs ΨA

and ΨB, the images obtained of an astronomical object will be
different, even if the spectral response of the cameras were iden-
tical. A convolution kernel is a tool that transforms the image
observed by one camera into an image corresponding to the PSF
of another camera.

The convolution kernel KfA ⇒ Bg from camera A to
camera B should satisfy

IBðx; yÞ ¼
ZZ

IAðx0; y0ÞKfA ⇒ Bgðx$ x0; y$ y0Þdx0dy0

≡ ðIA⋆KfA ⇒ BgÞðx; yÞ; (3)

where IA and IB are the observed images by the cameras A and
B, respectively.

The actual PSF of an instrument will show variations with
the source color, variations along the field of view, changes over
time, and deviations from rotational symmetry. Full 2D charac-
terization of a PSF is extremely challenging, and its extended
wings are often not well determined. To take into account
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deviations of PSFs from rotational symmetry would require se-
parate kernels KfA ⇒ BgðγÞ for each relative orientation γ of
cameras A and B. In the present study, the actual PSFs are close
enough of having rotational symmetry that such additional com-
plication is not justified (see § 3 for a detailed study). The cur-
rent work assumes that ΨA and ΨB can be approximated by
rotationally symmetric functions.

Using a different technique, Alard & Lupton (1998) presented
a method for finding optimal kernels to convolve (to a common
resolution) images of a sky region taken with a single camera un-
der different seeing conditions. Using techniques similar to those
used here, Gordon et al. (2008) created kernels for the Infrared
Array Camera (IRAC) and Multiband Imaging Photometer for
Spitzer (MIPS) cameras of Spitzer, and Sandstrom et al. (2009)
created kernels for the Infrared Spectrograph (IRS) of Spitzer. In
the present work, we use the latest characterization of the PSFs of
the cameras on Spitzer (IRAC and MIPS), Herschel Space
Observatory (Photocamera Array Camera and Spectrometer
for Herschel [PACS] and Spectral and Photometric Imaging
Receiver for Herschel [SPIRE]), Galaxy Evolution Explorer
(GALEX) (FUV, NUV), and the Wide-field Infrared Survey Ex-
plorer (WISE) (W1–W4). Additional PSFs (including those
characterizing the IRS spectrograph on board Spitzer; the PACS
spectrographs on board theHerschel SpaceObservatory; and all-
sky images produced by IRAS, AKARI, and Planck) are currently
being constructed and will be added to the kernel library. We also
include a family of analytical PSF profiles that are commonly
used to model the PSFs for ground-based telescopes. We con-
struct the set of kernels to transform from different instrumental
PSFs into Gaussian PSFs, another form that is widely used. We
find an optimal Gaussian PSF for each camera: i.e., a Gaussian
PSF that is sharp enough to capture the angular resolution of the
camera and wide enough to be robust against image artifacts.

Additional image processing (i.e., co-adding images4) or dif-
ferent data reduction schemes (i.e., the Scanamorphos pipeline
[Roussel 2011] for the Herschel images) will alter the PSF, and
thus new kernels should be constructed using the effective PSF.

This article is organized as follows. In § 2 we describe the
generation of convolution kernels, in § 3 we describe the PSF
used, and in § 4 we describe the kernel construction strategy.
The performance of the kernels is examined in § 5, and in § 6 we
describe a set of Gaussian kernels that are compatible with the
different instruments. In § 7 we describe the kernel usage and
show their performance onNGC 1097, and we summarize in § 8.

All the kernels, IDL routines to use the kernels, and IDL rou-
tines to make new kernels, along with detailed analysis of the
generated kernels, are publicly available.5

2. CONVOLUTION KERNELS

Given two camerasA andB, with PSFsΨA andΨB, we seek
KfA ⇒ Bg that fulfills equation (3) for any astronomical
source. Thus,

ðS⋆ΨBÞ ¼ IB ¼ ðIA⋆KfA ⇒ BgÞ ¼ ðS⋆ΨA⋆KfA ⇒ BgÞ
(4)

for any astronomical source S, so the convolution kernel must
satisfy

ΨB ¼ ðΨA⋆KfA ⇒ BgÞ: (5)

With the normalization condition given by equation (1), the
kernel must have

ZZ
KfA ⇒ Bgðx; yÞdxdy ¼ 1: (6)

We can easily invert equation (5) in Fourier space; taking the
two-dimensional Fourier transform (FT) of equation (5)6 we
obtain

FTðΨBÞ ¼ FTðΨA⋆KfA ⇒ BgÞ

¼ FTðΨAÞ × FTðKfA ⇒ BgÞ: (7)

This can be inverted to obtain

KfA ⇒ Bg ¼ FT$1

!
FTðΨBÞ ×

1

FTðΨAÞ

"
; (8)

where FT and FT$1 stand for the Fourier transform and its
inverse transformation, respectively.

Equation (8) provides a condition for the existence of such a
kernel and a practical way of computing it. We can see that a
condition for the existence of a kernel is that the Fourier com-
ponents for which FTðΨAÞ ¼ 0 should satisfy FTðΨBÞ ¼ 0.
Informally speaking, this means that the PSF of camera A must
be narrower than the PSF of camera B.

For each camera A, we identify a high-frequency cutoff kH;A

as the highest spatial frequency for which FTðΨAÞ is appreci-
able by setting

FTðΨAÞðkH;AÞ ¼ 5 × 10$3 ×max½FTðΨAÞ&: (9)

The cutoff frequency kH;A can be normalized as kH;A ¼
κA × 2π=FWHMA. The values of κA are in the range of
1.08–1.46 and are given in Table 1.

4For example, for 2MASS co-added images the images undergo an additional
smearing with a kernel whose size corresponds to a detector pixel.

5Seehttp://www.astro.princeton.edu/~draine/Kernels.html.Kernels for addition-
al cameras and updates will be included when new PSF characterizations become
available.

6Computing the two-dimensional Fourier transform of rotationally symmetric
functions is mathematically equivalent to making a decomposition in the one-
parameter family of Bessel functions. However, the existence of the fast Fourier
transform (FFT) algorithm makes it numerically more efficient to perform the
decomposition in the family of Fourier modes.
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Equation (8) also provides insight of a possible problem
in computing kernels. PSF Fourier transforms do not have
significant power at (spatial) frequencies above the 2π=FWHM.
The high-frequency components of the FT will be small, intro-
ducing large uncertainties when inverted.

A possible way of avoiding problems in the high-frequency
components of the kernel is to introduce a filter fA in the kernel
construction:

KfA ⇒ Bg ¼ FT$1

!
FTðΨBÞ ×

1

FTðΨAÞ
× fA

"
; (10)

where fA is a suitable low-pass filter. Because this differs from
equation (8), it is clear that a kernel satisfying equation (10)
will, in general, not be an exact solution to equation (8).

However, we can expect that if the filter fA does not remove sig-
nificant power from the high-frequency components of either
FTðΨAÞ or FTðΨBÞ, then the kernel computed will be a good
approximate solution to equation (8).

We use a filter fA of the form

fAðkÞ ¼

8
>><

>>:

1 for k ≤ kL;A
1
2 ×

#
1þ cos

!
π × k$kL;A

kH;A$kL;A

"$
for kL;A ≤ k ≤ kH;A

0 for kH;A ≤ k

;

(11)

where we set kL;A ¼ 0:7 × kH;A. Note that the cutoff frequency
of our filter fA depends only on camera A, since small values of
FTðΨBÞ have no negative impact in the kernel construction. In

TABLE 1

BASIC INSTRUMENT INFORMATION

Camera
Rayleigh diff. limit a

(")
Measured FWHM

(")
99% of energy radius

(") κb
Asymmetry

gc

IRAC 3.6 μm . . . . . . . 1.04 1.90 62.52 1.29 0.16
IRAC 4.5 μm . . . . . . . 1.31 1.81 64.46 1.26 0.17
IRAC 5.8 μm . . . . . . . 1.68 2.11 133.55 1.20 0.19
IRAC 8.0 μm . . . . . . . 2.30 2.82 114.20 1.19 0.18
MIPS 24 μm . . . . . . . . 6.93 6.43 224.53 1.05 0.08
MIPS 70 μm . . . . . . . . 20.90 18.74 461.44 1.12 0.05
MIPS 160 μm . . . . . . . 45.62 38.78 678.77 1.10 0.05
PACS 70 μm . . . . . . . . 5.11 5.67 249.81 1.23 0.20
PACS 100 μm . . . . . . . 7.28 7.04 350.63 1.19 0.20
PACS 160 μm . . . . . . . 11.70 11.18 417.36 1.21 0.20
SPIRE 250 μm . . . . . . 17.93 18.15 205.07 1.16 0.19
SPIRE 350 μm . . . . . . 25.16 24.88 192.47 1.15 0.18
SPIRE 500 μm . . . . . . 36.22 36.09 198.43 1.16 0.19
GALEX FUV . . . . . . . . 0.08 4.48 50.28 1.26 0.07
GALEX NUV . . . . . . . . 0.11 5.05 39.56 1.32 0.05
WISE 3.35 μm . . . . . . 2.11 5.79 19.10 1.20 0.17
WISE 4.60 μm . . . . . . 2.89 6.37 19.08 1.33 0.13
WISE 11.56 μm . . . . . 7.27 6.60 19.56 1.23 0.12
WISE 22.1 μm . . . . . . 13.90 11.89 35.15 1.05 0.07
Gauss 12″ . . . . . . . . . . . … 12.00 15.41 1.33 0.0
Gauss 20″ . . . . . . . . . . . … 20.00 25.68 1.33 0.0
Gauss 23″ . . . . . . . . . . . … 23.00 29.53 1.33 0.0
Gauss 28″ . . . . . . . . . . . … 28.00 35.95 1.33 0.0
Gauss 40″ . . . . . . . . . . . … 40.00 51.33 1.33 0.0
Gauss 50″ . . . . . . . . . . . … 50.00 64.05 1.33 0.0
BiGauss 0.5″ . . . . . . . . … 0.50 0.90 1.37 0.0
BiGauss 1.0″ . . . . . . . . … 1.00 1.79 1.37 0.0
BiGauss 1.5″ . . . . . . . . … 1.50 2.69 1.37 0.0
BiGauss 2.0″ . . . . . . . . … 2.00 3.57 1.37 0.0
BiGauss 2.5″ . . . . . . . . … 2.50 4.44 1.37 0.0
Moffat 0.5″ . . . . . . . . . . … 0.50 1.39 1.46 0.0
Moffat 1.0″ . . . . . . . . . . … 1.00 2.77 1.46 0.0
Moffat 1.5″ . . . . . . . . . . … 1.50 4.12 1.46 0.0
Moffat 2.0″ . . . . . . . . . . … 2.00 5.45 1.46 0.0
Moffat 2.5″ . . . . . . . . . . … 2.50 6.74 1.46 0.0

a We take the Rayleigh diffraction limit as 1:22 × ½centralλ&=½telescope diameter&.
b We define κ as ðkH × FWHMAÞ=ð2πÞ, where kH is the high-frequency cutoff (see text for details).
c The parameter g is a measure of the departure of a PSF from rotational symmetry (see eq. [12]).
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principle, any smoothly varying function that is close to 1 in the
low-frequency range and goes to zero in frequencies larger than
kH;A should work as well. We have experimented using several
smoothing functions and find that the particular form of fAðkÞ
given by equation (11), with these particular choices of kL;A and
kH;A, gives excellent results. More details of the smoothing
function effects can be found in § 5.

If the cutoff frequencies associated with cameras A and B
are such that kH;B ≤ kH;A × 0:7, then the filter fA has little ef-
fect and the resulting kernel from equation (10) will satisfy
equation (3) to a very good approximation. In the regime kH;A ×
0:7 ≤ kH;B ≤ kH;A the kernel KfA ⇒ Bg will depend on the
exact form of the filter fA used. Most of the kernels in this
regime have good performance; the performance of such
“filtered” kernels will be evaluated in § 5. A limiting case is
a kernel KfA ⇒ Ag that transforms a PSF into itself; it is
the Fourier transform of the filter fA.

In the cases of kH;A < kH;B (convolving into narrower
PSFs), use of the filter fA allows one to compute convolution
kernels, but their performance can be poor. This will be further
discussed subsequently

3. INSTRUMENTAL POINT-SPREAD FUNCTIONS

We generate appropriate kernels for the measured PSFs of
the cameras on Spitzer, Herschel, GALEX, and WISE and for
certain analytical PSFs that are used in the literature:

IRAC.—The Infrared Array Camera (Fazio et al. 2004) has
four infrared bands, centered at 3.6 μm, 5.0 μm, 5.8 μm, and
8.0 μm. We use the in-flight extended point response functions
(PRFs).7 The core portion of the PSF was made with 300 ob-
servations of a calibration, with different exposure time, com-
bined into a high dynamic range image. Observations of the
stars Vega, ϵ Eridani, Fomalhaut, ϵ Indi, and Sirius were used
in the construction of the extended wings of the PSF.8

MIPS.—The Multiband Imaging Photometer for Spitzer
(Rieke et al. 2004) has three photometric infrared bands, cen-
tered at 24 μm, 70 μm, and 160 μm. Following Engelbracht et
al. (2007), Gordon et al. (2007), and Stansberry et al. (2007), we
generate theoretical PSFs for the MIPS cameras, assuming a
blackbody source at T ¼ 25 K. The PSFs are generated using
the software STinyTim9 in a 0.5″ grid, and they are smoothed
with a square kernel with sides of 4.5″, 13.5″, and 25.5″ for the
bands at 70 μm, 100 μm, and 160 μm respectively. The smooth-
ing sizes correspond to 1.6, 1.35, and 1.8 times the camera
detector pixel size, and they should cause the core of the

theoretical PSF to be in close agreement with the calibration
point-source images.

PACS.—The Photocamera Array Camera and Spectrometer
for Herschel (Poglitsch et al. 2010) has three photometric infra-
red bands, centered at 70 μm, 100 μm, and 160 μm. We use the
in-flight PSF (Geis & Lutz 2010; Lutz 2010; Müller 2010); the
core was defined by observations of the star α Tau and the as-
teroid Vesta, with extended wings reconstructed from (satu-
rated) observations of Mars, Neptune, IK Tau, and the Red
Rectangle. The azimuthally averaged encircled energy fraction
of the PSFs out to 1000″ were obtained from the HCSS/HIPE
software.

SPIRE.—The Spectral and Photometric Imaging Receiver
for Herschel (Griffin et al. 2010) has three photometric far-
infrared bands, centered at 250 μm, 350 μm, and 500 μm.10

GALEX.—The Galaxy Evolution Explorer (Martin et al.
2005) has two ultraviolet bands, FUV (1350–1750 Å) and
NUV (1750–2800 Å).11

WISE.—The Wide-field Infrared Survey Explorer (Wright
et al. 2010) has four photometric infrared bands, centered at
3.4 μm, 4.6 μm, 12 μm, and 22 μm. The PSF shape varies sig-
nificantly over the focal plane due to distortion from the tele-
scope optics; so a library of PSFs corresponding to a 9 × 9 grid
of locations on the focal plane was determined. For each cam-
era, we average the 81 different PSFs to generate a single PSF
per camera.

As a way of measuring the departure of a PSF Ψj from
rotational symmetry, we define an asymmetry parameter:

gj ≡
ZZ

jΨj $ C½Ψj&jdxdy; (12)

where C½Ψj& is the azimuthally averaged version of Ψj

(i.e., C½Ψj& is a PSF with rotational symmetry and the same
radial profile as Ψj). The PSFs used have g≲ 0:2.

In Table 1 we have a summary of the properties of the
different PSFs: the camera Rayleigh diffraction angle, the
PSF FWHM, the radius containing 99% of the PSF energy,
the (normalized) high-frequency cutoff κA used in the filter
fA, and the anisotropy parameter g. The PSF radial profiles
[out to ΨðθÞ≈ 10$5Ψð0Þ] and enclosed power are plotted in
Figures 1 and 2.

For each PSF the radii containing 25%, 50%, 65%, 80%,
90%, 95%, 98%, 99%, 99.5%, and 99.9% of the total power
are given in Table 2. Table 3 gives the enclosed power for
selected radii.

For convenience, we add several families of PSFs that are
often used for ground-based optical and radio telescopes. For

7 In the current work we always use the full response of the optical systems
including the camera effects, and for simplicity we will not make any further
distinction between PSFs and PRFs.

8 The PSFs are available at http://ssc.spitzer.caltech.edu/.
9STinyTim is available at http://irsa.ipac.caltech.edu/data/SPITZER/docs/data

analysistools/tools/contributed/general/stinytim/.

10 We use the in-flight 1.0″ PSF maps from ftp://ftp.sciops.esa.int/pub/hsc‑
calibration/SPIRE/.

11 In-flight PSFs are available at http://www.galex.caltech.edu/researcher/
techdoc‑ch5.html.
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FIG. 1.—PSF radial profiles for the 20 cameras considered here (see text). All PSFs are shown out to ΨðθÞ≈ 10$5Ψð0Þ, with the exception of WISE (W1–W4), for
which we have data only down to ≈0:002Ψð0Þ. See the electronic edition of the PASP for a color version of this figure.
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FIG. 2.—Fraction of the power enclosed by a circle of radius θ for the 20 cameras considered (see text). See the electronic edition of the PASP for a color version of this
figure.

COMMON-RESOLUTION CONVOLUTION KERNELS 1223

2011 PASP, 123:1218–1236



each analytical profile, we generate the kernels for a range of
FWHM values. We consider the following analytical profiles:

Gaussians.—We use a Gaussian PSF of the form

ΨðθÞ ¼ 1

2πσ2 exp
!
$θ2

2σ2

"
; (13)

where the FWHM ¼ 2 × σ
ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
. We generate kernels

with 5″ < FWHM < 65″.
Optical (SDSS).—In the SDSS survey, it is found that a good

approximation to the telescope PSF is given by the sum of two
Gaussians. The two components have relative weights of 0.9
and 0.1, and the FWHM of the second component is twice that
of the first. We use a family of PSFs of the form

ΨðθÞ ¼ 0:9
1

2πσ2 exp
!
$θ2

2σ2

"
þ 0:1

1

2πð2σÞ2
exp

!
$θ2

2ð2σÞ2

"
:

(14)

where the FWHM ¼ 1:01354 × 2 × σ
ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
. We generate

kernels with FWHM ¼ 0:5, 1.0, 1.5, 2.0, and 2.5″.
Optical (General).—Moffat (1969) proposed PSFs of the

form

MβðθÞ ¼
ðβ $ 1Þð21=β $ 1Þ

πθ20

#
1þ ð21=β $ 1Þ

!
r

θ0

"
2
$$β

; (15)

where β is a parameter, and FWHM ¼ 2θ0, Following Racine
(1996) we use PSFs of the form

ΨðrÞ ¼ 0:8 ×M7ðθÞ þ 0:2 ×M2ðθÞ; (16)

TABLE 2

ENCLOSED ENERGY PERCENT (%) IN SELECTED CIRCULAR APERTURES

Radii
(")

Camera 2.5 5 7.5 10 12.5 15 17.5 20 25 30 40 50 60 90 120

IRAC 3.6 μm . . . . . . . . 80.7 88.7 91.8 93.6 94.8 95.7 96.3 96.7 97.2 97.6 98.2 98.6 98.9 99.5 99.8
IRAC 4.5 μm . . . . . . . . 78.1 86.7 90.3 92.5 94.0 95.1 95.9 96.5 97.1 97.5 98.1 98.6 98.9 99.5 99.8
IRAC 5.8 μm . . . . . . . . 57.6 70.5 74.2 76.0 77.6 79.2 81.2 82.9 85.4 87.0 89.5 91.7 93.2 96.3 98.3
IRAC 8.0 μm . . . . . . . . 53.9 78.0 80.8 84.0 85.9 87.6 89.3 90.5 92.3 93.5 95.1 96.2 96.9 98.3 99.2
MIPS 24 μm . . . . . . . . . 21.6 50.5 59.4 69.1 81.2 85.5 86.5 87.2 88.3 90.4 92.7 94.0 95.0 96.7 97.8
MIPS 70 μm . . . . . . . . . 3.00 11.2 22.5 34.2 44.3 51.5 56.1 59.1 64.4 71.8 83.9 87.1 88.0 91.3 93.4
MIPS 160 μm . . . . . . . 0.73 2.88 6.32 10.8 16.1 21.8 27.8 33.5 43.8 51.3 58.9 63.4 70.4 86.9 88.7
PACS 70 μm . . . . . . . . . 26.8 56.8 69.3 76.6 80.0 82.2 84.1 85.6 87.3 88.6 90.4 91.8 92.9 95.3 96.7
PACS 100 μm . . . . . . . 20.4 51.3 65.0 71.8 77.6 80.8 82.5 83.7 86.2 87.7 89.5 90.8 91.9 94.2 95.6
PACS 160 μm . . . . . . . 8.89 29.3 49.0 61.2 67.8 72.3 76.2 79.3 82.8 84.7 87.6 89.5 90.8 93.1 94.5
SPIRE 250 μm . . . . . . 4.39 16.3 32.4 48.9 62.6 71.8 77.0 79.5 82.2 85.9 91.0 92.5 94.0 96.5 97.5
SPIRE 350 μm . . . . . . 2.48 9.56 20.1 32.7 45.6 57.2 66.9 73.9 81.2 83.5 87.8 92.5 94.0 96.6 97.9
SPIRE 500 μm . . . . . . 1.17 4.62 10.1 17.2 25.5 34.3 43.2 51.7 66.0 75.8 83.9 86.5 89.9 95.2 97.1
GALEX FUV . . . . . . . . . 50.2 84.9 90.5 92.2 93.2 94.0 94.6 95.2 96.2 97.0 98.2 99.0 99.5 100 100
GALEX NUV . . . . . . . . 40.7 79.3 88.1 90.5 91.9 93.0 93.9 94.7 96.1 97.2 99.1 99.8 99.9 100 100
WISE 3.35 μm . . . . . . . 34.5 74.8 87.7 92.6 95.0 96.9 98.2 99.4 100 100 100 100 100 100 100
WISE 4.60 μm . . . . . . . 28.4 68.0 85.9 91.5 94.4 96.7 98.2 99.4 100 100 100 100 100 100 100
WISE 11.56 μm . . . . . 18.6 46.1 64.0 78.9 89.1 94.8 97.5 99.3 100 100 100 100 100 100 100
WISE 22.1 μm . . . . . . . 7.36 24.9 42.8 54.3 60.4 66.0 74.0 83.1 94.5 97.6 99.7 100 100 100 100
Gauss 12″ . . . . . . . . . . . . 11.3 38.2 66.2 85.5 95.1 98.7 99.8 100 100 100 100 100 100 100 100
Gauss 20″ . . . . . . . . . . . . 4.24 15.9 32.3 50.0 66.2 79.0 88.1 93.8 98.7 99.8 100 100 100 100 100
Gauss 23″ . . . . . . . . . . . . 3.22 12.3 25.5 40.8 55.9 69.3 79.9 87.7 96.3 99.1 100 100 100 100 100
Gauss 28″ . . . . . . . . . . . . 2.18 8.46 18.0 29.8 42.5 54.9 66.2 75.7 89.1 95.9 99.7 100 100 100 100
Gauss 40″ . . . . . . . . . . . . 1.08 4.24 9.29 15.9 23.7 32.3 41.2 50.0 66.2 79.0 93.8 98.7 99.8 100 100
Gauss 50″ . . . . . . . . . . . . 0.69 2.73 6.05 10.5 15.9 22.1 28.8 35.8 50.0 63.2 83.1 93.8 98.2 100 100
BiGauss 0.5″ . . . . . . . . . 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
BiGauss 1.0″ . . . . . . . . . 99.9 100 100 100 100 100 100 100 100 100 100 100 100 100 100
BiGauss 1.5″ . . . . . . . . . 98.6 100 100 100 100 100 100 100 100 100 100 100 100 100 100
BiGauss 2.0″ . . . . . . . . . 95.7 99.9 100 100 100 100 100 100 100 100 100 100 100 100 100
BiGauss 2.5″ . . . . . . . . . 89.9 99.5 100 100 100 100 100 100 100 100 100 100 100 100 100
Moffat 0.5″ . . . . . . . . . . . 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Moffat 1.0″ . . . . . . . . . . . 98.7 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Moffat 1.5″ . . . . . . . . . . . 96.1 99.5 100 100 100 100 100 100 100 100 100 100 100 100 100
Moffat 2.0″ . . . . . . . . . . . 90.9 98.7 99.7 100 100 100 100 100 100 100 100 100 100 100 100
Moffat 2.5″ . . . . . . . . . . . 83.0 97.7 99.3 99.8 100 100 100 100 100 100 100 100 100 100 100
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where the same θ0 is used in M7 and M2. We generate kernels
with FWHM ¼ 2θ0 ¼ 0:5, 1.0, 1.5, 2.0, and 2.5″.

4. KERNEL GENERATION

Generation of the convolution kernels was accomplished as
follows.

4.1. Input the PSF and Correct for Missing Data

When an input PSF image has missing data pixels (like the
current SPIRE PSFs), we iteratively estimate the missing values.

We start by replacing the missing data pixels by a value
of 0 in the original image. We compute a smoothed image
by convolving it with a (normalized) Gaussian kernel
∝ exp½$ðθ=2θ0Þ2&, with θ0 equal to 2 pixels. We replace the
original image missing data pixels by the value they have in

the convolved image (the original data are not altered). We iter-
ate the convolution and replacement steps 5 times. The resulting
image has all the missing data points replaced by a smooth
interpolation. This technique produces robust results, even if
we have missing data in a patch of a few contiguous pixels.

4.2. Resample the PSFs

Each PSF comes in a grid of different pixel size. We trans-
form each PSF into a grid of a common pixel size of 0.20″ using
the IDL procedure congrid, using the cubic convolution in-
terpolation method with a parameter of $0:5. The 0.20″ pixel
size captures all the details on the instrumental and Gaussian
PSFs. We also pad with 0 the resulting images into an odd-sized
square array if needed.

We use a grid of a common pixel size of 0.10″ to regenerate
the kernels from optical PSFs into IRAC cameras.

TABLE 3

RADII (") ENCLOSING SELECTED PERCENTS OF TOTAL POWER

Percent
(%)

Camera 25 50 65 80 90 95 98 99 99.5 99.9

IRAC 3.6 μm . . . . . . . 0.74 1.19 1.60 2.44 5.83 12.9 36.0 62.5 88.1 132
IRAC 4.5 μm . . . . . . . 0.75 1.24 1.73 2.68 7.06 14.7 37.9 64.5 90.8 134
IRAC 5.8 μm . . . . . . . 0.99 1.97 3.17 16.0 42.3 75.3 114 134 145 154
IRAC 8.0 μm . . . . . . . 1.16 2.21 3.32 6.70 18.9 39.5 82.9 114 134 152
MIPS 24 μm . . . . . . . . 2.73 4.93 9.18 12.2 29.4 60.4 130 225 368 738
MIPS 70 μm . . . . . . . . 8.02 14.4 25.5 35.6 80.2 158 318 461 628 894
MIPS 160 μm . . . . . . . 16.3 29.0 52.8 71.9 155 287 518 679 802 950
PACS 70 μm . . . . . . . . 2.41 4.23 6.47 12.5 37.5 85.3 165 250 378 712
PACS 100 μm . . . . . . . 2.83 4.87 7.50 14.1 43.5 105 227 351 477 711
PACS 160 μm . . . . . . . 4.50 7.66 11.3 20.8 53.3 133 294 417 524 712
SPIRE 250 μm . . . . . . 6.39 10.2 13.1 20.8 36.6 66.1 138 205 382 488
SPIRE 350 μm . . . . . . 8.49 13.4 17.0 23.7 43.9 75.0 122 192 397 499
SPIRE 500 μm . . . . . . 12.4 19.5 24.6 33.5 60.3 85.9 137 198 411 511
GALEX FUV . . . . . . . . 1.59 2.49 3.17 4.27 7.05 19.0 38.3 50.3 59.7 75.1
GALEX NUV . . . . . . . . 1.82 2.90 3.71 5.08 9.34 20.9 33.9 39.6 43.4 58.7
WISE 3.35 μm . . . . . . 2.03 3.26 4.17 5.67 8.36 12.5 17.2 19.1 20.2 21.4
WISE 4.60 μm . . . . . . 2.29 3.69 4.75 6.36 9.00 13.0 17.2 19.1 20.2 21.4
WISE 11.56 μm . . . . . 3.02 5.48 7.66 10.2 12.8 15.1 18.1 19.6 20.5 21.5
WISE 22.1 μm . . . . . . 5.01 8.87 14.6 19.1 22.3 25.4 31.2 35.1 38.5 42.1
Gauss 12″ . . . . . . . . . . . 3.86 6.00 7.38 9.14 10.9 12.5 14.2 15.4 16.5 18.5
Gauss 20″ . . . . . . . . . . . 6.44 10.00 12.3 15.2 18.2 20.8 23.7 25.7 27.5 30.9
Gauss 23″ . . . . . . . . . . . 7.41 11.5 14.1 17.5 20.9 23.9 27.3 29.5 31.6 35.5
Gauss 28″ . . . . . . . . . . . 9.02 14.0 17.2 21.3 25.5 29.1 33.2 36.0 38.5 43.2
Gauss 40″ . . . . . . . . . . . 12.9 20.0 24.6 30.5 36.4 41.5 47.4 51.3 54.9 61.5
Gauss 50″ . . . . . . . . . . . 16.1 25.0 30.8 38.1 45.5 51.9 59.2 64.1 68.4 76.3
BiGauss 0.5″ . . . . . . . . 0.17 0.26 0.32 0.41 0.50 0.60 0.76 0.90 1.02 1.25
BiGauss 1.0″ . . . . . . . . 0.33 0.52 0.64 0.81 1.00 1.20 1.53 1.79 2.04 2.50
BiGauss 1.5″ . . . . . . . . 0.50 0.78 0.97 1.22 1.50 1.80 2.29 2.69 3.05 3.71
BiGauss 2.0″ . . . . . . . . 0.66 1.04 1.29 1.62 2.00 2.40 3.04 3.57 4.04 4.86
BiGauss 2.5″ . . . . . . . . 0.83 1.30 1.61 2.03 2.50 3.00 3.79 4.44 5.01 5.96
Moffat 0.5″ . . . . . . . . . . 0.18 0.29 0.36 0.47 0.60 0.76 1.07 1.39 1.72 2.26
Moffat 1.0″ . . . . . . . . . . 0.36 0.57 0.72 0.94 1.21 1.53 2.14 2.77 3.43 4.50
Moffat 1.5″ . . . . . . . . . . 0.54 0.86 1.08 1.41 1.81 2.29 3.19 4.12 5.09 6.70
Moffat 2.0″ . . . . . . . . . . 0.71 1.14 1.44 1.88 2.42 3.05 4.23 5.45 6.69 8.90
Moffat 2.5″ . . . . . . . . . . 0.89 1.43 1.81 2.34 3.02 3.80 5.27 6.74 8.29 11.1
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4.3. Center the PSFs

To determine the image center, we smooth the image with a
5 pixel radius circular kernel and locate the image maximum. In
some PSFs the maximum value is achieved over a (small) ring.
To avoid possible misidentification of the real image center, we
take the centroid of all the pixels that satisfy

max½Ψ& $Ψðx; yÞ
max½Ψ&

≤ 5 × 10$4: (17)

4.4. Circularize the PSFs

In order to make a rotationally symmetric PSF, we average
over 214 rotations of the image through angles βn ¼ n×
360°=214 for n ¼ 1; 2; 3;…; 214 ¼ 16; 384, producing a PSF
image that is invariant under rotations of any angle that is a
multiple of 360°=214 ¼ 0:022° (i.e., is as rotationally symmetric
as we can numerically expect).

Computing 214 rotations naively would be extremely time-
consuming, but the final result can in fact be computed perform-
ing only 14 rotations, as follows.

We start by rotating Ψ by an angle θ1 ¼ 360°=21 ¼ 180°,
producing an image R1, and computing their average
!R1 ¼ 1

2 × ½ΨþR1&. Clearly, !R1 is now invariant under rotations
of θ1 ¼ 360°=21 ¼ 180°.

We continue this procedure iteratively. We rotate R1 by an
angle θ2 ¼ 360°=22 ¼ 90°, producing an image R2, and set
!R2 ¼ 1

2 × ½ !R1 þ !R2&. !R2 is invariant under rotations of θ1 ¼
360°=21 ¼ 180° and θ2 ¼ 360°=22 ¼ 90°; i.e. it is invariant
under rotations of any angle that is a multiple of 360°=22 ¼ 90°.

We iterate this procedure 14 times; the last average calculated
image !R14 is the desired rotationally symmetric PSF.

We further set to 0 all the pixels that lie outside the largest
circle included in the square image, since those regions would
correspond to areas with partial image coverage. If there are pix-
els with (very small) negative values (due to the noise in the
original PSFs) we set them to 0.

In order to have a more stable algorithm, the previous
rotations are performed in reverse order (i.e., starting with the
smallest angles).

All the remaining steps in the kernel construction should pre-
serve the rotational symmetry in the images. A way of estimat-
ing the noise induced by some steps (e.g., computing Fourier
transform) is to compute the departure from rotational symme-
try in the resulting image. Circularizing helps to reduce numer-
ical noise and will be performed after every step that can
potentially decrease the image quality. When a circularization
is performed to a rotationally symmetric image, the asymmetry
parameter g of the resulting image is smaller than 0.0008 (i.e.,
the circularization procedure itself induces very small depar-
tures from rotational symmetry).

4.5. Resize the PSFs

We trim (or pad with 0) all the PSFs into a common grid, to
be able to compute all the convolution kernels using only one
Fourier transform per PSF. We choose a grid size that is large
enough to contain most of the power in each PSF. We also op-
timize its size to make the FFT algorithm as efficient as possible
(minimal sum of prime factors). The adopted grid size is
729″ × 729″, giving an image size of 3645 × 3645 pixels.

4.6. Compute the Fourier Transform of the PSF FTðΨÞ

We use an efficient FFT algorithm. Since the PSFs are invari-
ant under reflections, ~x↔$~x, their Fourier transform should
be real. We impose this real condition to reduce the numerical
noise introduced by the double-precision FFT algorithm.

4.7. Circularize the FTðΨÞ

Using the procedure as before, we circularize the FTðΨÞ. In
principle, they should already be rotationally symmetric, but
numerical noise in the FFT algorithm makes them slightly non-
rotationally symmetric.

4.8. Filter the FTðΨÞ

We filter the highest frequencies in each FTðΨÞ. We use a
filter ϕ of the form

ϕðkÞ ¼

8
>><

>>:

1 for k ≤ kα

exp
#
$
!
1:8249 × k$kα

kβ$kα

"
4
$

for kα ≤ k ≤ kβ

0 for kβ ≤ k

;

(18)

where we set kα ¼ 0:9 × kβ . The factor 1.8249 is chosen so
that ϕð0:5 × ðkβ þ kαÞÞ ¼ 0:5. For each camera we choose
kβ ¼ 4 × ð2π=FWHMÞ. We tested several filter functions and
found that the particular form given by equation (19) provided
the best results. Each PSF has structure at spatial wavelengths
comparable with the FWHM, so the Fourier components with
frequencies much higher than this cannot be important. The
Fourier components removed by this filter were mainly intro-
duced by the original image resizing algorithm. In the following
discussion, we let FTϕðΨÞ ¼ ϕ × FTðΨÞ.

4.9. Invert the FTðΨÞ

We evaluate 1=FTϕðΨÞ at the points where FTϕðΨÞ ≠ 0. We
set 1=FTϕðΨÞ ¼ 0 at the remaining points (which will be
filtered soon).

4.10. Compute the FT of the Filtered Kernel

We compute the FT of the filtered kernel using the filter fA
from equation (11):
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FTðKfA ⇒ BgÞ ¼ FTϕðΨBÞ ×
fA

FTϕðΨAÞ
(19)

for all the appropriate combinations ðA;BÞ.

4.11. Compute the Kernels

We compute the inverse Fourier transform to the previously
calculated FTðKÞ. We again impose the condition that K must
be real.

4.12. Circularize the Kernels

Using the procedure as before, we circularize the kernels.
Again, they should already be rotationally symmetric. Numer-
ical noise in the inverse FFT algorithm makes them slightly
asymmetric, but this is easily corrected.

4.13. Resample the Kernels

All the computed kernels are given in a grid of a common
pixel size of 0.20″, but will be needed in grids of different pixel
sizes. Again, we resample the kernels using the IDL procedure
congrid, using the cubic convolution interpolation method
with a parameter of $0:5.

4.14. Final Trim of the Kernels

We trim each kernel to a smaller size (to speed up further
convolution) such that it contains 99.9% of the total kernel en-
ergy. Moreover, we use a square grid with an odd number of
pixels so that the kernel peaks in a single central pixel.

4.15. Circularize the Final Kernels

We finish the kernels by circularizing them again, to remove
the small noise introduced in the resampling process. All pre-
vious calculations were done in double precision to reduce
numerical noise.

5. KERNEL PERFORMANCE

For each generated kernel, we compute ΨA⋆KfA ⇒ Bg,
the convolution of ΨA and KfA ⇒ Bg, and compare it with
ΨB.

12 For a perfect kernel, both quantities should coincide at
all radii.

Figure 3 shows the analysis of KfM24 ⇒ S250g.13 This
kernel shows good behavior: it transforms from a camera with
FWHMM24 ¼ 6:5″ into a camera with FWHMS250 ¼ 18:2″. This
kernel essentially spreads the energy of the core of MIPS 24 μm
into a larger area. The filter fM24 has no effect on the construc-
tion of this kernel, because FTðΨBÞ≈ 0 for k > 0:7 × kH;A.

The left panel of Figure 3 compares the integrated power of
the PSFs. It includes ΨM24 (dot-dashed line), ΨS250 (solid line),
and ΨM24⋆KfM24 ⇒ S250g (dashed line). For an ideal kernel
the solid line and the dashed line should coincide. The depar-
tures in this case are very small.

FIG. 3.—Performance of the filtered kernelKfM24 ⇒ S250g.W$ is the integral of the negative values of the kernel, andD is the integral of the absolute value of the
difference between the target PSF and the PSF reproduced by the kernel (see eq. [20]). See the electronic edition of the PASP for a color version of this figure.

12 It can be easily shown that the radial profile of ðΨA⋆KfA ⇒ BgÞ is the
same whether ΨA is rotationally symmetric or not, so for simplicity, we use the
circularized version of ΨA in the comparison.

13 In our PSF and kernel notations, we will abbreviate IRAC, MIPS, PACS,
SPIRE, GALEX, and WISE as I, M, P, S, GAL, and W, respectively, and will
omit the μm symbol.
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The power per unit radius is proportional to θΨðθÞ, or θKðθÞ.
The right panel of Figure 3 shows θΨ and θK (normalized to the
maximum value). The lower part of the right panel includes four
traces: θ ×ΨM24 (dot-dashed line), θ ×ΨS250 (solid line), θ×
ðΨM24⋆KfM24 ⇒ S250gÞ (dashed line) and θ ×KfM24 ⇒
S250g (dotted line) for visualization of the kernel behavior.
For an ideal kernel the solid line and the dashed line should
coincide. The upper part of the right panel is a plot of the dif-
ference between θ ×ΨS250 and θ × ðΨM24⋆KfM24 ⇒ S250gÞ.
For an ideal kernel this graph should be 0. For this example
(KfM24 ⇒ S250g), the ΨM24⋆KfM24 ⇒ S250g reproduces
the SPIRE 250 μm PSF to within 0:01 ×ΨS250ð0Þ.

In Figures 4 and 5 we analyze the kernelsKfM70 ⇒ S250g
and KfS250 ⇒ M70g. Their construction is more challenging
since both cameras have similar FWHM: FWHMM70 ¼ 18:7″
and FWHMS250 ¼ 18:2″. These kernels have to redistribute the
energy within the core and Airy rings of the PSFs. The plotted
quantities are similar to those in the right panel of Figure 3 for
KfM24 ⇒ S250g. In this case, the kernels still perform well,
but they have large areas with negative values.

One measure of kernel performance is its accuracy in
redistribution of PSF power. We define

D ¼
ZZ

jΨB $KfA ⇒ Bg⋆ΨAjdxdy: (20)

A kernel with perfect performance will have D ¼ 0, and nor-
malization of the PSFs requires D ≤ 2. D measures how much
flux has not been redistributed correctly. Good kernels have
small D values: DðKfM24 ⇒ S250gÞ ¼ 0:011. In Table 4
we give D for the kernels constructed.

A second quantitative measure of kernel performance is
obtained by studying its negative values. We define

W( ¼ 1

2

ZZ
ðjKfA ⇒ Bgj(KfA ⇒ BgÞdxdy: (21)

Flux conservation requires that Wþ ¼ 1þW$. In general,
kernels will have W$ > 0. Well-behaved kernels have small
W$ values: W$ðKfM24 ⇒ SP250gÞ ¼ 0:07. The integral of
jKfA ⇒ Bgj is ½1þ 2W$&, so a kernel with a large value of
W$ could potentially amplify image artifacts. Additionally, a
kernel with large W$ can generate areas of negative flux near
point sources if nonlinearities are present or if the background
levels were subtracted incorrectly. Table 5 lists the W$ values
for the kernels constructed. The values in Table 5 were com-
puted numerically. Due to finite grid resolution the numerical
values may be off by a few percent in some cases. This can be
seen from the W$ values computed for the self-kernels. The
self-kernels are simply the Fourier transform of the filter fA,
and W$ should therefore be the same (1.15) in all cases. How-
ever, in Table 5 the W$ for the smallest PSFs are larger than
1.15 by as much as 0.03 (e.g., 1.18 for PACS 70 μm).

Essentially, there are two sources of W$: oscillations due to
the filter fA and the need to remove energy from some region to
relocate to another region (when the target ΨB is narrower than
ΨA or has less energy in some annuli).

The kernels between cameras with similar FWHM also have
oscillations. Using a softer filter fA would reduce the oscillatory

FIG. 4.—Performance of the kernel KfM70 ⇒ S250g. Because of the large
value W$ ¼ 2:14, convolution MIPS70 μm ⇒ SPIRE250 μm is not recom-
mended. See the electronic edition of the PASP for a color version of this figure.

FIG. 5.—Performance of the kernel KfS250 ⇒ M70g. With W$ ¼ 0:61,
this kernel is safe to use.ΨS250⋆KfS250 ⇒ M70g deviates fromΨM70 less than
2%. See the electronic edition of the PASP for a color version of this figure.
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behavior, giving smaller values of W$, but would also produce
worse matched PSFs (larger values ofD). The particular form of
filter fA used in the present work is a good compromise
between having good PSF matching and moderate oscillatory
behavior.

In Figure 6 we analyze a kernel of particular interest:
KfM160 ⇒ S500g. Despite both cameras having similar
FWHM (FWHMM160=FWHMS500 ¼ 1:07), their extended
wings are very different. The kernel KfM160 ⇒ S500g is par-
ticularly badly behaved, with large negative excursions, having
W$ ¼ 2:81 and D ¼ 0:17. In a convolution of MIPS 160 μm
images of NGC 6946, some bright point sources generated re-
gions with negative flux around them. We do not recommend
using the kernel KfM160 ⇒ S500g; if MIPS 160 μm and
SPIRE 500 μm images need to be combined, we recommend

using the PSF of MIPS 160 μm ( KfS500 ⇒ M160g has
W$ ≈ 0:47 and D≈ 0:042) or some Gaussian PSF compatible
with MIPS 160 μm, such as a Gaussian with FWHM ¼ 64″
(see § 6).

Finally, in Figure 7 we analyze the kernelKfM70 ⇒ M70g.
This kernel is essentially FTðfM70Þ, and it illustrates the effect of
all the kernel construction steps. All the kernels of the form K
fA ⇒ Ag are scaled versions ofKfM70 ⇒ M70g, aside from
small differences due to finite grids. All of the KfA ⇒ Ag
kernels have W$ ≈ 1:15 and D≈ 0:06.

Even though kernels KfA ⇒ Ag have W$ ¼ 1:15 and
Wþ ¼ 2:15, they do not amplify the noise that arises from as-
tronomical sources. The image of an astronomical point source
will be ΨA. When we convolve the camera with a kernel of the
form KfA ⇒ Ag, the image of a point source will still be very
close toΨA, sinceDðKfA ⇒ AgÞ ∼ 0:06. This implies that the

FIG. 6.—Performance of the kernel KfM160 ⇒ S500g. With W$ ¼ 2:81,
convolution of MIPS 160 μm images into SPIRE 500 μm resolution is risky
and not recommended. The convolved PSF differs from the target PSF by
up to 6%. See the electronic edition of the PASP for a color version of this figure.

FIG. 7.—Performance of the self-kernel KfM70 ⇒ M70g. All of the self-
kernels have W$ ¼ 1:16 and reproduce the original PSF to within 3%. See
the electronic edition of the PASP for a color version of this figure.

TABLE 6

GAUSSIAN FWHM SUITABLE FOR MIPS, PACS, AND SPIRE CAMERAS

Aggressive Gaussian with W$ ≈ 1:0 Moderate Gaussian with W$ ≈ 0:5 Very safe Gaussian with W$ ≈ 0:3

Camera
Actual FWHM

(″)
FWHM

(″) W$

FWHM
(″) W$

FWHM
(″) W$

MIPS 24 μm . . . . . . . 6.5 8.0 1.00 11.0 0.49 13.0 0.30
MIPS 70 μm . . . . . . . 18.7 22.0 1.01 30.0 0.51 37.0 0.30
MIPS 160 μm . . . . . . 38.8 46.0 1.01 64.0 0.50 76.0 0.30
PACS 70 μm . . . . . . . 5.8 6.5 0.84 8.0 0.48 10.5 0.31
PACS 100 μm . . . . . 7.1 7.5 1.10 9.0 0.52 12.5 0.31
PACS 160 μm . . . . . 11.2 12.0 1.05 14 0.50 18.0 0.33
SPIRE 250 μm . . . . . 18.2 19.0 1.05 21.0 0.44 22.0 0.30
SPIRE 350 μm . . . . . 25.0 26.0 0.98 28.0 0.50 30.0 0.27
SPIRE 500 μm . . . . . 36.4 38.0 0.96 41.0 0.48 43.0 0.30
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FIG. 8.—Performance of the kernelsKfP160 ⇒ Gaussiang (left) and their FT (right). We show the kernel Fourier transform FTðKÞ (eq. [19]) and also the unfiltered
kernel Fourier transform [¼FTϕðΨBÞ=FTϕðΨAÞ]. The filter fP160 has little impact on KfP160 ⇒ Gaussian18″g (W$ ¼ 0:33), moderate effect on KfP160 ⇒
Gaussian14″g (W$ ¼ 0:50), and large effect on KfP160 ⇒ Gaussian12″g (W$ ¼ 1:05). See the electronic edition of the PASP for a color version of this figure.
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noise coming from a field of unresolved astronomical back-
ground sources will not change significantly when we convolve
the image with KfA ⇒ Ag. To verify this reasoning, we
generate an image S having independent Gaussian noise in each
pixel in a very fine (0.2″) grid. We convolve S withΨM70 to have
a simulated observed image of the noise: O ¼ S⋆ΨM70. We
further convolve O with KfM70 ⇒ M70g: C ¼ O⋆
KfM70 ⇒ M70g. We found that j1$ 〈C2〉=〈O2〉j≈ 10$3.
While uncorrelated noise is not amplified by a self-kernel
KfA ⇒ Ag, imprecise characterization of the PSFs and

camera artifacts can be amplified by kernels with large W$
values.

There is no single number that captures all of the character-
istics of a convolution kernel, but we find that W$ serves as a
good figure of merit. Based on experimentation with various
kernels, we regard kernels with W$ ≤ 0:3 to be very safe.
Kernels with W$ ≈ 0:5 also appear to be quite safe. A kernel
with W$ ≈ 1 is somewhat aggressive in moving power
around, but remember that self-kernels KfA ⇒ Ag also have
W$ ≈ 1:15. We consider kernels withW$ ≈ 1 to be reasonable

FIG. 9.—Spitzer and Herschel images of NGC 1097 convolved to a SPIRE 250 μm PSF. The SPIRE 250 μm camera was convolved with the kernel
KfS250 ⇒ S250g. The color bar has the same dynamic range ð104:9Þ for all images
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to use, with inspection of the before and after images recom-
mended in regions with large gradients or bright sources.
We recommend against using convolution kernels with
W$ > 1:2, as these are, in effect, attempts to deconvolve the
image to higher resolution, with attendant risks.

6. GAUSSIAN PSFS

Gaussian PSFs are commonly used in radio astronomy. It is
desirable for radio telescopes to have PSFs without extended
structure to avoid sidelobe contamination. The illumination
pattern of a single dish is often designed to return an approxi-
mately Gaussian PSF.14 A Gaussian PSF lacks extended wings;
the fraction of the power outside radius θ is expð$θ2=2σ2Þ. Be-
cause real instrumental PSFs do not fall off so rapidly, a con-
volution kernel K going from a real ΨA to a Gaussian ΨB with
similar FWHMmust “move” power from the wings ofΨA to the
core of ΨB.

For a given instrumental PSF ΨA, the optimal Gaussian PSF
ΨB will be such that the FWHMB will be close to FWHMA, with
only mild filtering by the function fA and withW$ not too large.

In order to determine an optimal Gaussian FWHM for a cam-
era A, we compute convolution kernels from A into Gaussian
PSFs with FWHM in a range of possible values. For each can-
didate FWHM, we evaluate W$. We provide three possible
FWHM. The first FWHM is obtained by requiring that
W$ ∼ 0:3, giving a conservative (very safe) kernel that does
not seek to move too much energy from the wings into the main
Gaussian core, at the cost of having a larger FWHM (i.e., lower
resolution). The second FWHM hasW$ ∼ 0:5, and we consider
it to be a good (moderate) Gaussian FWHM to use. The third
FWHM has W$ ∼ 1:0. Because this kernel is somewhat
“aggressive” in moving energy from the PSF wings into the
Gaussian core, it should be used with care, inspecting that
the convolved images do not have any induced artifact. Table 6
gives the FWHM for three such Gaussian target PSFs for the
MIPS, PACS, and SPIRE cameras.

As an example, Figure 8 shows the performance of the
kernels for the PACS 160 μm camera going into Gaussian

FIG. 10.—SPIRE 250 μm image of NGC 1097. Top left: Original SPIRE image. Top middle: Image convolved withKfS250 ⇒ S250g. Top right: image convolved
into an extremely aggressive convolution to a Gaussian PSF with FWHM ¼ 18″ (W$ ¼ 1:47). Bottom: Image convolved with suitable Gaussian PSFs. Bottom left:
(aggressive) FWHM ¼ 19″ (W$ ¼ 1:05). Bottom middle: (moderate) FWHM ¼ 21″ (W$ ¼ 0:44). Bottom right: (very safe) FWHM ¼ 22″ (W$ ¼ 0:30). All the
images have the same color bar.

14 Interferometric arrays have complicated sidelobe responses and would not
resemble Gaussian PSFs.
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PSFs with FWHM ¼ 12″ (aggressive, W$ ¼ 1:05 D ¼ 0:05),
14″ (moderate, W$ ¼ 0:50, D ¼ 0:02), and 18″ (very safe,
W$ ¼ 0:33, D ¼ 0:01). The left panels are the performance
analyses, similar to those of Figures 47. The right panels show
the kernel Fourier transform FTðKÞ (eq. [19]. In the right panel,
we include the unfiltered Fourier transform (¼FTϕðΨGaussÞ=
FTϕðΨP160Þ) for comparison (dotted line). We observe that
the filtering is only important in the Gaussian kernels with
(small) FWHM ¼ 12″ and 14″.

7. USAGE OF THE KERNELS

The kernels KfA ⇒ Bg computed here are given on a
0.20″ grid. Before performing an image convolution, the kernel
KfA ⇒ Bg should be resampled onto a grid with the same
pixel size as the original image IA. The resampled kernels
should be centered (to avoid shifts in the image) and normalized
so that ∬KfA ⇒ Bgðx; yÞdxdy ¼ 1 to ensure flux conserva-
tion. The flux in the image to be convolved should be in surface
brightness units. After convolving the image IA with the kernel
KfA ⇒ Bg, the resulting image will be expressed in the ori-
ginal image grid and original surface brightness units, but with
PSF ΨB.

Table 5 also summarizes the kernels available. For each cam-
era A we construct all the kernelsKfA ⇒ Bg with FWHMB ≥
FWHMA=1:35 (i.e., the kernels that degrade the resolution or
sharpen it up to 35%) plus the self-kernelsKA⇒A. Kernels with
FWHMA ≳ FWHMB (that have larger W$ values) tend to
perform poorly and should be used with care. We do not recom-
mend using any kernel with W$ ≳ 1:2.

As an example of the performance of the kernels applied to
real (noisy) images, in Figure 9 we show the result of convol-
ving images of the barred spiral galaxy NGC 1097 (after sub-
traction of a “tilted-plane” background from each image) into
the SPIRE 250 μm PSF. The PACS images have been reduced
using the Scanamorphos pipeline (Roussel 2011). Visual in-
spection of the images in Figure 9 shows them to be very similar
in morphology; the convolution does not appear to have intro-
duced any noticeable artifact.

Figure 10 shows the results of convolving the SPIRE 250 μm
image into different PSFs. The top row (left) shows the original15

image, (center) the image convolved with KfS250 ⇒ S250g,
and (right) the image convolvedwith a very aggressive kernel into
a Gaussian PSF with FWHM ¼ 18″ (W$ ¼ 1:47). The bottom
row shows the image convolved to the recommended Gaussian
PSFs: (left) FWHM ¼ 19″ (W$ ¼ 1:05), (center) FWHM ¼
21″ (W$ ¼ 0:44), and (right) FWHM ¼ 22″ (W$ ¼ 0:30).

As discussed in § 5, we recommend against using kernels with
W$ > 1:2. Visual inspection of the upper-right image in fact
shows artifacts where the kernel (with W$ ¼ 1:47) has moved
too much power out of some interarm pixels, which have been
brought down to unreasonably low intensities. In the convolutions
to the suitable Gaussian PSFs (bottom row in Fig. 10) energy is
moved from the interarm regions into the bright nucleus and spiral
arms, but the intensity levels in the interarm regions seem reason-
able. The power that is removed from the interarm regions was
presumably originally power from the arms that was transferred
by the wings of the SPIRE 250 μm PSF.

Using the kernels described in the current work, Aniano et al.
(2011, in preparation) studied resolved dust modeling for NGC
628 and NGC 6946, two galaxies in the KINGFISH galaxy
sample (Kennicutt et al. 2011, in preparation), using images
obtained with Spitzer and Herschel Space Observatory.

8. SUMMARY

We present the construction and analysis of convolution ker-
nels for transforming images into a common PSF. They allow
generation of a multiwavelength image cube with a common
PSF, preserving the colors of the regions imaged.

We generate and make available a library of convolution ker-
nels for the cameras of Spitzer, Herschel Space Observatory,
GALEX, WISE, ground-based telescopes, and Gaussian PSFs.
All the kernels are constructed with the best PSF characteriza-
tions available, approximated by rotationally symmetric func-
tions. Deviations of the actual PSF from circular symmetry
are characterized by an asymmetry parameter g, given in Table 1.
Table 5 summarizes the kernels available and their negative in-
tegral W$, a measure of their performance. We recommend
using only kernels with W$ ≲ 1:2. In Table 6 we give a set
of optimal Gaussian FWHM that are compatible with MIPS,
PACS, and SPIRE cameras.

All the kernels and their individual performance analyses, the
IDL routines to make new kernels, and IDL routines to use them
are publicly available.16

We thank Roc Cutri and Edward Wright for their help pro-
viding the Wide-field Infrared Survey Explorer point-spread
functions (PSFs); Markus Nielbock for his help providing
the Photocamera Array Camera and Spectrometer for Herschel
PSFs; and Richard Bamler, James Gunn, and Robert Lupton for
helpful suggestions. This research was supported in part by NSF
grant AST-1008570 and JPL grant 1373687.

15By “original” image we refer to the SPIRE 250 μm image delivered by the
HIPE pipeline, with subsequent subtraction of a tilted-plane background. This is
the original image that is convolved to produce the other images in Fig. 10.

16See http://www.astro.princeton.edu/~draine/Kernels.html. Kernels for addi-
tional cameras and updates will be included when new PSF characterizations
become available.
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