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ABSTRACT

We have carried out an extensive set of two-dimensional, axisymmetric, purely-hydrodynamic calculations of
rotational stellar core collapse with a realistic, finite-temperature nuclear equation of state and realistic massive
star progenitor models. For each of the total number of 72 different simulations we performed, the gravitational
wave signature was extracted via the quadrupole formula in the slow-motion, weak-field approximation. We
investigate the consequences of variation in the initial ratio of rotational kinetic energy to gravitational potential
energy and in the initial degree of differential rotation. Furthermore, we include in our model suite progenitors
from recent evolutionary calculations that take into account the effects of rotation and magnetic torques. For
each model, we calculate gravitational radiation wave forms, characteristic wave strain spectra, energy spectra,
final rotational profiles, and total radiated energy. In addition, we compare our model signals with the anticipated
sensitivities of the 1st- and 2nd-generation LIGO detectors coming on line. We find that most of our models are
detectable by LIGO from anywhere in the Milky Way.

Subject headings: supernovae: gravitational radiation, stars: rotation

1. INTRODUCTION

The classical constraints on core-collapse supernova theory
are nucleosynthetic yields, residue neutron star or black hole
mass, explosion energy, neutrino signal, pulsar fields, and pul-
sar kicks. Any viable theory of supernova explosions must in
the long run reproduce these data. However, we are still a long
way from this situation and much work remains before the roles
of neutrinos, multi-dimensional hydrodynamics, rotation, con-
vection, and magnetic fields in the mechanism of core-collapse
supernovae are fully elucidated (Bethe and Wilson 1985; Her-
ant et al. 1994; Burrows, Hayes, and Fryxell 1995; Fryer et
al. 1999; Fryer and Heger 2000; Rampp and Janka 2000,2002;
Liebendörfer et al. 2001a,b; Buras et al. 2003; Thompson, Bur-
rows, and Pinto 2003; Akiyama et al. 2003).

There is, however, another quite dramatic potential constraint
on core-collapse supernovae: their gravitational radiation sig-
natures. Massive stars (ZAMS mass >

∼ 8 M� ) develop degen-
erate cores in the final stages of nuclear burning and achieve the
Chandrasekhar mass. Gravitational collapse ensues, leading to
dynamical compression to nuclear densities, subsequent core
bounce, and hydrodynamical shock wave generation. These
phenomena involve large masses at high velocities (∼ c/4) and

great accelerations. Such dynamics, if only slightly aspherical,
will lead to copious gravitational wave emission and, arguably,
to one of the most distinctive features of core-collapse super-
novae. The gravitational waveforms and associated spectra bear
the direct stamp of the hydrodynamics and rotation of the core
and speak volumes about internal supernova evolution. Fur-
thermore, they provide data that complement (temporally and
spectrally) those from the neutrino pulse (which also originates
from the core), enhancing the diagnostic potential of each.

As the current generation of gravitational wave detectors
comes on line, gravitational wave astronomy might soon be
able to shed light on the supernova phenomenon. Gravitational
waves couple so weakly to matter that they propagate almost
undistorted from their source in the ultra-dense collapsing and
rebounding stellar core to detectors like LIGO (Gustafson et al.
1999), VIRGO (Punturo 2003), GEO600 (Willke et al. 2002),
and TAMA (Ando et al. 2001) on Earth. No other physical sig-
nal, apart from neutrinos, can give comparable “live” dynami-
cal data of a star’s death. However, there is a major caveat: in
order for gravitational waves to be emitted the collapsing core
must have a sizable and rapidly varying asphericity, since grav-
itational radiation is of quadrupole nature (Misner, Thorne, and
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Wheeler 1973).

Fortunately, as astronomical observations have shown, most
stars rotate (Fukuda 1982; Heger et al. 2003). Rotation can
result in large asphericity at and around bounce and, hence,
provides hope that the emission of gravitational radiation from
stellar core collapse can be significant. Furthermore, Rayleigh-
Taylor-like convection in the protoneutron star, the aspherical
emission of neutrinos and post-bounce triaxial rotational insta-
bilities are also potential sources of gravitational radiation. To-
gether these phenomena, with their characteristic spectral and
temporal signatures, make core-collapse supernovae promising
and interesting generators of gravitational radiation.

Early studies of gravitational wave emission from stellar
core collapse used either spherically symmetric models and ap-
plied perturbation techniques to analyze the gravitational ra-
diation (Turner and Wagoner 1979; Seidel and Moore 1987;
Seidel, Myra, and Moore 1987) or applied semi-analytic meth-
ods to the aspherical Newtonian collapse of homogeneous and
inhomogeneous, uniformly-rotating, and degenerate ellipsoids
(Shapiro 1977; Saenz and Shapiro 1978,1979,1981; Moncrief
1979; Ipser and Managan 1984). Subsequent studies were
based on 2-D Newtonian hydrodynamic core-collapse calcu-
lations with rotation and various simple treatments of the mi-
crophysics. Müller and Hillebrandt (1981) and Müller (1982)
performed a limited set of simulations with a finite-temperature
equation of state (EOS) using initial models from stellar evolu-
tion calculations, and did not treat the neutrino physics. Finn
and Evans (1990), Bonazzola and Marck (1993), Yamada and
Sato (1995) and Zwerger and Müller (1997) studied the grav-
itational wave signature from collapsing n = 3 polytropes with
a simplified equation of state, consisting of a polytropic and a
thermal part. In all of the above studies, rotation was imposed
upon spherically symmetric initial models by an artificial rota-
tion law. Zwerger and Müller (1997) performed the most com-
prehensive sweep through values of the rotation parameter β,
defined by

β =
Erot

|Egrav|
, (1)

where Erot is the total rotational kinetic energy and Egrav is the
total gravitational energy. They also varied the degree of initial
differential rotation and used self-consistent initial models in
rotational equilibrium, calculated using the method of Eriguchi
and Müller (1985). Dimmelmeier et al. (2001a,b) extended
the aforementioned study to general-relativistic gravity in the
conformally-flat limit.

Mönchmeyer et al. (1991) accounted for electron capture
on protons and employed an approximate neutrino leakage
scheme. Their limited set of detailed 2-D calculations used
rotationally non-equilibrium initial models from stellar evolu-
tion calculations and a finite-temperature EOS (Hillebrandt and
Wolff 1985). Using a smooth particle hydrodynamics code with
a neutrino diffusion scheme and the Lattimer-Swesty EOS (Lat-
timer and Swesty 1991), Fryer and Heger (2000) performed 2-D
rotating collapse simulations. Fryer, Holz, and Hughes (2002)
followed this up by computing the corresponding gravitational
wave signature.

In a recent Newtonian study, Kotake, Yamada, and Sato
(2003) used an EOS based on the relativistic mean field theory
(Shen et al. 1998). They took electron capture into account and
made use of a leakage scheme for simplified neutrino transport.

They performed a limited set of calculations that employed re-
alistic 15 M� ZAMS progenitor models of Woosley and Weaver
(1995) onto which they imposed rotation by rotation laws sim-
ilar to those of Mönchmeyer et al. (1991).

While most of the above studies were primarily concerned
with the gravitational wave signatures due to core bounce itself,
others have highlighted the gravitational wave signatures from
later stages of supernova evolution and due to other phenom-
ena. Epstein (1978), Burrows and Hayes (1996), and Müller
and Janka (1997) explored the gravitational wave signature of
anisotropic neutrino emission. Burrows and Hayes (1996) and
Müller and Janka (1997) studied aspherical convective motion
behind the shock and in the protoneutron star. Rampp, Müller,
and Ruffert (1998), Brown (2001), Centrella et al. (2001), and
Shibata, Karino and Eriguchi (2002,2003) investigated triaxial
instabilities in the quickly spinning neutron star remnant (New
2003).

In this paper, we present the results from our 2-D axisymmet-
ric purely hydrodynamical simulations of rotating stellar core
collapse, performed with the code VULCAN/2D (Livne 1993).
For this study, we used the 11, 15 and 20 M� progenitor mod-
els of Woosley and Weaver (1995). We imposed rotation using
the same prescriptions employed by Zwerger and Müller (1997)
and Dimmelmeier, Font, and Müller (2002b). In addition, we
used the recent rotating progenitor models of Heger, Langer,
and Woosley (2000) and Heger et al. (2003). The latter are 1-
D calculations that employ a prescription for angular momen-
tum transport and mass loss in the evolving massive star, but
do not include the back-reaction of centrifugal effects on the
dynamics after carbon burning. All of our calculations, except
for the comparison studies to previous work, have made use
of the Lattimer-Swesty EOS in tabular form (Thompson, Bur-
rows, and Pinto 2003), as well as realistic progenitor structures.
We have not included any approximate treatment of electron
capture and neutrino transport since these schemes (e.g., the
leakage scheme used in Kotake, Yamada, and Sato 2003) only
crudely approximate full neutrino transport.

In §2, we review the progenitor model suite we have relied
upon. Section 3 summarizes the initial model rotational law
that we used to set models into rotation. In §4, we provide an
overview of our implementation of VULCAN/2D and discuss
the two different equations of state, realistic and polytropic, that
we have used. Section 4.3 deals with our method for the extrac-
tion of the gravitational wave signature from the hydrodynamic
data. Section 5 covers our calculations with polytropic mod-
els and polytropic equations of state. These are provided and
compared with previous work in order to validate the methods
and codes we have employed. In §6, our results with more
realistic progenitors and a more detailed equation of state are
presented and compared with those of previous studies. We
discuss the hydrodynamics of rotating collapse, the generation
of vortices, the damping effect of a stalled shock wave, and
the excitation of l = 2 pulsations, as well as the signatures of
these hydrodynamic features in the gravitational wave pulse.
Importantly, we provide model gravitational wave spectra and
estimate the detectability of these signals in the LIGO detector
(Gustafson et al. 1999). We verify the two major types of wave
forms and post-bounce behaviors originally identified by Zw-
erger and Müller (1997) that depend upon the initial rotational
energy and the degree of differential rotation. Moreover, we de-
rive the progenitor model dependence of the gravitiational wave
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signatures. In §7, we discuss the angular velocity profiles asso-
ciated with a subset of the models we have studied, identifying
in particular the maximum spin rate and the magnitude and po-
sition of the maximum rotational shear that result from collapse.
Section 8 provides both a context in which to discuss the detec-
tion of the gravitational wave signatures of collapse and esti-
mates of their detectability in the galaxy. In §9, we summarize
our conclusions concerning the generic features of the gravi-
tational wave signature of core-collapse supernovae. A major
goal of our study is the illumination of the importance of using
realistic progenitors and equations of state when deriving and
analyzing the gravitational wave forms and spectra from super-
nova explosions. Signal templates derived using polytropes and
a polytropic EOS can deviate significantly from those obtained
using more realistic assumptions and starting points. A further
goal of our study is the derivation of the systematic variation
with the degree of initial rotation of a supernova’s gravitational
wave form and its spectrum.

2. PROGENITOR MODELS

Since this study is concerned with the gravitational wave sig-
nal originating from the highly dynamical aspherical bulk mass
motions at core collapse and bounce and does not aim at the so-
lution of the full supernova problem, it is sensible to restrict
our simulations to the modeling of the central rotating iron
core whose hydrodynamical collapse and bounce is believed
to yield the dominant contribution to the gravitational wave en-
ergy emitted during the supernova phenomenon. A simple ap-
proach for constructing progenitor data used in many previous
studies is to approximate the iron core as an ultra-relativistic,
electron-degenerate Chandrasekhar core with a central density
of 1010 g cm−3 and an electron number fraction (Ye) of 0.5. The
equation of state for such a core is then polytropic with a Γ

of 4/3 (n = 3) and a polytropic constant K given by eq. (10)
(Shapiro and Teukolsky 1983). We have made use of this ap-
proximation in conjunction with the hybrid equation of state
described in §4.1 to show that our numerical model yields re-
sults that match those of Zwerger and Müller (1997).

However, nature is not this simple and detailed stellar evo-
lution calculations (Woosley, Heger, and Weaver 2002) have
shown that the iron cores of evolved massive stars are not per-
fect polytropes. Rather, they have a complicated thermody-
namic and compositional structure. Fig. 1 depicts the differ-
ences between the density profiles of progenitor models from
Woosley and Weaver (1995) and the density profile of the poly-
trope used by Zwerger and Müller (1997). In Fig. 2, we
show the profiles of the electron fraction (Ye) of the Woosley
and Weaver (1995) progenitors, and contrast them with the flat
Ye = 0.5 profile of the Zwerger and Müller polytrope.

For our study we have used 11, 15, and 20 M� presuper-
nova models from Woosley and Weaver (1995). As Figure 1
demonstrates, the pre-collapse core density and Ye profiles of
the Woosley and Weaver (1995) 25 and 20 M� models are very
similar. The temperature profiles also match. Thus, one would
expect very similar collapse dynamics and gravitational wave
signatures. A test calculation with the 25 M� progenitor bears
out this expectation (Table 5).

3. ROTATION

Rotation is a key agent in the development of asphericity dur-
ing core collapse and, hence, for the emission of gravitational
radiation. Depending on the initial rotation rate and the angu-
lar momentum distribution, conservation of angular momentum
may lead to very rapidly rotating compact remnants, which are
unstable on secular, or even dynamical, timescales. In the ap-
proximation of MacLaurin spheroids (incompressible, uniform
density, rigidly rotating equilibrium configurations), triaxial in-
stabilities may grow if β ≥ 0.14 and β ≥ 0.27 for secular and
dynamical instabilities, respectively (Tassoul 1978). Recently,
Centrella et al. (2001) have shown that models with off-center
density maxima (i.e. with a toroidal structure) can already be-
come dynamically unstable at values of β ≥ 0.14. However, the
critical βs required for either secular or dynamical instability
were derived in the past using either constant-density models or
very compact cores whose deviation from uniform density was
modest. Recently, Shibata, Karino and Eriguchi (2003) have
shown that rotating polytropes with centrally located density
maxima can become dynamically unstable even for β on the
order of 1% if they are strongly differentially rotating. In this
paper, we calculate the total βs for an entire realistic iron core
with a large dynamic range of densities (∼eight orders of mag-
nitude). This is not the β for only the inner, more uniform, core.
The outer regions of realistic iron cores do not move much dur-
ing the crucial dynamical phases of the inner core important for
the estimation of the gravitational wave signature. Importantly,
the actual critical βs necessary for triaxial deformation have yet
to be determined for such structures. To our knowledge, all in-
vestigations to date of the growth of triaxial instabilities have
lacked either realistic initial models or sophisticated equations
of state. These limitations should be kept in mind when assess-
ing previous work.

The centrifugal forces connected to rotation do not only
cause asphericity, but slow down the core collapse and may,
provided the configuration has the right angular momentum
distribution, stop the collapse before nuclear matter density is
reached (“subnuclear bounce”). A critical condition for the sta-
bilizing effect of rotation on (pseudo-) radial modes of stars in
the Newtonian regime is

Γ > Γcrit =
2
3

(2 − 5β)
(1 − 2β)

, (2)

where Γ is the effective adiabatic index that describes the
change of pressure along a collapse trajectory of a given mass
element:

Γ =
∂ lnP
∂ lnρ

∣

∣

∣

∣

M

(3)

(Ledoux 1945; Tohline 1984; Mönchmeyer et al. 1991). Hence,
for a given progenitor structure and equation of state with an ef-
fective adiabatic index Γ, there is a critical value of the rotation
parameter above which the configuration is stable against col-
lapse:

β > βcrit =
1
2

(4 − 3Γ)
(5 − 3Γ)

. (4)

It is known that massive stars on the main sequence ro-
tate rapidly, with typical equatorial rotational velocities of
∼200 km s−1 (Fukuda 1982). This is a significant fraction
of their breakup velocity. Unfortunately, since observations
of the stellar surface tell us little about the angular momen-
tum of the stellar interior (or its evolution), one has to rely
on parameter dependent, semi-phenomenological prescriptions
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to follow these quantities numerically. Heger, Langer, and
Woosley (2000) have built upon the one-dimensional calcula-
tions of Woosley and Weaver (1995) and incorporate a prescrip-
tion for angular momentum transport. We include in our pro-
genitor model suite their “rotating” 15 and 20 M� progenitor
models. Heger et al. (2003) have extended the work of Heger
et al. (2002) by the inclusion of the effects of magnetic torques
on rotational evolution and provide corresponding cores for 15,
20 and 25 M� models. Table 1 lists all the presupernova models
we have employed in this study. Since the gravitational wave
signature is sensitive to the distribution of angular momentum
throughout the iron core, gravitational waves may eventually be
used to learn about the interior rotational structure of massive
stars.

We have used two different approaches to include rotation in
our calculations. First, we follow Zwerger and Müller (1997) in
forcing the one-dimensional initial models to rotate with con-
stant angular velocity on cylinders on our axisymmetric grid
according to the rotation law

Ω(r) = Ω0

[

1 +
(

r
A

)2]−1

, (5)

where Ω(r) is the angular velocity, r is the distance from the
rotation axis, and Ω0 and A are free parameters that determine
the rotational speed/energy of the model and the distribution
of angular momentum. Large values of A lead to very rigid
rotation, small values to strongly differential rotation. Our pa-
rameter studies are performed over a range of βi and A, where
βi is the initial β of the model. The choices for βi and A were
based upon current knowledge of iron core rotation, but exclude
strongly differential rotation (Heger et al. 2003; Heger, Langer,
and Woosley 2000). Note that there has been some confusion
in the literature concerning the meaning of r in eq. 5. Mönch-
meyer et al. (1991) and Kotake, Yamada, and Sato (2003) in-
terpreted r as radial distance from the origin, whereas Zwerger
and Müller (1997) and Dimmelmeier, Font, and Müller (2002b)
understood it as distance from the rotation axis. We follow the
latter definition of r as it accords with the Poincaré-Wavre theo-
rem which predicts that the specific angular momentum is con-
stant on cylinders for degenerate rotating objects (for a review
see Tassoul 1978).

We name our runs according to the following conven-
tion: [initial model name]A[in km]βi[in %]. For example,
s11A1000β0.3 is a Woosley and Weaver (1995) 11 M� model
with A=1000 km and an initial βi of 0.3%.

In contrast to Zwerger and Müller (1997), we do not use
rotational equilibrium configurations, since these can only be
found consistently for models with constant entropy and Ye

(Hachisu 1986a). For direct comparisons with Zwerger and
Müller (1997) we used models with small initial rotation rates
(βi) in which the initial deformation due to rotation would be
negligible. Zwerger and Müller (1997) found a maximum dif-
ference of 10% in the central densities at bounce for a strongly
rotating model evolved with and one evolved without an ini-
tial rotational equilibrium configuration. Since the progenitor
models with βi

>
∼ 1% tend not to collapse (βi > βcrit , if noth-

ing artificial is done to alter their structure), we have limited
our study to models with βi ≤ 1%. Hence, we expect the error
that is introduced by the non-equilibrium rotational configura-
tion at the onset of collapse to be very small and, in the worst
case, to be on the order of a few percent. In addition to this, we

point out that Zwerger and Müller (1997) argue that the use of
non-equilibrium models is justified if the stellar core collapses
slowly enough to allow for the adjustment to the appropriate
angular density stratification for its rate of rotation. This is cer-
tainly the case for our models, which all collapse on a timescale
on the order of 100-500 milliseconds (ms).

Secondly, we have made use of the recent presupernova mod-
els of Heger, Langer, and Woosley (2000) and Heger et al.
(2003) that, though they are intrinsically one-dimensional, take
into account the effects of centrifugal forces on the stellar struc-
ture before carbon burning ends. Furthermore, redistribution of
angular momentum and chemical species were modeled using
a set of prescriptions and assumptions for mixing and trans-
port processes. In particular, all torques were assumed to lead
to rigid rotation on some physical timescale (Fryer and Heger
2000). The “magnetic” models of Heger et al. (2003) assume
a magnetic dynamo process that generates fields which inhibit
differential rotation and lead to slower core rotation at collapse.

In Fig. 3, the profiles for selected models of the initial angu-
lar velocity versus radius are shown. Note that the differences
due to different progenitor masses are negligible compared with
the order-of-magnitude differences introduced by the inclusion
of magnetic-field effects during stellar evolution. One should
be cautious, however, in accepting these results since research
on stellar evolution with rotation is still in its infancy.

4. NUMERICAL TECHNIQUES

4.1. Equations of State

For all our calculations involving realistic progenitor mod-
els we have made use of the equation of state of Lattimer
and Swesty (1991) (the LSEOS). It is based on the finite-
temperature liquid drop model of nuclei developed in Lattimer
et al. (1985). Our particular implementation is the one pre-
sented in Thompson, Burrows, and Pinto (2003) that uses a
three-dimensional table in temperature (T ), density (ρ), and
Ye. At each point in the table the specific internal energy, the
pressure (P), the entropy per baryon (s), and compositional in-
formation are stored. Using integer arithmetic to find nearest
neighbor points for a given set of ρ,T,Ye, the need for time-
consuming search algorithms has been eliminated. Given ρ,T
and Ye, the code performs three six-point bivariant interpola-
tions in the T − ρ planes nearest to and bracketing the given
Ye point. A quadratic interpolation is then executed between
Ye points to obtain the desired thermodynamic quantity. Since
our hydrodynamic routine updates specific internal energy, we
employ a Newton-Raphson/bisection scheme which iterates on
temperature at a fixed internal energy until the root is found to
within a part in 108.

The LSEOS extends down to only ∼ 5 × 106 g cm−3 and
its validity in this density regime is guaranteed only for fairly
high temperatures, where the assumption of nuclear statisti-
cal equilibrium (NSE) still holds. For calculations involving
lower densities, Thompson, Burrows, and Pinto (2003) have
coupled the LSEOS to the Helmholtz EOS (Timmes and Arnett
1999; Timmes and Swesty 2000), which contains electrons and
positrons at arbitrary degeneracy and relativity, photons, nuclei
and nucleons as non-relativistic ideal gases, and Coulomb cor-
rections.
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To facilitate the comparison of our results with those of Zw-
erger and Müller (1997) and Dimmelmeier, Font, and Müller
(2002b), we have implemented the “hybrid” equation of state
used in those studies of collapsing Γ = 4/3 (n = 3) polytropes
(Janka, Zwerger, and Mönchmeyer 1993). It consists of a poly-
tropic part Pp and a thermal contribution Pth

P = Pp + Pth . (6)
The thermal part accounts for the thermal pressure of the high-
entropy material heated by the bounce shock and is given by

Pth = (Γth − 1)uth , (7)
where Γth is set to 1.5. The thermal energy density uth is given
by the total energy density u through the relation

u = up + uth , (8)
where up is the energy density of the degenerate electron gas.

The polytropic part
Pp = KρΓ (9)

reflects the pressure contributions due to the degenerate and rel-
ativistic electrons and (in the regime of nuclear density) the
repulsive action of nuclear forces. The polytropic constant is
initially set to

K =
3
4

(

π

3

)2/3

h̄c

(

Ye

mB

)4/3

= 1.2435×1015Y 4/3
e cgs , (10)

where Ye is the electron number fraction and the other quanti-
ties have their usual meaning (Shapiro and Teukolsky 1983). Γ

is chosen to be 1.32 to initiate the collapse of the n = 3 poly-
trope. Ye is set to 0.5. To mimic the stiffening of the equation of
state at nuclear density (set to ρnuc = 2.0 ·1014 g cm−3), Γ is for
ρ≥ ρnuc set to 2.5 and K is modified by the requirement of con-
tinuity of the thermodynamic variables at ρnuc (Janka, Zwerger,
and Mönchmeyer 1993).

4.2. Hydrodynamics - VULCAN/2D

Our simulations were performed with the Newtonian two-
dimensional finite-volume hydrodynamic code VULCAN/2D
developed by Eli Livne (Livne 1993). VULCAN/2D uses a
scalar von Neumann-Richtmyer artificial viscosity scheme for
shock handling. The hydrodynamic equations are solved in
the Lagrangian formulation and the hydrodynamical data are
remapped after each time step onto a fixed Eulerian grid. VUL-
CAN/2D can be run in implicit or explicit time integration
mode. Since we are dealing with supersonic flows, we use
VULCAN/2D in explicit mode. VULCAN/2D is second-order
accurate in time and space and has been rigorously tested and
compared with one-dimensional Lagrangian and Eulerian hy-
drodynamic codes (Livne 1993).

A feature of VULCAN/2D is its ability to deal with arbitrar-
ily shaped grids while using cylindrical coordinates. For the
problem of stellar collapse we have chosen a polar grid with
logarithmic spacing for the region outside the inner 10 km and
an inner Cartesian grid (see Fig. 4). In this way we circumvent
severe time step constraints that would be imposed in the angu-
lar direction in the central region of a regular polar grid. The
price we pay for this is the “horns” seen in Fig. 4 in the central
region which are a consequence of the demand for continuity at
the boundary between the central and the outer grid.

For our production runs we use 412 radial and 91 angu-
lar zones (including the central region), encompassing 1500 to
3000 km in radial extent (depending on the initial model) and
covering the full 180 degrees of the symmetry domain. In our
comparisons with Zwerger and Müller (1997), this resolution
has been shown to reproduce their results to better than 10%.

4.3. Gravitational Wave Signature Extraction and Waveforms

We have calculated the gravitational wave field in the slow-
motion, weak-field quadrupole approximation (Misner, Thorne,
and Wheeler 1973). The dimensionless gravitational wave
strain h is

hTT
i j (~D, t) =

2G
Dc4

Ï−− T T
i j (t −

D
c

) , (11)

where D = |~D| is the distance between the observer and the
source and

I−− TT
i j = Pi jkl(~N)

∫

d3x ρ

[

xkxl −
1
3
δi j xmxm

]

(12)

is the transverse-traceless part of the reduced Cartesian mass-
quadrupole tensor. Pi jkl(~N) (with ~N = ~D/D) is the transverse-
traceless (TT) projection operator onto the plane orthogonal to
the outgoing wave direction N and is of the form:

Pi jkl(~N) = (δik − NiNk)(δ jl − N jNl)

−
1
2

(δi j − NiN j)(δkl − NkNl) . (13)

Direct application of eq. (11) (known in the literature as the
“standard quadrupole formula” (SQF)) in a numerical fluid dy-
namics calculation is problematic, since numerically trouble-
some second time derivatives of the quadrupole moment are in-
volved and the moment arm emphasizes contributions of low-
density material far from the central regions (Finn and Evans
1990).

Using the Euler equations of inviscid hydrodynamics, Finn
and Evans (1990), Nakamura and Oohara (1989), and Blanchet,
Damour, and Schäfer (1990) derived formulations of the
quadrupole formula involving either only one time derivative
and easier, more tractable, spatial derivatives or spatial deriva-
tives of the hydrodynamic observables exclusively. We use
the formulation of Nakamura and Oohara (1989) and Blanchet,
Damour, and Schäfer (1990):

hT T
i j (~D, t) =

2G
Dc4

Pi jkl(~N)×
∫

d3x ρ

[

2vkvl − xk ∂lΦ− xl ∂kΦ

]

, (14)

where Φ is the Newtonian gravitational potential, ρ is the mass-
density, and v the velocity.

For our 2-dimensional axisymmetric calculations, it is useful
to rewrite the full gravitational radiation field in terms of the
“pure-spin tensor harmonics” T E2,lm

i j and T B2,lm
i j (Thorne 1980;

Mönchmeyer et al. 1991):

h̃TT
i j (~D, t) =

1
D

∞
∑

l=2

l
∑

m=−l

[

AE2
lm (t −

D
c

)T E2,lm
i j (θ,φ) +

AM2
lm (t −

D
c

)T M2,lm
i j (θ,φ)

]

. (15)

The coefficients AE2
lm and AM2

lm represent the mass quadrupole
and the mass-current quadrupole contributions, respectively. In
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the quadrupole approximation, higher-order as well as mass-
current contributions are neglected and due to the assumption of
axisymmetry only one non-vanishing term remains in eq. (15),
namely AE2

20 . By comparing eq. (14) with the lowest-order term
of eq. (15), Mönchmeyer et al. (1991) write AE2

20 in terms of the
hydrodynamic variables:

AE2
20 =

16π3/2

√
15

G
c4

∫ 1

−1

∫ ∞

0
r2dµdr ·ρ ·

[

v2
r (3µ2 − 1) + v2

θ(2 − 3µ2) − v2
φ − 6vrvθµ

√

1 −µ2

−r∂rΦ (3µ2 − 1) + 3∂θΦµ
√

1 −µ2
]

, (16)

where µ = cosθ and vr, vθ, and vφ are the components of the
velocity vector in the r, θ, and φ directions. Furthermore,
∂r = ∂/∂r and ∂θ = ∂/∂θ. The components of the approximate
gravitational wave field hTT are then given by (Thorne 1980;
Mönchmeyer et al. 1991):

hT T
θθ =

1
8

√

15
π

sin2 α
AE2

20

D
≡ h+ , (17)

where α is the angle between the symmetry axis and the line
of sight of the observer. The only other nonzero component
is hTT

φφ = −hTT
θθ = −h+. h× equals zero, due to the assumption

of axisymmetry. h+ and h× are the dimensionless wave strains
corresponding to the two independent polarizations of the grav-
itational radiation field (Misner, Thorne, and Wheeler 1973).

The total gravitational energy radiated over time is given by

EGW =
c3

32πG

∫ ∞

−∞

∣

∣

∣

∣

dAE2
20

dt

∣

∣

∣

∣

2

dt . (18)

As an alternative to eqs. (16) and (17), we also implemented
the “first moment of momentum divergence” formula of Finn
and Evans (1990) (eq. 38 of their paper):

dI−−zz

dt
=

4π

3

∫ 1

−1
dµ

∫ ∞

0
dr r3 ρ ×

[

P2(µ)vr +
1
2

∂P2(µ)
∂θ

vθ

]

, (19)

where P2(µ) is the second Legendre polynomial in µ and I−−zz

is the zz-component of the reduced mass-quadrupole moment
tensor. The gravitational wave strain is then obtained through

hTT
θθ =

6G
Dc4 sin2 α

d2

dt2 I−−zz . (20)

4.3.1. Energy Spectra

Writing AE2
20 in eq. (18) in terms of the inverse Fourier trans-

form

AE2
20 (t) =

∫ ∞

−∞
ÃE2

20 ( f )e−2πi f tdt (21)

and after several algebraic steps, we obtain:

dE( f )
d f

=
c3

G
(2π f )2

16π

∣

∣

∣

∣

ÃE2
20 ( f )

∣

∣

∣

∣

2

(22)

in terms of the Fourier transform

ÃE2
20 ( f ) =

∫ ∞

−∞
AE2

20 (t)e2πi f td f . (23)

The total radiated energy is then obtained from the integral over
the energy spectrum

EGW =
∫ ∞

0

dE( f )
d f

d f , (24)

which should be identical to the result obtained from eq. (18).

We have implemented eq. (22) using the Fast Fourier Trans-
form (FFT) technique (Press et al. 1992). Since the wave am-
plitude is calculated at unequal time intervals due to variations
in the time step, we first interpolate the data onto an evenly-
spaced temporal grid before applying the FFT. We have verified
that the value of EGW obtained using eq. (18) is always within
a few percent of that obtained using eq. (24).

5. METHOD VALIDATION - POLYTROPES

Table 2 summarizes the results of our comparisons with the
work of Zwerger and Müller (1997), who used simple n = 3
polytropes and the hybrid EOS discussed in §4.1. Our results
match those of Zwerger and Müller (1997) in density at bounce
(ρmax), maximum gravitational wave amplitude (AE2

20 max) and
total gravitational wave energy (EGW ), in most cases to bet-
ter than 10%. The largest difference in maximum density is
22% and is found in model A500β0.9 (Zwerger and Müller’s
A3B3G2). However, Dimmelmeier, Font, and Müller (2002b)
performed a similar comparison study with their code and ob-
tained for this model a density at bounce much closer to ours.
As to EGW , our models generally yield larger values than those
of Zwerger and Müller (1997), since ours were evolved for
longer periods of time after bounce, thus tracking a greater part
of the post-bounce aspherical motion of the compact remnant.

Using the publicly available data of the Newtonian runs of
Dimmelmeier, Font, and Müller (2002b), we find that our wave-
forms match perfectly up to bounce and then start to exhibit a
slight shift in post-bounce maxima, minima and periods. We at-
tribute these differences in part to the fact that our artificial vis-
cosity scheme for hydrodynamic shock capture leads to slightly
greater artificial damping than the piecewise parabolic method
(PPM) used in the cited work and to our simulation on the full
180◦ domain.

6. RESULTS USING REALISTIC PROGENITOR MODELS

Collapse dynamics of rotating supernova progenitors is gov-
erned by three major forces: gravity, pressure gradients, and
centrifugal forces. In the canonical model of non-rotating core
collapse, photo-dissociation of iron peak nuclei and electron
capture on nuclei and free protons initiate core collapse. As
core collapse progresses, an almost homologously (v ∝ r) col-
lapsing central region, the inner core, forms, while the outer
core collapses supersonically. With increasing density, electron
capture rates grow until a density of about 3 × 1012 g cm−3 is
reached, at which time the matter becomes opaque to the elec-
tron capture neutrinos which are then trapped in the core. As
nuclear density is approached, nuclear repulsive forces lead to a
sudden stiffening of the equation of state, initiating the bounce
of the inner core and the subsequent outward propagation of the
bounce shock.

When rotation is included, centrifugal forces counteracting
gravity’s pull change the dynamics of collapse. Depending
on the total amount of angular momentum and its distribution
throughout the collapsing core, the effects can be either mi-
nor, leading only to small deformation (oblateness) of the core
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and bounce at slightly lower maximum densities or - if there
is a great amount of angular momentum - major, resulting in
“fizzlers” with large deformations and slower bounces at sub-
nuclear densities (Shapiro and Lightman 1976; Tohline 1984).
Mönchmeyer et al. (1991) give a detailed description of the hy-
drodynamics of rotational core collapse. Since this paper is pri-
marily concerned with the gravitational wave signature of core
collapse, in the following we provide only brief descriptions of
the most salient features of the hydrodynamics.

6.1. Hydrodynamical Evolution and
Gravitational Wave Signature

We separate our models into two types. Type I encompasses
those models that experience core bounce predominantly due
to the stiffening of the nuclear equation of state at or above nu-
clear densities and type II comprises models that bounce due
to centrifugal forces. We refer to those models that experience
significant centrifugal forces, but still bounce at or close to nu-
clear densities, as type I/II. We show that types I and II have dis-
tinctive and characteristic gravitational wave signatures, while
the wave signature of an type I/II exhibits a mixture of type I
and type II features. Zwerger and Müller (1997) introduced a
similar classification scheme. We, however, do not see the be-
havior which they call type III since its occurence is connected
with very low effective Γs and extremely rapid collapsei, which
none of our models shows.

We first present the systematics with βi that we have found
for the s15 model from Woosley and Weaver (1995) with the
parameter A of the rotation law (eq. 5) set to 1000 km. Ω0
is adjusted to yield the wanted value of βi. Recall that our β
is calculated for the entire iron core with its many decades of
density, and not just for the inner or homologously collapsing
region. In §6.2 and §6.3 we discuss the differences introduced
by different choices for A and initial model. Finally, in §6.4,
we present the results we obtained from core collapse calcula-
tions with the rotating progenitor models from Heger, Langer,
and Woosley (2000) and Heger et al. (2003).

Type I: Models of type I rotate so slowly that centrifugal
forces are not able to stop collapse before nuclear densities are
reached. The central region of the stellar core plunges deeply
into the potential well and quickly and significantly overshoots
to supranuclear densities before its infall velocities are reversed
on a timescale of less than a millisecond by the solid-wall-
like action of the repulsive nuclear forces. As in nonrotating
models, a strong shock forms at the boundary between the sub-
sonically collapsing inner core and the supersonically infalling
outer mantle.

Due to angular momentum conservation and, hence, the
growing influence of centrifugal forces with increasing com-
pactness, the core bounce is not spherically symmetric, but hap-
pens first and most strongly at the poles. Hence, the strong
bounce shock is aspherical, propagating faster along the poles.

In type I models, the initial oblateness of the core at bounce
becomes an oblate-prolate (l = 2) oscillation, accompanied by
higher-order modes, in addition to the already present post-
bounce radial “ringing” of the compact remnant. This is seen
in Fig. 5, which shows the innermost 200 km by 200 km of the
collapsed core of model s15A1000β0.2 (type I). Shortly after
bounce and after the shock wave is launched, the core oscil-
lates wildly in a superposition of modes that are damped on

timescales of milliseconds, since oscillation leads to dissipa-
tion by the periodic emission of strong sound waves. As Fig. 5
indicates, the amplitude of the l = 2 deformation has decayed
considerably 13 ms after bounce, at which time predominantly
vortical and incoherent motions have emerged to dominate.

Figure 6 portrays the evolution of the maximum density of
the s15A1000 model series with A=1000 km. Plotted with
a dashed line is the evolution of the maximum density of a
nonrotating model. The models with βi=0.10% and βi=0.20%
bounce at or very close to nuclear density and exhibit type I
model behavior. The βi=0.30% model, however, though ex-
periencing bounce at about nuclear density, exhibits one cy-
cle of pronounced large-scale coherent radial expansion and
re-contraction, followed by a second, but weaker bounce after
which the volume mode is quickly damped due to the forma-
tion of a second shock wave. We refer in the following to this
cycle of expansion, re-contraction and secondary bounce as the
“expansion-collapse-bounce cycle.” It marks the beginning of
the transition from type I to type II behavior with increasing βi.

The evolution of the rotation parameter β = Erot/|Egrav|, an
integral quantity and a global measure of the system, is shown
in Fig. 7. For models that show clean type I behavior, namely
those with βi less than 0.30%, β(t) manifests only one notable
post-bounce minimum, directly paralleling the evolution of the
maxmium density. The first transition model with βi=0.30%
reaches a β that is 30% higher at bounce and exhibits multiple
post-bounce minima and maxima before reaching its final value
of 6.37%, the largest in the s15A1000 model series.

We now focus on the characteristics of the gravitational wave
signature of a type I model and see how the signature changes
with increasing βi. In the quadrupole approximation that we
made in §4.3, the amplitude of the gravitational waves is di-
rectly connected to the second time derivative of the reduced
mass-quadrupole moment (I−−zz; eq. 12). Figures 8a and 8b
show the evolution of the maximum density and the quadrupole
gravitational wave amplitude for times shortly before and af-
ter bounce of the typical type I models s15A1000β0.1 and
s15A1000β0.2. From the way I−−zz evolves, we can divide the
evolution of the wave signal into 3 phases (Mönchmeyer et al.
1991).

Phase 1 (the “infall phase”) coincides with the hydrodynamic
collapse phase, and is marked by the accelerated increase (in
absolute value) of the quadrupole moment as angular momen-
tum conservation forces the collapsing core to deviate more
and more from spherical symmetry. When the core approaches
bounce, the increase of |I−−zz| decelerates (i.e., the wave signal
becomes negative) and eventually is reversed into a decrease of
| I−−zz|, the smaller core size counteracting the effect of the in-
creasing density on the quadrupole moment. This marks the
transition to phase 2 (the “bounce phase”). The wave signal
reaches its absolute minimum a fraction of a millisecond after
core bounce and then increases, reaching positive values dur-
ing the first post-bounce local minimum of the central density.
As said, right before and during core bounce, the increase of
|I−−zz| started in phase 1 is dramatically reversed. Nevertheless,
the first time derivative of I−−zz reaches positive values for only a
short period and I−−zz itself remains negative throughout the en-
tire evolution, increasing again in absolute value after bounce.
Finally, phase 3 (the “ring-down phase”) is characterized by
small amplitude oscillations of the wave signal that reflect the
core ring-down occurring in type I models.



8

The three phases that we described in the preceding para-
graph are easily discernible in Figs. 8a and 8b. As centrifu-
gal forces become increasingly significant with larger βi, the
evolution of the maximum density and of the waveform itself
change. Figure 8c, depicting model s15A1000β0.3, shows this
well. This model undergoes one large post-bounce oscillation,
an “expansion-collapse-bounce cycle.” A second, less strong,
bounce occurs and is reflected in a second pronounced spike in
the waveform. Increasing βi to 0.40% changes the dynamics
drastically to what we classify as type II behavior.

Type II: Models of type II experience bounces at subnuclear
densities caused by centrifugal forces. Whereas core bounce
due to repulsive nuclear forces results in an abrupt reversal of
the quasi-homologously collapsing inner core on a timescale
of less than 1 ms, a bounce due to the action of centrifugal
forces occurs on longer timescales and with smaller acceler-
ations. This can be understood from the fact that rotation acts
approximately like a gas with a Γ of 5/3 (Tassoul 1978; Mönch-
meyer et al. 1991). Fig. 6 depicts the evolution of the maximum
density of models with βis from 0.0% to 1.00%. For βi

>
∼0.4% ,

the models exhibit type II behavior.

With increasing βi, the density at bounce decreases, the max-
ima become much wider, and the accelerations grow smaller.
The rotation-dominated, highly aspherical bounce of type II
models happens at larger radii and creates, since it is much less
abrupt, less entropy and much weaker bounce shocks than in
type I models. After core bounce, the core expands coherently,
leading to an almost order of magnitude drop in the maximum
density. This expansion is reversed when gravitational forces
again begin to dominate over pressure gradients and centrifu-
gal forces. In this way, the quickly spinning core undergoes
several damped expansion-collapse-bounce cycles until it set-
tles into an equilibrium configuration. In fact, it acts much like
a damped harmonic oscillator with a Hamiltonian consisting
of radial kinetic, rotational, internal, and gravitational energies
(Mönchmeyer et al. 1991).

Figures 8d and 9a through 9d depict the time evolution of
the maximum density and of the quadrupole gravitational wave
amplitude for the type II models of the s15A1000 model se-
ries. For these models, the “ring-down” signature seen in type
I models is replaced by the signature of coherent expansion-
collapse-bounce cycles, manifest by wide peaks in the wave
signal. Model s15A1000β0.4 (Fig. 8d) still shows shorter pe-
riod substructure, originating from additional nonspherical pul-
sation modes, but such substructure fades away with larger βi.
The absolute values of the gravitational wave amplitude peaks
are smaller than those of type I models, since deceleration and
acceleration occur over longer timescales. This is also reflected
in the longer characteristic periods and in the lower character-
istic frequencies of the gravitational wave signal.

The gravitational wave energy spectra (eq. 22) for a charac-
teristic subset of the s15A1000 models are shown in Fig. 10.
Since the gravitational wave luminosity goes with the slope of
the waveform, most of the energy is radiated for all models in
the spike connected to the first bounce. We associate the dom-
inant frequencies of the gravitational wave energy spectra with
this first spike of the waveform. In Table 4, we summarize the
results from all our calculations involving the s15 progenitor
model. Tables 3, 5 and 6 contain the quantitative results of cal-
culations using the s11 and s20 models of Woosley and Weaver
(1995) and the models of Heger, Langer, and Woosley (2000)

and Heger et al. (2003).

The spectrum of s15A1000β0.2, which shows type I behav-
ior, is dominated by frequencies between 300 Hz and 600 Hz
and peaks at 460 Hz. Most of the smaller peaks are connected
to the first spike in the waveform during which 94% of the to-
tal gravitational wave energy of this model is radiated (Table
4). There is, however, a contribution by the radial and non-
radial ring-down pulsations that have characteristic periods of 2
- 2.5 ms in this model, translating to frequencies of 400-500 Hz.
The peak at 700 Hz and the one-order-of-magnitude-suppressed
peak at about 1400 Hz are higher harmonics of lower frequency
contributions, as well as higher frequency modes of the ring-
down oscillation. With increasing βi the spectrum shifts to
lower frequencies and lower absolute values, peaking at 152
Hz (βi=0.40%), 91 Hz (βi=0.60%), and 38 Hz (βi=0.80%). Fur-
thermore, a prominent peak at low frequencies (in this series be-
ginning with model s15A1000β0.4) can be directly associated
with the oscillation frequency of the post bounce expansion-
collapse-bounce cycles seen in type II models.

As shown in Fig. 10, the energy spectra provide an excel-
lent way to learn about overall collapse dynamics and clearly
exhibit the great changes brought about by even moderate ro-
tation. We now summarize the most important overall char-
acteristics of the dynamical types: Type I is characterized by
bounce at supranuclear densities and exhibits a clear subdivi-
sion into infall (1), bounce (2) and ring-down phases (3). The
gravitational wave energy spectra of type I models peak above
350 Hz and the integrated radiated energy achieves its maxi-
mum, reaching 10−8 M� c2 for the fastest rotating model that
still bounces at supranuclear density. On the other hand, type II
models bounce at subnuclear densities due to the influence of
centrifugal forces, exhibit much longer timescales, and mani-
fest several harmonic oscillator-like expansion-collapse-bounce
cycles. Their spectra peak at lower frequencies and the total en-
ergies radiated are, for the fastest rotators, one to two orders of
magnitude smaller than those for type I (see Tables 3-6).

We must point out that the specific value of βi needed to pro-
duce a given type (I or II) varies with the degree of differential
rotation and (more strongly) with the effective Γ (§3), deter-
mined by the equation of state in combination with the micro-
physical processes occuring during collapse (e.g. electron cap-
ture, leading to a lower effective Γ). Moreover, the maximum
value of βi needed to maintain type I behavior, depends on the
effective Γ through eq. (4). Note that the final βs achieved in
our calculations are all below 10%.

Since we have not included radiative transfer, our results
should be considered preliminary. Furthermore, the collapse
will depend on the rotation law used and on general relativistic
effects. Hence, we cannot say, though the results of this study
suggest, that a β high enough for dynamical or secular instabil-
ity might not occur during realistic stellar core collapse.

6.2. Variation with Degree of Differential Rotation

We have performed calculations with three different values of
the parameter A of the rotation law described in §3. To achieve
rigid rotation throughout the entire core, we set A to 50000 km
in eq. 5 and to explore moderate differential rotation, we use
A=1000 km and A=500 km. Figure 3 shows a sample of the
rotation laws for different values of A.
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In Fig. 11, we present results from our study of the A de-
pendence of the gravitational wave signature for βi=0.5% and
the s15 progenitor. Generally, as A is lowered, more rotational
energy is (for a fixed βi) moved interior to A. Hence, the in-
fluence of rotation on the collapsing central regions is larger in
those models with smaller A and the transition from type I to
type II behavior occurs for smaller βi. This is illustrated in Fig.
11c where model s15A50000βi0.5 still shows type I behavior,
even though models s15A1000 and s15A500 have transitioned
to type II. The same effect is seen in Fig. 11a. The energy spec-
tra in Fig. 11b show low-frequency peaks at the frequencies of
the expansion-collapse-bounce cycles for models s15A500 and
s15A1000, while the spectrum of the s15A50000 model is still
type I.

As indicated, for larger values of A, i.e. for a more rigidly
rotating configuration, the value of βi must be higher for type II
behavior to occur. This shifts to higher values the βis required
for maximum gravitational wave amplitudes and final βs. This
A dependence is generic and translates into corresponding be-
havior for s11 and s20 progenitors (see Tables 3, 4, and 5).

6.3. Initial Model Comparisons

To investigate the effect of changes in presupernova stellar
structure on the collapse dynamics and, ultimately, on the grav-
itational wave signature, we have performed calculations using
the s11, s15 and s20 progenitor models of Woosley and Weaver
(1995) at given values of A and βi. We choose A=1000 km and
βi=0.5% for our progenitor model comparisons.

Initially, the s11 and s15 models are quite similar in their
structures (see Figs. 1 and 2) and this similarity persists
throughout their evolution. The s20 model, however, has a
smaller initial central density, a larger Ye, and a significantly
larger iron core, encompassing about 1.7 M� and reaching out
to 2200 km (Table 1).

Figure 12 displays the evolution of the maximum density
of models s11A1000β0.5, s15A1000β0.5, and s20A1000β0.5.
The s15 model reaches the highest densities and bounces due to
centrifugal forces. After bounce, the s15 core executes the typ-
ical damped expansion-collapse-bounce cycles, as does model
s11. However, model s20, with a significantly different initial
structure, reaches lower densities than the s11 and s15 models
and exhibits shorter periods in its post-bounce oscillations. Fur-
thermore, its post-bounce oscillations are more quickly damped
by the proximity of its stalled shock. A shock acts like a strong
absorber of sound waves. As a result, the characteristic time
for the purely hydrodynamic damping of inner-core oscilla-
tions is roughly the round-trip sound travel time to the shock
radius. The larger this radius, the weaker the damping. The
2-dimensional plots (Fig. 13) of the specific entropy of model
s20A1000β0.3 reveal some of the dynamics of the s20 models.
As in s11 and s15 models with rotation, the shock forms first at
the poles and propagates out faster along the rotation axis than
at the equator. This is shown in the transition from Fig. 13a to
Fig. 13b, in which the axis ratio is almost 2:1 and the shock
has a prolate shape. Despite centrifugal forces, Fig. 13c shows
that matter can flow in at the equator. The bounce shock stalls,
but still executes oscillations in radius. We note that equatorial
symmetry is clearly broken in Fig. 13d. This emphasizes the
importance of including all 180◦ in an axisymmetric simula-
tion.

Figure 14 shows the waveforms of models s11A1000,
s15A1000, and s20A1000 for βi=0.5%. Models s11 and s15
exhibit clear type II behavior, with the variation in their wave
forms paralleling that of their maximum densities. The wave
form of the s20 model, however, exhibits different behavior; the
stall of its bounce shock and subsequent accumulation of outer-
core material onto the compact remnant introduce additional
higher-frequency components. As Fig. 15 indicates, this is also
reflected in its gravitational wave energy spectrum, which con-
tains more power at higher frequencies.

The bounce shock stalls in all our models with the s20 pro-
genitor. For larger βi, standard type II behavior is altered,
since the post-bounce expansion-collapse-cycles are strongly
damped by the stalled shock. We point out that to date the effect
of a stalled shock upon the gravitational waves signature from
rotating stellar collapse has not been discussed. However, such
effects might be common for core-collapse supernovae, since in
realistic models energy losses due to neutrinos - at least initially
- lead generically to stalled bounce shocks.

6.4. The Heger Models

We have chosen the e15 and e20 models of Heger, Langer,
and Woosley (2000) and the m15b4, m20b4, and m25b4 models
of Heger et al. (2003) for our study of progenitors evolved with
rotation and magnetic fields (§3). Models from Heger, Langer,
and Woosley (2000) that end with the letter ’b’ (with βi ≥ 3%)
were not used, since they undergo expansion and not collapse
once mapped onto our two-dimensional grid. We would have
had to artificially force these models to collapse by altering their
thermodynamic structure. We have chosen not to do so and
postpone the investigation of the gravitational wave signature
from these models to future research that will include detailed
weak interaction physics and neutrino transport.

The collapse, bounce, and post-bounce behavior up to about
100 ms after bounce of the e15 model (βi = 0.645%) conforms
to type II behavior. Figure 16a shows the evolution of the max-
imum density and the gravitational waveform of model e15 and
Fig. 16b shows the evolution of these quantities for model
s15A1000β0.7. Even though they experience core bounce at
the same density, the period of the post-bounce oscillations of
model e15 is significantly shorter than that of the s15 model.
Since shorter periods mean greater accelerations, the individual
peaks of the waveform, associated with the first and subsequent
bounces of the e15 model, are greater than those of the s15
model. The same holds for the integrated radiated energy.

As with the s20 model, the bounce shock of the e15
model stalls, damping the type II-like post-bounce expansion-
collapse-bounce cycles. This process introduces high frequency
components into the waveform and, thus, into the energy spec-
trum of the gravitational wave signal (Fig. 16d). The e20 model
has a lower initial βi than e15 and similar total angular mo-
mentum. Hence, it reaches a larger density at bounce and its
gravitational wave energy spectrum peaks at about 193 Hz (for
e15, it is 90 Hz). However, the overall behavior is similar and
the bounce shock of the e20 model also stalls. The subsequent
infall of matter onto the inner core is non-spherical (see, for
example, Fig. 13 and Table 6).

The models m15b4, m20b4 and m25b4 have initial rotation
parameter βi = Erot/|Egrav| between 0.002% and 0.005%. These
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values of βi are much smaller than the ones we investigated
with the models of Woosley and Weaver (1995). The effects
of rotation on the m-models are minimal and, as can be seen
in Fig. 17 for models m15b4 and m20b4 (m25b4 is similar),
the gravitational wave amplitudes from the bounce and ring-
down phases are one to two orders of magnitude smaller than
those of any s11/s15/s20 model with βi=0.1% (see Fig. 8). In
fact, as in the nonrotating case discussed below (§6.5), most
of the gravitational wave energy is being emitted by aspherical
convective overturn after bounce (Table 6) and the spectra are
dominated by the characteristic frequencies of the convective
motions (Burrows and Hayes 1996; Müller and Janka 1997).

6.5. Nonrotating Models

As calibration, we performed calculations without rotation
with the s11, s15 and s20 progenitor models from Woosley and
Weaver (1995). Figure 18 shows the evolution of the maxi-
mum density and the gravitational wave amplitude for a non-
rotating s15 model. The negative spike in the gravitational
wave amplitude associated with core bounce exhibited by this
model is about two orders of magnitude weaker than the one
seen for models with slow rotation (Table 4). This is a con-
sequence of the much smaller reduced mass-quadrupole mo-
ment of this nonrotating model, not deformed by centrifugal
forces. Even though the collapse proceeds spherically, its re-
duced mass-quadrupole moment is initially not exactly zero,
since small perturbations introduced by the numerical scheme
and by the mapping of the one-dimensional progenitor model
onto the two-dimensional computational grid give rise to some
initial asphericity which grows during collaps.

After core bounce convective instability leads to aspherical
bulk mass motion in the central regions, emitting small am-
plitude gravitational waves with frequencies corresponding to
the characteristic turnover periods. Since this type of gravita-
tional wave emission is not connected to the dynamical event
of core bounce, it lasts for a prolonged interval, and can even-
tually radiate more energy than the dynamical event itself. The
characteristic frequencies of the gravitational radiation from the
overturning motions range from 225 Hz to 960 Hz.

7. EVOLUTION OF THE ROTATION RATE

The evolution of the rotation parameter β and the angular
velocity is of particular interest, since they are connected to
still unanswered questions in core-collapse supernovae physics:
What is the period of newborn neutron stars? Can protoneutron
stars become dynamically or secularily unstable to triaxial ro-
tational modes?

Our study is Newtonian and lacks a full treatment of the
microphysics involved. Even though we have included real-
istic presupernova models and a realistic equation of state, we
cannot claim to provide final answers to the above questions.
Moreover, our calculations have been done in 2D, not 3D, and,
thus, are not free of symmetry constraints. General relativistic
gravity would lead to more compact configurations with higher
βs. Hence, the results presented in this section should be seen
only as indications of the systematic behavior of the rotation
rate evolution and of the changes in the distribution of angular
velocity with total angular momentum.

A look at Fig. 7 and at Tables 3, 4, and 5 discloses that there
exists a maximum value of β at bounce for a given progeni-
tor model and value of A. Interestingly, the maximum β is not
reached by the model with the maximum βi, but by a model
with some intermediate value of βi (in Fig. 7 this is 0.40%). β
at bounce is determined by the subtle interplay between initial
angular momentum distribution, the equation of state, centrifu-
gal forces and gravity. The “optimal” configuration leads to
the overall maximum β at bounce for a given βi. Moreover,
the model yielding the maximum final β is not necessarily the
model yielding the maximum β at bounce (see Fig. 7 and Ta-
bles 3-6).

Figure 19 shows the final angular velocity distribution ver-
sus radius at the equator of the s15 model for A=500 km and
A=50000 km and for a variety of βis. As with β, overall the
angular velocity increases with increasing βi until a maximum
is reached. It subsequently decreases with the further increase
of βi. Both initial settings of A lead to strongly differential
rotation in the central regions, while the initially more rigidly
rotating model (A=50000 km, solid lines in Fig. 19) actually
yields larger post-bounce angular velocity gradients inside 30
km. Its equatorial velocity profile peaks off center for moderate
βi at radii between 6 and 8 km. The initially more differen-
tially rotating model (A=500 km, dashed lines in Fig. 19) leads
to the highest central values of the angular velocity while its
angular velocity profile quickly drops to low values and practi-
cally rigid rotation for βi ≥ 0.3%. Model s15A500β0.2 results
in the shortest rotation period near the center (∼1.5 ms). Model
s15A50000β0.5 yields the shortest period of the A=50000 km
model series (∼1.85 ms). The angular velocity shear exte-
rior to the peak at 6-8 km exhibited by these models has also
been identified in the one-dimensional study of Akiyama et al.
(2003). These authors consider such shear a possible driver for
the magneto-rotational instability (MRI), which could be a gen-
erator of strong magnetic fields.

None of our models develop off-center density maxima (i.e.
become toroidal) which could lead to dynamical growth of an
azimuthal m=1 mode at β >

∼ 14% as suggested by Centrella
et al. (2001). Shibata, Karino, and Eriguchi (2003) have shown
that strongly differentially rotating polytropes with centrally
peaked density profiles and EOS-Γ above ∼ 4/3 can become
dynamically unstable to triaxial m=2 deformations (bar modes)
for β on the order of 1%. As seen in Fig. 19 and discussed in
the previous paragraph, our models exhibit strong differential
rotation inside the protoneutron star. However, it is impossi-
ble to judge whether they are stable or unstable to triaxial rota-
tional instabilities in context of Shibata, Karino, and Eriguchi
(2003), since these protoneutron stars differ greatly from the
simple polytropic equilibrium models employed in that study.
Three-dimensional simulations employing a finite-temperature
EOS and realistic post-collapse models are needed to address
this issue conclusively.

8. PROSPECTS FOR DETECTION

To assess the detectability of the gravitational waves radiated
by our models we follow the discussions in Abramovici et al.
(1992) and Flanagan and Hughes (1998). For a given frequency,
f , Flanagan and Hughes (1998) define the characteristic gravi-
tational wave strain
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hchar( f ) =

√

2
π2

G
c3

1
D2

dE( f )
d f

, (25)

where D is the distance of the source from the detector (for
galactic sources we set this equal to 10 kpc) and dE( f )/d f is
the spectral energy density of the gravitational radiation defined
by eq. (22).

The matched-filter signal-to-noise ratio for a source that
emits at optimal orientation and polarization is given by

(SNRoptimal)2 =
∫

d(ln f )
hchar( f )2

hrms( f )2
(26)

with the (single) detector rms noise strain hrms being defined
as the square root of frequency times the detector noise power
spectral density

hrms( f ) =
√

f S( f ) . (27)

For two observatories, averaging over all angles and both po-
larizations, and assuming a SNR of 5, the detector burst sensi-
tivity is considered to be hSB ' 11hrms (Abramovici et al. 1992;
Gustafson et al. 1999).

Figure 20 shows the detector hrms noise strains of the ini-
tial and advanced LIGO designs (Gustafson et al. 1999). The
solid squares mark the peaks of the optimal characteristic strain
hchar( fmax) for each of our models at an assumed distance of 10
kpc. The most important parameters governing the position of a
given model in Fig. 20 are βi and A. Generally, the models with
moderate initial rotation (βi below 0.5%) peak at frequencies
well above the LIGO peak sensitivity (near 100 Hz), but also
give the largest overall gravitational wave amplitudes. With
increasing βi, the models shift towards lower frequencies and
smaller amplitudes, but at D=10 kpc remain for the most part
above the initial LIGO sensitivity limit. Only for the strongest
rotators, which peak at low frequencies, will detectability at 10
kpc by the initial LIGO interferometers be problematic. For a
given βi, the model spectra shift upwards and to the right with
increasing A. Overall, our s20 models peak at the largest hchar.
The peaks of the s11 and s15 models are very similar for slow
rotation, but the fast rotating s11 models peak at lower frequen-
cies and higher strains than the corresponding s15 models. If
we were to draw an imaginary line through the field of points
on Fig. 20, we would find that peak hchar is very roughly pro-
portional to fmax to the 0.8 power.

The models evolved without rotation are marked with little
stars in Fig. 20. Models marked with a diamond correspond
to rotating progenitors from the studies of Heger, Langer, and
Woosley (2000) and Heger et al. (2003). The three models at
higher frequencies below the sensitivity of the first-generation
(initial) LIGO are the three “magnetic” progenitors that ro-
tate very slowly (βi < 0.01%). In sum, approximately 80% of
our models are within the optimal sensitivity limit of the first-
generation LIGO and about 10% should be detectable even us-
ing the hSB condition. Almost all of our models should be de-
tectable with the 2nd-generation (advanced) LIGO.

9. SUMMARY AND DISCUSSION

In this parameter study, we have investigated the emission of
gravitational radiation from rotational stellar core collapse us-
ing Newtonian gravity, realistic initial models, and a realistic

equation of state. We have performed a total of 72 simulations,
investigating the dependence upon the degree of differential ro-
tation, the initial ratio of rotational energy to gravitational po-
tential energy (βi), and progenitor. For this, we employed the
11, 15 and 20 M� (s11, s15, s20) presupernova models from the
stellar evolution study of Woosley and Weaver (1995) and put
them into rotation via a rotation law that assumes rotation on
cylinders. In addition, we have performed simulations with the
progenitor models of Heger, Langer, and Woosley (2000) and
Heger et al. (2003) that include a one-dimensional prescription
for rotational evolution. All of our models encompass the full
180◦ of the symmetry domain. Nothing artificial was done to
initiate collapse.

Our results indicate that there are two types of characteristic
behavior for the collapse dynamics and the resulting gravita-
tional wave signature. Type I occurs for slow initial rotation
and is characterized by core bounce at supranuclear densities.
The wave signal of a type I model exhibits a sharp spike and
high frequency oscillations as the compact remnant rings down
after core bounce. Type I models have the largest gravitational
wave amplitudes, their energy spectra peak at the highest fre-
quencies and they radiate the largest amount of energy. On
the other hand, type II models bounce at subnuclear densities
due to the influence of centrifugal forces. They exhibit sev-
eral damped harmonic oscillator-like post-bounce expansion-
collapse-bounce cycles whose periods grow with increasing βi.
The gravitational wave amplitudes, frequencies, and total ener-
gies of type II models are smaller than for those that exhibit
type I behavior. The frequency at which the coherent post-
bounce oscillations occur is clearly discernible in the energy
spectra of type II models. Figure 21 portrays the gravitational
wave energy spectrum for the s11A500 sequence at various βis
from 0.1% to 0.5%. This figure is similar to Fig. 10 for the
s151000 series. The systematic shift with increasing βi above
the transition βi (∼0.25%) from higher frequencies and strength
to lower values of both is clearly seen. Transitional models
that exhibit features of both type I and type II behavior are also
present. For a given initial model, we find that the transition
from type I to type II happens for smaller βi if the core is ini-
tially more differentially rotating and for larger βi if its core
has rigid initial rotation. The s11 and s15 progenitor models
give very similar results, the s11 model giving slightly larger
gravitational wave amplitudes, frequencies, and energies than
the s15 model for a given set of parameters. The s20 model,
however, having a shallower initial density distribution, leads to
different post-bounce behavior, since its hydrodynamic bounce
shock stalls. Subsequent to stall, matter infalls aspherically
through and onto the central core. This leads to near-critical
damping of the post-bounce oscillations of the compact rem-
nant and introduces high-frequency components into the wave
form. Since sophisticated one-dimensional studies that include
weak interaction physics and neutrino transport indicate that
the bounce shock does indeed initially stall (Rampp and Janka
2002; Liebendörfer et al. 2001a,b; Thompson, Burrows, and
Pinto 2003), the distinctive character of the s20 model may in
fact be more generic than that of our s11 and s15 models.

The rotating progenitor models e15 and e20 from Heger,
Langer, and Woosley (2000) behave similarly to their s15 and
s20 counterparts with similar βis and As. However, due to dif-
ferences in presupernova structure, the bounce shock of the e15
model stalls, leading to more infall into the central core and
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strong damping of post-bounce oscillations. The same is true
for the e20 model. Hence, the gravitational wave signatures for
both models are similar to those for the s20 models. The mod-
els of Heger et al. (2003) include the effects of magnetic fields
on the distribution of angular momentum. This leads to very
rigid rotation throughout the star and, thus, to little angular mo-
mentum in the iron core itself. Our simulations show that these
extremely slowly rotating cores (βi < 0.005%) yield gravita-
tional wave amplitudes from core bounce that are two orders of
magnitude smaller than for the s11, s15 and s20 models with
the smallest βi. Hence, the quantitative and qualitative behav-
ior of these slowly rotating models is very similar to the models
that were evolved without any rotation at all.

Our models yield absolute values of the dimensionless max-
imum gravitational wave strain in the interval 2.0 × 10−23 ≤
hT T

max ≤ 1.25 × 10−20 at a distance of 10 kpc. The total energy
radiated (EGW ) lies in the range 1.4 × 10−11 M� c2 ≤ EGW ≤
2.21 × 10−8 M� c2 and the energy spectra peak (with the ex-
ception of very few models) in the frequency interval 20 Hz
<
∼ fpeak

<
∼ 600 Hz. Furthermore, our hydrodynamic results in-

dicate (if the canonical critical conditions apply), that none of
our collapsed cores will undergo triaxial rotational instabilities,
since the maximum ratio of rotational to gravitational energy
(β) reached is 9.16% at bounce and 8.23% at the end of the
evolution. Both these values are below the putative critical
β for dynamical (βdyn ' 27%) or secular (βsec ' 14%) triax-
ial instability (in the simplified case of a MacLaurin spheroid).
However, given the extreme density profiles in realistic progen-
itor cores, and the canonical bifurcation of the flow into outer
supersonic and inner subsonic collapse, the actual critical βs
for triaxial deformation of realistic cores have yet to be deter-
mined. Recent studies by Centrella et al. (2001) and Shibata,
Karino, and Eriguchi (2003) which employed polytropic neu-
tron star models suggest that dynamical rotational instabilities
could occur at much lower β. These results have to be verified
in three-dimensional simulations including a finite-temperature
EOS and realistic protoneutron star models.

Since including weak-interaction physics and neutrino trans-
port will change the overall evolution, our specific results for
the βi dependence should be taken with care. However, the
qualitative behavior and trends we have identified should be ro-
bust.

In comparison with the studies of Zwerger and Müller (1997)
(Newtonian gravity) and Dimmelmeier, Font, and Müller
(2002b) (relativistic gravity), who used polytropic progenitors
and a simplified equation of state, our models radiate on average
about an order of magnitude less energy, exhibit a factor of 4 to
10 smaller maximum wave amplitudes, and peak at lower fre-
quencies. Zwerger and Müller (1997) categorized the collapse,
bounce and post-bounce behavior of their models in three types
of which their types I and II match our types I and II. How-
ever, we have not encountered their type III behavior (“rapid
collapse”) in any of our calculations.

Aside from this study, there have been only two major ef-
forts to calculate the gravitational wave signature of core col-
lapse with a sophisticated realistic equation of state and realistic
progenitor models. These were Mönchmeyer et al. (1991) and

the recent study by Kotake, Yamada, and Sato (2003). Both
studies included electron capture and a leakage scheme for ap-
proximate treatment of neutrino transport, but calculated only
a very small set of models and used only one pre-supernova
progenitor. In accord with our results, none of them found Zw-
erger and Müller (1997) type III behavior. Their gravitational
wave amplitudes and total radiated energies are qualitatively
and quantitatively similar to ours.

To assess the detectability of gravitational waves from core
collapse, we applied the method proposed by Flanagan and
Hughes (1998). We find that at a distance of 10 kpc, i.e. for
galactic distances, the 1st-generation LIGO, once it has reached
its design sensitivity level, will be able to detect more than 80%
of our core collapse models under optimal conditions and ori-
entations. Assuming random polarizations and angles of inci-
dence, this reduces to 10%. Advanced LIGO, however, should
be able to detect virtually all models at galactic distances. Fig-
ure 22 is similar to Fig. 20 in that it presents peak hchar, but
it also includes the actual hchar spectra of selected models (eq.
25). These spectra are complementary to the energy spectra of
previous figures, and serve to put the issues of detectability in a
noisy detector into sharper relief.

To conclude, we point out that even though this study has
advanced our knowledge of gravitational waves from core col-
lapse a bit further, many important questions remain unan-
swered. Detailed microphysics and neutrino transport are apt
to change the dynamics of collapse, bounce and post-bounce
phases. The coherent post-bounce oscillations of type II models
will most likely be strongly damped by the stalled bounce shock
in simulations that account for neutrino energy losses. Further-
more, gravitational radiation is to be expected from anisotropic
neutrino emission (Burrows and Hayes 1996), and neutrino-
driven convection behind the stalled shock and in the protoneu-
tron star. Both sources are potentially significant emitters of
gravitational wave energy.

The detection of gravitational radiation from collapse super-
novae would open a new window into the violent dynamics at
the core of the supernova and neutron-star birth phenomena.
Furthermore, features seen in gravitational radiation may have
their counterparts in the neutrino signal. Seeing a correlation
in these two disparate channels could break the study of super-
novae wide open. As we have shown, measurements of wave
frequency, wave form, and power can in principle reveal the
rotational structure of the massive star interior that, though of
central importance across a broad spectrum of astrophysics, has
to date remained almost completely out of reach.
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Marnach. In addition, we thank Jeff Fookson and Neal Lauver
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TABLE 1

INITIAL MODEL DATA

Model Name Rc Mc ZAMS Mass ZAMS veq βi Reference
(108 cm) (M� ) (M� ) (km s−1) (%)

n=3 polytrope 1.55 1.46 Zwerger and Müller (1997)
s11WW 1.33 1.31 11 Woosley and Weaver (1995)
s15WW 1.16 1.28 15 Woosley and Weaver (1995)
s20WW 2.21 1.73 20 Woosley and Weaver (1995)
s25WW 2.28 1.78 25 Woosley and Weaver (1995)
e15 1.21 1.33 15 200 0.650 Heger, Langer, and Woosley (2000)
e20 2.19 1.68 20 200 0.420 Heger, Langer, and Woosley (2000)
m15b4 1.23 1.37 15 200 0.002 Heger et al. (2003)
m20b4 1.53 1.49 20 200 0.003 Heger et al. (2003)
m25b4 1.93 1.64 25 200 0.005 Heger et al. (2003)

Note. — List of progenitor models used in this paper. Rc is the radius of the iron core (determined by the discontinuity in Ye at the
outer edge of the iron core), Mc is the mass of the core, veq the equatorial velocity of the model at ZAMS, and βi is the initial rotation
parameter. All progenitor models already have an initial infall velocity profile when they are mapped onto our 2-dimensional grid.
Nothing artificial is done to initiate collapse.

TABLE 2

RESULTS: POLYTROPES

Model βi J tb ∆t βb ρb AE2
20 max hTT

max fmax EGW,b EGW, f

(%) (1049 (ms) (ms) (%) (1014 (cm) @ 10 kpc (Hz) (10−9 (10−9

erg s) g cm−3) (10−21) M� c2) M� c2)

A50000β0.25 0.25 1.273 66.78 83.22 4.03 3.52 -876.19 -7.76 540 14.50 18.28
A50000β0.50 0.50 1.746 67.51 82.49 6.75 3.26 -1617.13 -14.31 453 41.43 56.31
A50000β0.90 0.90 2.370 68.90 81.11 9.97 2.83 -2125.30 -18.81 460 49.24 57.08
A1000β0.25 0.25 1.227 67.05 82.95 5.28 3.43 -1211.62 -10.72 467 25.85 36.04
A1000β0.50 0.50 1.646 67.97 82.03 8.40 3.10 -2151.21 -19.04 693 65.61 71.57
A1000β0.90 0.90 2.314 70.11 79.89 12.48 2.36 -1674.60 -14.82 313 17.71 19.58
A1000β1.80 1.80 3.281 74.34 46.26 13.35 0.40 -800.78 -7.09 100 14.35 1.60
A500β0.25 0.25 1.130 67.43 79.57 6.80 3.30 -1782.64 -15.78 509 50.22 64.22
A500β0.90 0.90 2.177 71.81 78.19 13.58 1.19 -1317.80 -11.66 173 7.41 8.08
NONROT - - 65.96 84.04 - 3.78 -14.82 -0.01 500 - 0.01

Note. — Overview of core collapse simulations performed with the polytropic progenitor model and the hybrid equation of
state (§4.1) for comparison with Zwerger and Müller (1997) and Dimmelmeier, Font, and Müller (2002b). βi is the initial rotation
parameter, J is the total angular momentum, and tb, βb and ρb are the time, central density, and rotation parameter at core bounce.
∆t=t f -tb is the time each calculation was carried out beyond core bounce. |AE2

20 |max and hmax are the absolute maximum of the
gravitational quadrupole wave amplitude and the maximum gravitational wave strain, as defined in §4.3. fmax is the peak frequency
of the gravitational wave spectrum, EGW,b is the gravitational wave energy radiated up to the first post-bounce minimum in the
maximum density, and EGW, f is the total energy radiated in gravitational waves during the entire simulation.
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TABLE 3

RESULTS: REALISTIC PROGENITOR MODEL S11WW

Model βi J ∆t βb β f ρb AE2
20 max hTT

max fmax EGW,b EGW, f

(%) (1049 (ms) (%) (%) (1014 (cm) @ 10 kpc (Hz) (10−9 (10−9

erg s) g cm−3) (10−21) M� c2) M� c2)

s11A500β0.1 0.10 0.708 167 4.00 3.62 3.70 -958.99 -8.49 524 10.99 11.88
s11A500β0.2 0.20 1.002 145 7.05 5.86 3.30 -1408.17 -12.46 402 19.15 22.11
s11A500β0.25 0.25 1.097 135 7.87 6.43 3.10 -1203.06 -10.65 404 11.21 12.78
s11A500β0.3 0.30 1.227 413 8.80 5.19 2.74 -661.27 -5.85 164 1.70 1.81
s11A500β0.4 0.40 1.417 468 8.00 4.81 1.11 -419.65 -3.71 37 0.46 0.55
s11A500β0.5 0.50 1.584 707 7.71 4.80 0.46 -325.27 -2.88 25 0.18 0.22

s11A1000β0.1 0.10 0.803 179 3.33 3.03 3.73 -878.86 -7.78 430 8.96 10.04
s11A1000β0.2 0.20 1.135 182 6.06 4.03 3.41 -1304.82 -11.55 470 14.10 15.53
s11A1000β0.3 0.30 1.391 91 8.00 6.21 3.00 -861.14 -7.62 208 3.82 4.26
s11A1000β0.4 0.40 1.606 304 7.98 4.77 2.06 -378.58 -3.35 150 0.35 0.42
s11A1000β0.5 0.50 1.795 284 7.40 4.65 0.60 -301.88 -2.66 78 0.16 0.19
s11A1000β0.6 0.60 1.967 503 7.15 4.49 0.28 -229.35 -2.02 38 0.06 0.07
s11A1000β0.7 0.70 2.124 424 6.95 4.41 0.15 -183.83 -1.63 26 0.03 0.03
s11A1000β0.8 0.80 2.271 510 6.66 4.38 0.09 -139.37 -1.23 44 0.01 0.02

s11A50000β0.1 0.10 0.856 172 2.17 1.97 3.83 -582.09 -5.15 394 3.93 4.86
s11A50000β0.2 0.20 1.211 156 3.88 3.32 3.64 -979.41 -8.67 416 9.03 9.72
s11A50000β0.25 0.25 1.354 69 4.73 3.83 3.55 -1111.64 -9.84 409 10.00 10.57
s11A50000β0.3 0.30 1.483 229 5.47 4.51 3.45 -1188.38 -10.52 420 10.11 10.61
s11A50000β0.4 0.40 1.713 163 6.47 5.42 3.23 -1075.10 -9.52 344 6.20 6.48
s11A50000β0.5 0.50 1.914 90 7.38 4.11 2.97 -613.39 -5.43 166 1.36 1.52
s11A50000β0.6 0.60 2.097 249 7.34 4.30 2.37 -266.17 -2.36 99 0.16 0.19
s11A50000β0.7 0.70 2.266 404 6.78 4.36 0.86 -238.21 -2.11 54 0.08 0.10

s11nonrot - - 88 - - 4.04 -26.09 -0.02 275 - 0.06

Note. — Numerical results of core collapse simulations performed with the Woosley and Weaver (1995) s11 progenitor model in
conjunction with the Lattimer-Swesty equation of state (Lattimer and Swesty 1991; §4.1). βi is the initial rotation parameter, J is the
total angular momentum, and βb and ρb are the central density and rotation parameter at core bounce. ∆t = t f -tb is the time each
individual calculation was carried out beyond core bounce. β f is the final rotation parameter for the whole grid. |AE2

20 |max and hmax

are the absolute maximum of the gravitational quadrupole wave amplitude and the maximum gravitational wave strain, as defined in
§4.3. fmax is the peak frequency of the gravitational wave spectrum, EGW,b gives the gravitational wave energy radiated before the
first post-bounce minimum in the maximum density, and EGW, f is the total energy radiated in gravitational waves during the entire
simulation.
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TABLE 4

RESULTS: REALISTIC PROGENITOR MODEL S15WW

Model βi J ∆t βb β f ρb AE2
20 max hTT

max fmax EGW,b EGW, f

(%) (1049 (ms) (%) (%) (1014 (cm) @ 10 kpc (Hz) (10−9 (10−9

erg s) g cm−3) (10−21) M� c2) M� c2)

s15A500β0.1 0.10 0.811 215 3.87 3.60 3.69 -862.97 -7.64 524 9.06 10.14
s15A500β0.2 0.20 1.147 181 6.88 5.79 3.31 -1283.00 -11.36 469 16.76 17.88
s15A500β0.25 0.25 1.257 151 7.83 6.55 3.12 -1205.50 -10.67 381 11.87 13.32
s15A500β0.3 0.30 1.409 138 8.71 5.99 2.80 -758.40 -6.71 242 2.69 2.88
s15A500β0.4 0.40 1.557 251 8.10 5.35 1.31 -426.44 -3.77 169 0.51 0.52
s15A500β0.5 0.50 1.812 641 7.81 5.19 0.54 -343.78 -3.04 128 0.23 0.25
s15A500β0.6 0.60 1.987 373 7.71 5.10 0.29 -278.79 -2.47 101 0.11 0.12
s15A500β0.9 0.90 2.421 524 7.52 5.05 0.07 -171.30 -1.52 55 0.02 0.03
s15A500β1.0 1.00 2.564 661 7.40 5.03 0.05 -138.20 -1.22 42 0.01 0.01

s15A1000β0.1 0.10 0.958 90 3.15 2.63 3.75 -742.56 -6.57 431 6.56 7.90
s15A1000β0.2 0.20 1.355 178 5.43 4.82 3.49 -1164.47 -10.31 461 12.32 13.10
s15A1000β0.3 0.30 1.660 167 7.11 6.37 3.13 -1040.73 -9.21 317 7.10 7.58
s15A1000β0.4 0.40 1.916 312 8.37 5.48 2.66 -491.54 -4.35 152 0.83 0.89
s15A1000β0.5 0.50 2.142 208 7.67 5.22 1.08 -362.96 -3.21 106 0.27 0.29
s15A1000β0.6 0.60 2.292 251 7.43 5.03 0.49 -293.17 -2.59 91 0.13 0.13
s15A1000β0.7 0.70 2.535 313 7.29 4.80 0.26 -234.48 -2.08 64 0.06 0.07
s15A1000β0.8 0.80 2.710 284 7.19 4.77 0.16 -190.31 -1.68 38 0.03 0.03
s15A1000β0.9 0.90 2.633 437 7.11 4.74 0.10 -152.94 -1.35 31 0.02 0.02
s15A1000β1.0 0.80 2.906 441 6.97 4.72 0.06 -124.39 -1.10 22 0.01 0.01

s15A50000β0.1 0.10 1.081 207 1.40 1.41 3.90 -382.21 -3.38 396 1.65 2.16
s15A50000β0.2 0.20 1.528 108 2.79 2.28 3.77 -654.29 -5.79 400 4.90 5.95
s15A50000β0.5 0.50 2.416 243 5.49 4.94 3.41 -1034.23 -9.15 428 7.46 7.48
s15A50000β1.0 1.00 3.417 494 7.42 4.65 2.16 -299.88 -2.65 71 0.18 0.20

s15nonrot - - 60 - - 4.04 -23.87 -0.02 337 - 0.02

Note. — Same as Table 3 but for all simulations using the Woosley and Weaver (1995) s15 progenitor model in conjunction with
the Lattimer-Swesty equation of state.
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TABLE 5

RESULTS: REALISTIC PROGENITOR MODEL S20WW/S25WW

Model βi J ∆t βb β f ρb AE2
20 max hTT

max fmax EGW,b EGW, f

(%) (1049 (ms) (%) (%) (1014 (cm) @ 10 kpc (Hz) (10−9 (10−9

erg s) g cm−3) (10−21) M� c2) M� c2)

s20A500β0.1 0.10 1.326 103 5.50 4.97 3.45 -1139.52 -10.09 594 16.03 19.03
s20A500β0.2 0.20 1.882 142 8.96 7.64 2.78 -1077.88 -9.54 396 6.55 8.85
s20A500β0.5 0.50 2.976 416 8.65 8.00 0.22 -355.85 -3.15 92 0.16 0.22

s25A500β0.2 0.20 2.217 56 9.16 7.55 2.72 -1043.73 -9.24 453 5.90 8.07

s20A1000β0.1 0.10 1.941 52 4.51 4.01 3.61 -954.61 -8.45 525 10.90 12.67
s20A1000β0.2 0.20 2.745 94 7.71 7.00 3.14 -1247.85 -11.04 387 14.90 18.76
s20A1000β0.3 0.30 3.304 146 9.12 7.52 2.44 -678.39 -6.00 73 1.43 1.74
s20A1000β0.4 0.40 2.858 189 8.49 7.71 0.82 -536.00 -4.74 85 0.66 0.78
s20A1000β0.5 0.50 3.984 113 8.37 7.45 0.36 -424.96 -3.76 97 0.30 0.33
s20A1000β0.6 0.60 4.254 291 8.37 8.10 0.20 -345.78 -3.06 79 0.15 0.17
s20A1000β0.7 0.70 4.549 290 8.31 8.17 0.12 -269.03 -2.38 66 0.07 0.08
s20A1000β0.8 0.80 4.839 300 8.33 8.23 0.08 -220.16 -1.95 56 0.02 0.03
s20A1000β0.9 0.90 5.040 282 8.32 8.15 0.05 -185.81 -1.64 47 0.02 0.03
s20A1000β1.0 1.00 5.226 316 8.36 8.17 0.04 -154.43 -1.37 16 0.01 0.01

s20A50000β0.1 0.10 1.950 40 1.53 1.26 3.89 -351.07 -3.11 409 1.25 1.79
s20A50000β0.2 0.20 2.758 36 2.89 2.34 3.78 -619.26 -5.48 424 4.48 5.49
s20A50000β0.5 0.50 4.361 230 5.88 5.96 3.39 -1175.30 -10.40 456 10.14 11.06
s20A50000β1.0 1.00 6.168 303 8.38 7.02 2.36 -449.58 -3.98 102 0.61 0.68

s20nonrot - - 83 - - 4.08 -165.02 -1.46 472 - 1.07

Note. — Same as Table 3, but for all simulations using the Woosley and Weaver (1995) s20 and s25 progenitor models. The s25
run justifies our assumption in §2 that the s20 and s25 progenitors lead to similar results. Note that for the s25 run a larger grid was
used and the evolution was stopped before the post-bounce oscillations had faded. Hence, the differences seen in the total angular
momentum and maximum frequency.

TABLE 6

RESULTS: HEGER MODELS

Model βi J ∆t βb β f ρb AE2
20 max hTT

max fmax EGW,b EGW, f

(%) (1049 (ms) (%) (%) (1014 (cm) @ 10 kpc (Hz) (10−9 (10−9

erg s) g cm−3) (10−21) M� c2) M� c2)

m15b4 0.0021 0.1345 30 0.087 0.082 4.14 -29.15 -0.26 590 0.004 0.014
m20b4 0.0032 0.3034 37 0.161 0.156 4.15 -52.46 -0.46 360 0.026 0.041
m25b4 0.0053 0.3561 94 0.324 0.36 4.14 -101.06 -0.89 960 0.110 0.550

e15 0.6454 3.392 311 8.82 7.49 0.27 -405.57 -3.59 90 0.235 0.275
e20 0.4176 3.442 294 8.52 7.87 0.55 -436.77 -3.87 193 0.465 0.631

Note. — Same as Table 3, but for all simulations using the Heger, Langer, and Woosley (2000) and Heger et al. (2003) progenitor
models with rotation. Model m25b4, evolved long enough for convective instability behind the shock to grow, shows considerable
energy radiated by the post-bounce convective bulk mass motions.
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FIG. 1.— Mass density as a function of radius of the Woosley and Weaver (1995) progenitor models and the n = 3 polytropic progenitor of Zwerger and Müller
(1997). Note the good correspondence in the central regions between the less massive iron cores and the polytrope, but the general disagreement at larger radii. The
polytrope has a sharper edge.
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FIG. 2.— Electron number fraction Ye as a function of radius for the Woosley and Weaver (1995) progenitor models. The central iron core has been neutronized
due to electron capture during core silicon burning (Weaver, Zimmerman, and Woosley 1978). For the polytrope, Ye has been assumed to be 0.5 (Zwerger and Müller
1997). The discontinuity in Ye exhibited in the Woosley and Weaver models indicates the approximate boundary between the central iron core and the surrounding
shells.
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FIG. 3.— Initial angular velocity profiles of the rotating 15 (blue) and 20 (green) M� progenitor models (see Table 1 for model parameters). The dotted red
profiles were generated with the rotation law of eq. (5) using the central Ω of model e15 for Ω0. All realistic presupernova models exhibit near rigid rotation inside
' 1000 km. Note the much smaller angular velocities exhibited by models m15b4 and m20b4, which were evolved with the inclusion of magnetic fields.
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FIG. 4.— Central region of the VULCAN/2D computational grid. Shown in black is the inner 10 km, where the capability of VULCAN/2D to work with arbitrary
grid configurations has been used to perform a smooth transition from the outer radial grid to a Cartesian grid in the innermost region.
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FIG. 5.— 2-D plots of the specific entropy of the inner 200×200 km2 of the s15A1000β0.2 model depicting the ring-down epoch of the evolution of this generic
type I model. The color map goes from light red for high specific entropy (s=16 kB) to magenta for low entropy (s=0.7 kB). The times given in the top left-hand
corners are the snapshot times after bounce. Velocity vectors for the r and θ motions (not the φ motion in the angular direction) are superposed. As the core executes
successive radial and non-radial post-bounce oscillations, it generates strong sound waves (weak shock waves) that are seen in panels (b) and (c) as contours of
velocity discontinuity. At the time of panel (a), the actual bounce shock has already left the frame. Panel (d) shows the compact remnant at 13 ms after bounce
when it has already lost most of its excess pulsational energy. The velocities at that time are dominated by incoherent vortical motions. (This figure is available in
high-quality format from http://www.ita.uni-heidelberg.de/˜cott/gwpaper .)
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FIG. 6.— Evolution of the maximum density of the s15A1000 model series, which rotates almost rigidly inside 1000 km, for different initial rotation parameters
βi. For comparision, the dashed line shows the evolution of the central density of a nonrotating model. The models on this graph undergo core bounce between 280
and 500 ms after the start of the evolution. The time to bounce increases with initial rotation rate since centrifugal forces, acting as additional pressure support, slow
down collapse. All times are relative to the time of bounce (tb) for each individual model. One can clearly see the transition in collapse dynamics that takes place in
the interval in β-space between 0.20% and 0.40% which leads from type I to type II behavior (see text for details).
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FIG. 7.— Evolution of the ratio of rotational to gravitational energy (rotation parameter β) for the s15A1000 model series. The zero of the time axis is set to
the time of bounce for each model. The βi=0.40% model, which is the first to bounce by centrifugal forces, reaches the maximum β at bounce for all models. The
βi=0.30% model has a smaller β at bounce but shows, due to the greater compactness of its remnant, the largest final β. The models with βi > 0.40% collapse so
slowly that centrifugal forces are able to halt collapse before greater compression can lead to very large βs. None of our models exceeds a β of 10%.
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FIG. 8.— Maximum density (ρmax , black) and gravitational wave amplitude (AE2
20 , red) as functions of time for the Woosley and Weaver (1995) s15 model and

A = 1000 km. For each model, the zero of the time axis is set to the time of core bounce (tb). a (upper left): βi=0.10%, bounce at supranuclear density with
negligible influence of centrifugal forces (type I). Note the subsequent ring-down waveform, which is associated with both radial- and non-radial modes of the
compact remnant. b (upper right): βi=0.20%, similar to the previous model, but with greater asphericity leading to larger amplitudes. c (lower left): Transitional
model with βi=0.30%, which is beyond the βi for the largest gravitational wave amplitudes. The typical oscillation period of the waveform is significantly larger
than those of the previous models and the hydrodynamic data exhibit at least one additional coherent large scale expansion-collapse-bounce cycle caused by the
growing influence of centrifugal forces. d (lower right): βi=0.40%. The hydrodynamic evolution and the associated waveform of this model are already largely
influenced by centrifugal forces. The core exhibits subsequent multiple coherent bounces that are quasi-exponentially damped (type II).
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FIG. 9.— Same as Figure 8, but for higher values of βi. ρmax(t) (black) is the maximum density and AE2
20 (t) (red) is the gravitational wave amplitude for

s15A1000. a (upper left): This model with βi=0.50% undergoes a bounce at subnuclear density when centrifugal forces overcome gravitational attraction. Note
the significantly larger dynamical timescales compared with models with smaller βi. Panels b, c and d: As βi increases from 0.60% to 0.80%, bounce occurs more
slowly and at progressingly lower densities. The waveforms are dominated by the subsequent expansion-collapse-bounce cycles of the quickly spinning deformed
stellar core (type II).
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FIG. 10.— Energy spectra of the gravitational radiation emitted from representative models of the s15A1000 model series. Note the shift of the spectra to lower
frequencies with increasing βi and the logarithmic scale of the ordinate. The spectra have been cut off at a frequency beyond which generic high frequency noise
at constant magnitude sets in. The first pronounced peak in the spectra of the more strongly rotating models can be identified with the frequency of the expansion-
collapse-bounce cycles exhibited by these models (type II). The spectra of the slower rotators peak at the dominant frequencies of the post-bounce ringing of the
compact remnant. The higher harmonics are clearly seen in these models.
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FIG. 11.— Comparison between different initial distributions of angular momentum at fixed β=0.50% for the s15 model from Woosley and Weaver (1995). Models
A50000, A1000, and A500 are nearly rigidly rotating interior to 50000, 1000, and 500 kilometers, respectively. a (upper left): Time evolution of the gravitational
wave amplitude for the models s15A50000β0.5, s15A1000β0.5, and s15A500β0.5. The time axis is relative to the time of bounce of the s15A1000β0.5 model. For
a given model the transition from a bounce dominated by nuclear repulsive forces to one in which centrifugal forces play a significant role occurs at progressively
lower βi with decreasing A. b (upper right): Energy spectra of the three models. Note the distinct peak of the rigidly rotating s15A50000β0.5 model (green) at
about 400 Hz that is directly associated with the post-bounce ringing of the compact remnant, also seen in the waveform. The spectra of the models with smaller A
exhibit a local maximum at low frequencies that also directly correspond to the frequencies of their post-bounce expansion-collapse-bounce cycles. c (lower left):
Evolution of the maximum density. Model s15A50000β0.5 still bounces at supranuclear densities, while the two models with smaller A have already made the
transition to type II behavior. d (lower right): Evolution of the rotation parameter β with the time given relative to the time of bounce of model s15A1000β0.5.
The models with A=1000 and A=500 have more angular momentum in their central regions and, hence, are more strongly influenced by centrifugal forces. For a
given βi, they also achieve larger final βs and βs at bounce.
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FIG. 12.— Inter-model comparison between s11A1000, s15A1000 and s20A1000 for βi=0.50% of the evolution of the peak density. The time is given relative to
the time of bounce for each individual model. Model s15 reaches higher maximum densities and has the shortest post-bounce oscillation periods. Model s11, which
has a similar initial density and angular momentum distribution, reaches lower densities and has longer post-bounce oscillation periods. The s20A1000 model,
however, with significantly different initial density, angular momentum, and compositional profiles, bounces for the same A and βi at even lower densities. It also
has shorter oscillation periods than the s11 model and is more quickly damped by the proximity of its stalled shock.
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FIG. 13.— 2-D plots of the specific entropy for model s20A1000β0.3. Red denotes high entropy (∼14 kB) and dark blue denotes low entropy (∼0.9 kB, seen in
the compact remnant). Shown are the inner 1200×1200 km2 of the hydrodynamic grid. As in Fig. 5, velocity vectors are superposed and the times after bounce are
given in the top left of each panel. Since the core is oblate, core bounce happens first and at smaller radii along the poles. After bounce, the shock is able to propagate
much faster along the rotation axis than in the equatorial region. High entropy, jet-like structures form along the rotation axis. This is seen in panel (a), which shows
the core 19 ms after bounce. The bounce shock has already reached about 400 km at the poles and 300 km at the equator. Forty-two ms after bounce (panel b) the
axis ratio has increased even more and violent vortical motion has set in. At about 68 ms after bounce (panel c), the bounce shock has stalled and most velocities
point inward. The shock recedes. Panel (d) shows the shocked region at the end of the evolution. The shock has receded even further. Interior to the shock, vortical
motion has lead to the breaking of equatorial symmetry. (This figure is available in high-quality format from http://www.ita.uni-heidelberg.de/˜cott/gwpaper.)
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FIG. 14.— Comparison of the evolution of the gravitational wave signal AE2
20 (t) of models s11, s15 and s20 for A=1000 km and βi=0.50%. The waveforms reflect

the density evolution seen in Fig. 12. For the s20 signal, additional high-frequency contributions appear to be correlated with the vortical motions and aspherical
infall seen behind its stalled shock.
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FIG. 15.— Comparison of the gravitational wave energy spectra for s11, s15 and s20 models. Note the linear scale of the ordinate.



33

FIG. 16.— Comparison of the e15 model from Heger, Langer, and Woosley (2000) with the s15A1000β0.7 model from Woosley and Weaver (1995). Both
models have similar initial βi (0.645% for the e15 model versus 0.70% for the s15A1000β0.7 model) and angular velocity (Ω) profiles but differ significantly in
their total angular momenta. This is due to differences in their initial density profiles. a (upper left) and b (upper right): Evolution of the maximum density and
the gravitational wave amplitude, respectively, for models e15 and s15A1000β0.7. The waveform of e15 exhibts additional high-frequency components about 100
ms after bounce that we associated with the sudden damping of the post-bounce expansion-collapse-bounce cycles by infalling matter. This is also reflected in the
evolution of the maximum density. c (lower left): Evolution of the rotation parameter β for the two models. The larger angular momentum of model e15 and its
specific distribution translate into a larger final β. d (lower right): Energy spectra for the two models under consideration. The e15 model radiates significantly
more energy and has distinctly more fine spectral structure.
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FIG. 17.— The 15 and 20 M� models from Heger et al. (2003). a (upper left): Evolution of the maximum density (black) and the gravitational wave amplitude
(red) of the m15b4 model. b (upper right): The same for the m20b4 model. Both models rotate very slowly and rigidly and show only small deviations from
spherical symmetry. Hence, the gravitational wave amplitudes are small. c (lower left): This figure depicts the evolution of the rotation parameter β for these
models. Both models bounce due to the stiffening of the equation of state at nuclear density, with little contribution due to centrifugal forces. The model with the
greater βi, m20b4, reaches a larger final β. d (lower right): Energy spectra. The spectrum of the m20b4 model peaks at lower frequencies and contains significantly
more energy (4 times more; see Table 6) than the specrum of the m15b4 model. This shows the sensitivity of the gravitational wave signature to small differences
in the initial rotation profile and stellar structure.
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FIG. 18.— Evolution of the maximum density (black) and the gravitational wave amplitude (red) of a s15 model evolved without rotation. The time is given
relative to the time of core bounce. Small scale perturbations, introduced by the finite-difference approximation and post-bounce convective instability, lead to
continuous gravitational wave emission with amplitudes that are one to two orders of magnitude smaller then those observed from the collapse of a rotating model.
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FIG. 19.— Angular velocity profiles in the equatorial region at the end of the evolution of s15 models with A=500 km (dashed) and A=50000 km (solid) and for
βis of 0.10, 0.20, 0.50, and 1.00%. Interestingly, the initially rigidly rotating models (A=50000 km) exhibit a more differentially rotating central region than the
initially more differentially rotating models do. The local peak in the angular velocity at ∼6-8 km and the strong Ω-gradients associated with it have been considered
possible drivers of the magneto-rotational instability (MRI) (Akiyama et al. 2003).
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FIG. 20.— LIGO sensitivity plot. Plotted are the optimal root-mean-square noise strain amplitudes hrms =
√

f S( f ) of the initial and advanced LIGO interferometer
designs. Optimal means that the gravitational waves are incident at an optimal angle and optimal polarization for detection and that there are coincident measurements
of gravitational waves by multiple detectors. For gravitational waves from burst sources incident at random times from a random direction and a signal-to-noise
ratio (SNR) of 5, the rms noise level hrms is approximately a factor of 11 above the one plotted here (Abramovici et al. 1992; Flanagan and Hughes 1998). We have
plotted solid squares at the maxima of the characteristic gravitational wave strain spectrum (hchar ( f ); §8) of our s11 (green), s15 (blue), and s20 (orange) models
from Woosley and Weaver (1995) that were artificially put into rotation. Our nonrotating models are marked with stars; diamonds stand for models from Heger,
Langer, and Woosley (2000) and Heger et al. (2003). The distance to Earth was set to 10 kpc for all models. Most of our models lie above the optimal design
sensitivity limit of LIGO I. Hence, the prospects for detection are good. Those models that are not detectable by the 1st-generation LIGO are those that rotate most
slowly (the Heger et al. 2003 models) and those which are the fastest rotators.
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FIG. 21.— Same as Fig. 10, but for the s11A500 sequence and for βis from 0.1% to 0.5%.
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FIG. 22.— Same as Fig. 20, but with various full hchar spectra (using eq. 25) superposed. This plot makes clear the large width of actual spectra and the deviation
from even quasi-periodic behavior of rotating collapse wave signatures.


