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TURBULENT DIFFUSION 
 

Philip J. W. Roberts and Donald R. Webster1 

ABSTRACT 
Almost all flows encountered by the engineer in the natural or built 

environment are turbulent, resulting in rapid mixing of contaminants introduced 
into them.  Despite many years of intensive research into turbulent diffusion, 
however, our ability to predict mean contaminant distributions is often quite crude 
and to predict statistical variations of concentration fluctuations even cruder.  This 
chapter reviews basic ideas of turbulence and the mechanisms whereby scalar 
quantities, such as contaminants, are mixed.  The evolution equations for scalar 
quantities are derived, the engineering assumptions used to make them tractable 
are discussed, and typical solutions are presented.  Applications to various 
situations of engineering interest are given, including diffusion in rivers, estuaries, 
and coastal waters.  The complexities of the diffusion process are demonstrated 
by the use of new optical experimental techniques.  New modeling techniques are 
discussed, and research questions are posed. 

1.  INTRODUCTION 
Turbulent diffusion is very efficient in rapidly decreasing the 

concentrations of contaminants that are released into the natural environment.  
Despite intensive research over many years, however, only crude predictions of 
these concentrations can be made.  Most mathematical models of turbulent 
diffusion, particularly engineering models, predict only time-averaged 
concentrations.  While this may often be sufficient, for example, water quality 
standards are usually written in terms of time-averaged values, more information 
on the statistical variation of concentration fluctuations may sometimes be 
needed.  This could include prediction of the peak exposures of humans to air 
pollutants, of aquatic organisms to water contaminants, of the probability of 
combustion of flammable gases accidentally released into the atmosphere, or of 
the information available to an organism attempting to navigate through a 
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turbulent chemical odor plume to its source.  These and similar topics are 
becoming increasingly important in turbulent diffusion research. 

Consider the photograph of a passive tracer released into a turbulent flow 
shown in Figure 1.  This photograph was obtained in a study of chemical odor 
plumes.  Even a cursory inspection of this image shows that the time-average 
tracer concentration at any point would be a very poor measure of the 
contaminant signal there.  This signal consists of a small mean value with 
intermittent fluctuations that range from zero to levels that are orders of 
magnitude higher than the mean.  Present mathematical models usually do not 
predict higher order measures of these signals such as their intermittency, peak 
values, probability density functions, and spatial correlations. 

New experimental techniques are now beginning to provide fresh insights 
into these questions.  These include non-intrusive optical techniques, particularly 
planar laser-induced fluorescence (PLIF) to measure tracer concentration levels 
and particle image velocimetry (PIV) to measure velocity.  They enable 
simultaneous measurement of instantaneous whole fields of tracer concentration 
and velocity from which detailed statistical measures of their spatial variability 
and correlations can be obtained.  In this chapter, we will use some of these 
techniques to illustrate the complexities of turbulent diffusion. 

The purpose of this chapter is to provide an introductory overview of the 
essential mechanisms of turbulent diffusion and some methods of predicting mean 
concentration distributions for a few select applications of engineering interest.  
We consider only the case of turbulent diffusion, that is, the spreading of a scalar 
quantity due to irregular turbulent velocity fluctuations.  This excludes mixing 
due to the combined effect of diffusion plus shear in the mean velocity, 
sometimes known as shear-flow dispersion.  We also exclude the effects of 
buoyancy due to density differences between the discharged fluid and the 
receiving fluid, and the suppression of turbulence due to density stratification.  
We first provide a review of turbulent flows, particularly those features that are 
important to turbulent diffusion.  We then discuss the mechanisms whereby 
turbulence induces rapid mixing; derive the time-averaged equations of species 
conservation, and present methods of estimating the resulting turbulent diffusion 
coefficients.  We then give examples of applications of interest to engineers and 
biologists.  We conclude with a discussion of some of the newer techniques for 
turbulent diffusion simulations, and pose some research questions. 

 

Figure 1.  Chemical plume released iso-kinetically into fully developed turbulent
open-channel flow.  The release height is ¼ of the channel depth. 
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2.  BASIC CHARACTERISTICS OF TURBULENT FLOWS 
The first step in understanding turbulent diffusion and the fate of tracer 

concentrations is understanding some basic characteristics of turbulence. 

2.1  The Nature of Turbulence 
Turbulence is difficult to define exactly; nevertheless, there are several 

important characteristics that all turbulent flows possess.  These characteristics 
include unpredictability, rapid diffusivity, high levels of fluctuating vorticity, and 
dissipation of kinetic energy. 

The velocity at a point in a turbulent flow will appear to an observer to be 
“random” or “chaotic.”  The velocity is unpredictable in the sense that knowing 
the instantaneous velocity at some instant of time is insufficient to predict the 
velocity a short time later.  A typical velocity record is shown in Figure 2. 

The unpredictable nature of turbulence requires that we describe the 
motion through statistical measures.  The velocity typically will be described as a 
time-averaged value plus some fluctuation.  Time-average quantities are denoted 
with an over bar: 
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1
T

u u dt
T

= ∫  (1) 

where T is a time much longer than the longest turbulent fluctuations in the flow.  
A time record such as shown in Figure 2 is called statistically stationary if the 
mean quantities remain constant over the period of interest. 
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Figure 2.  Sample turbulent velocity record. 
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For a stationary velocity record, the instantaneous velocity can be 
decomposed  into the sum of time-averaged and fluctuating contributions (called 
the Reynolds decomposition): 

 u u u′= +  (2) 

where u′  is the fluctuating component (i.e. the deviation from the mean value) as 
shown in Figure 2.  By definition, the time-average fluctuation is zero.  Higher 
order statistical quantities, such as the variance, are used to describe the 
magnitude of the fluctuations: 

 ( )22 2

0

T

u u u u dt′= = −∫!  (3) 

The square root of the variance of the velocity fluctuations (the standard 

deviation, 2'u ) is denoted by u!  and is defined as the turbulence intensity. 

Actual velocity records obtained at two depths in the open channel flow 
photographed in Figure 1 are shown in Figure 3.  The distance from the wall is z 
and water depth is d.  The time-averaged velocity is greater farther from the wall, 
as would be expected in a boundary layer.  The turbulence intensity also varies 
with distance from the wall, being significantly larger near the wall.  The 
variation of the time-averaged velocity and turbulence intensity with distance 
from the lower bed are shown in Figure 4.  The average velocity increases 
monotonically from zero at the wall; the turbulence intensity increases rapidly 
from zero at the wall to a local maximum near the wall and then monotonically 
decreases. 
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Figure 3.  Velocity time series obtained in a turbulent, open-channel 
flow at  z/d = 0.03 (bottom), and z/d = 0.72 (top). 
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The velocity fluctuations act to efficiently transport momentum, heat, and 
tracer concentration.  This turbulent transport is significantly more effective than 
molecular diffusion.  Thus, the second characteristic of turbulence is a high rate of 
diffusivity.  In fact, it is common to model the transport due to the fluctuations by 
defining an effective diffusion coefficient called the eddy diffusivity. 

While the velocity fluctuations are unpredictable, they do possess a spatial 
structure.  A turbulent flow, on close examination, consists of high levels of 
fluctuating vorticity.  At any instant vortical motion, called eddies, are present in 
the flow.  These eddies range in size from the largest geometric scales of the flow 
down to small scales where molecular diffusion dominates.  The eddies are 
continuously evolving in time, and the superposition of their induced motions 
leads to the fluctuating time records such as those shown in Figures 2 and 3. 

Turbulent kinetic energy is passed down from the largest eddies to the 
smallest though a process called the energy cascade.  At the smallest scales, the 
energy is dissipated to heat by viscous effects.  Thus, the fourth characteristic of 
turbulent flows is dissipation of kinetic energy.  To maintain turbulence, a 
constant supply of energy must be fed to the turbulent fluctuations at the largest 
scales from the mean motion. 

2.2  Length Sales in Turbulent Flows 
Motions in a turbulent flow exist over a broad range of length and time 

scales.  The length scales correspond to the fluctuating eddy motions that exist in 
turbulent flows.  The largest scales are bounded by the geometric dimensions of 
the flow, for instance the diameter of a pipe or the depth of an open channel.  
These large scales are referred to as the integral length and time scales. 

Observations indicate that eddies lose most of their energy after one or 
two overturns.  Therefore, the rate of energy transferred from the largest eddies is 
proportional to their energy times their rotational frequency.  The kinetic energy 
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is proportional to the velocity squared, in this case the fluctuating velocity that is 
characterized by the standard deviation.  The rotational frequency is proportional 
to the standard deviation of the velocity divided by the integral length scale.  
Thus, the rate of dissipation, ε , is of the order: 

 
3uε !

∼
#

 (4) 

where #  is the integral length scale. 

Interestingly, the rate of dissipation is independent of the viscosity of the 
fluid and only depends on the large-scale motions.  In contrast, the scale at which 
the dissipation occurs is strongly dependent on the fluid viscosity.  These 
arguments allow an estimate of this dissipation scale, known as the Kolmogorov 
microscale, η, by combining the dissipation rate and kinematic viscosity in an 
expression with dimensions of length: 

 
1/ 43νη

ε
 
 
 
∼  (5) 

Similarly, time and velocity scales of the smallest eddies can be formed: 

 
1/ 2ντ

ε
 
 
 
∼      ( )1/ 4v νε∼  (6) 

An analogous length scale can be estimated for the range at which 
molecular diffusion acts on a scalar quantity.  This length scale is referred to as 
the Batchelor scale and it is proportional to the square root of the ratio of the 
molecular diffusivity, D, to the strain rate of the smallest velocity scales, γ : 

 
1/ 2

B
DL
γ

 
 
 
∼  (7) 

The strain rate of the smallest scales is proportional to the ratio of Kolmogorov 
velocity and length scales, ( )1/ 2v / /γ η ε ν∼ ∼ .  Thus, the Batchelor length scale 
can be recast into a form that includes both the molecular diffusivity of the scalar 
and the kinematic viscosity: 

 
1/ 42

B
DL ν
ε

 
 
 
∼  (8) 

The ratio of the Kolmogorov and Batchelor length scales equals the square root of 
the Schmidt number, Sc: 
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 
 (9) 

For the open channel flow example discussed in this chapter, the mean 
velocity is 50 mm/s and the integral length scale is roughly half the channel depth, 
i.e. 100 mm.  The fluid was water at 20°C with a kinematic viscosity of 

6 21 10 m /s−× .  Therefore, the Kolmogorov length and time scales are 0.7 mm and 
0.5 s, respectively.  Assuming a diffusivity, D = 9 21 10 m /s−×  for the chemical 
tracer photographed in Figure 1, the Batchelor scale is 0.02 mm, which is 35 
times smaller than the Kolmogorov microscale.  Thus, we would expect a much 
finer structure of the concentration field than the velocity field. 

2.3  Energy Cascade 
The energy spectrum characterizes the turbulent kinetic energy 

distribution as a function of length scale.  (The power spectrum is usually 
described in terms of a wave number, k, which is the inverse of length, but we 
will focus our discussion in terms of physical length scales.)  The spectrum 
indicates the amount of turbulent kinetic energy contained at a specific length 
scale.  This section describes some universal features of the energy spectrum for 
turbulent flows. 

As described in the previous section, the large turbulent length scales in 
the flow dictate the rate of dissipation.  These large length scales draw energy 
from the mean flow, then transfer the energy to successively smaller scales until it 
is dissipated at the Kolmogorov microscale.  This process is called the energy 
cascade. 

The energy distribution at the largest length scales is generally dictated by 
the flow geometry and mean flow speed.  In contrast, the smallest length scales 
are many orders of magnitude smaller than the largest scales and hence are 
isotropic in nature.  In between, we can describe an inertial subrange bounded 
above by the integral scale and below by the Kolmogorov microscale, Lη $ $ # .  
In this range, the spectrum will only be a function of the length scale and the 
dissipation rate.  (The spectrum depends on the dissipation rate because the 
largest length scales set the rate and the energy is transferred through this range.)  
With this dependence, dimensional reasoning yields Kolmogorov’s 5/3k −  law:  

 2 /3 5/3E kαε −=  (10) 

where k is the wavenumber and α is a constant of order one.  

A typical energy spectrum is shown in Figure 5.  The large length scales 
have the most energy and the distribution in that range depends on the boundary 
conditions.  The smaller scales have less energy by several orders of magnitude.  
In between, the turbulent kinetic energy varies in the inertial subrange in 
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proportion to 5/3k − .  Also indicated in the figure is the Batchelor scale, which is 
more than an order of magnitude smaller than the Kolmogorov scale. 

2.4  Evolution Equations 
Turbulent flows must instantaneously satisfy conservation of mass and 

momentum.  Thus, in principle, the incompressible continuity and Navier-Stokes 
equations can be solved for the instantaneous turbulent flow field.  The difficulty 
with this approach is that an enormous range of scales must be accounted for in 
the calculation.  To accurately simulate the turbulent field, the calculation must 
span from the largest geometric scales down to the Kolmogorov and Batchelor 
length scales.  Even with the fastest, largest modern supercomputers, such a 
calculation can be achieved only for simple geometries at low Reynolds numbers. 

In many situations, engineers and scientists are satisfied with an accurate 
assessment of the time-averaged flow quantities.  For instance, the time-averaged 
velocity and pressure distribution is sufficient to calculate the wind load on a 
skyscraper.  To derive the time-averaged flow equations we start with the 
instantaneous conservation equations, substitute the Reynolds decomposition (Eq. 
2), and time average the equations, yielding: 

 0i

i

u
x

∂ =
∂

 (11) 

 
2

2
i i i

j i j
j i j j

u u upu u u
t x x x x

ρ µ ρ
 ∂ ∂ ∂∂ ∂ ′ ′+ = − + −  ∂ ∂ ∂ ∂ ∂ 

 (12) 

where we have employed indicial notation to indicate vectors and the standard 
Einstein summation convention.  These Reynolds-averaged equations for the 
mean velocity and pressure are very similar to the instantaneous continuity and 
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Figure 5.  Typical turbulence energy spectrum, with length scales
for the open channel flow of Figures 1 through 4 indicated. 
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Navier-Stokes equations.  The primary difference is the addition of the 

( )i j
j

u u
x

ρ ∂ ′ ′
∂

 term in the time-averaged momentum equation.  This term is called 

the Reynolds stress tensor; it physically corresponds to the transport of 
momentum due to the turbulent fluctuations.  This turbulent transport generally 
dominates that due to molecular diffusion.  An equation for the time-averaged 
scalar transport equation can be derived in the same way, as will be shown in 
Section 3.3. 

While the evolution equations for the time-averaged quantities are valid, 
they cannot be solved because several new unknown quantities have been 
introduced, specifically i ju u′ ′ .  This dilemma is referred to as the “closure 
problem”; in other words, the mathematical problem is not closed because there 
are more unknowns than equations. 

2.5  Turbulent Kinetic Energy Budget 
An evolution equation for the kinetic energy can be derived for both the 

mean and turbulent components of the flow.  The mean kinetic energy equation is: 

2

( )

1 2 2
2

j i
i i ij i j i ij ij i j

j jviscous
dissipationtotal change in transport loss totypically smallmean kinetic energy turbulence

pu uD u u S u u u S S u u
Dt x x

ν ν
ρ

−  ∂∂  ′ ′ ′ ′= + − − +   ∂ ∂    %&'&(%&'&( %&&&&&'&&&&&( %&'&(
 (13) 

where 1
2

ji
ij

j i

uuS
x x

 ∂∂= +  ∂ ∂ 
 is the mean strain rate tensor. 

The equation indicates that the total change in kinetic energy of the mean 
flow results from the combined effects of transport, viscous dissipation, and loss 
to turbulence.  The loss to turbulence is the dominant term on the right hand side 
of the equation.  As discussed in the previous section, the mean flow feeds energy 
to the large turbulent scales.  The viscous dissipation is generally small for the 
mean flow because the gradients of mean velocity are mild.  The transport terms 
represent the spatial movement of mean kinetic energy. 

The budget of turbulent kinetic energy is: 

 2 21 12 2
2 2

j i
i i ij i j ij ij i j

j jviscous
dissipationtotal change in sheartransportturbulent kinetic energy production

p u uD u u s u u s s u u
Dt x x

ν ν
ρ

 ′ ′− ∂∂ ′ ′ ′ ′ ′= + − − −    ∂ ∂    %'(%&'&( %&'&(%&&&&&'&&&&&(
 (14) 
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where 1
2

ji
ij

j i

uus
x x

 ′∂′∂= +  ∂ ∂ 
 is the strain rate tensor for the fluctuating field. 

The shear production term is identical to the loss to turbulence term in the 
mean equation, although opposite in sign.  These terms correspond to kinetic 
energy transfer from the mean scales to the turbulent scales.  In this equation, the 
viscous dissipation is not small; in fact, the dissipation of turbulent kinetic energy 
is an important characteristic of every turbulent flow as discussed in the previous 
sections.  Again, the transport terms correspond to the spatial movement of the 
turbulent kinetic energy. 

3.  MECHANISMS OF MIXING IN TURBULENT FLOWS 

As the previous brief review has shown, turbulent flows contain irregular 
motions over a wide range of length and time scales.  The major question in this 
chapter is: How do these motions contribute to mixing, resulting in the plume 
patterns seen in Figure 1 and the concomitant rapid decay of contaminant 
concentrations with distance from the source?  In this section, we discuss these 
issues, and derive the equations of mass conservation in turbulent flows. 

3.1  Molecular Diffusion 
Consider first mass transport due to molecular diffusion.  The rate of mass 

transport in the x-direction is given by Fick’s law: 

 cq D
x

∂= −
∂

 (15) 

where q is the solute flux, i.e. the mass transport rate per unit area per unit time, c 
is the mass concentration, i.e. the mass of tracer per unit volume, and D is the 
molecular diffusion coefficient.  Equation 15 can be readily generalized to three 
dimensions: 

 q D c= − ∇
))  (16) 

where the arrows indicate vector quantities. 

Equations 15 and 16 state that the rate of mass transport due to molecular 
diffusion in any direction is directly proportional to the concentration gradient in 
that direction.  The equations are analogous to Fourier’s law of heat conduction, 
which states that the heat (energy) flux due to conduction is proportional to the 
temperature gradient.  In both cases, the negative sign indicates that the direction 
of transport is down the gradient (i.e. from hot to cold, or high to low 
concentration).  For other transport processes, it is sometimes assumed that the 
flux is also proportional to the concentration gradient.  These processes are then 
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called Fickian processes, in analogy to Eq. 16, although the transport mechanism 
can be other than molecular diffusion. 

In a flowing fluid, another major transport mechanism occurs due to the 
flow itself.  The magnitude of this transport in the x-direction is uc, or more 
generally in three dimensions uc) .  This is called advective transport.  (It is often 
called convective transport, but we prefer to reserve the word convective for 
motions induced by buoyancy effects). 

We can derive the equations for conservation of species by applying mass 
conservation to an arbitrarily-shaped control volume (see, for example, Fischer et 
al., 1979).  The result, where the transport mechanisms are molecular diffusion 
and advective transport, is: 

 
2 2 2

2 2 2
c c c c c c cu v w D
t x y z x y z

 ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + = + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 (17) 

This equation is known as the advective-diffusion equation and is closely 
analogous to the heat conduction equation.  Because of this, solutions to similar 
heat conduction problems can sometimes be utilized in mass diffusion problems.  
Many solutions to the heat conduction equation are presented in the classic texts 
by Crank (1956), and Carslaw and Jaeger (1959).  In addition, Fischer et al. 
(1979) discuss some fundamental properties of, and solutions to, the advective-
diffusion equation. 

The molecular diffusion coefficient, D, is a property of both the fluid and 
the diffusing solute.  For low tracer concentrations (i.e. dilute solutions), D is 
constant, and values can be obtained from tables such as those in CRC Handbook 
of Chemistry and Physics (1999).  For example, the diffusion coefficient for salt 
(NaCl) diffusing into water is about 91.5 10−× m2/s.  For gases diffusing into air 
the diffusion coefficient is much higher; for methane into air, it is about 1.8 × 10-5 
m2/s. 

To illustrate the consequences of these values, consider the distance, L, 
diffused by some material in a time t given a diffusion coefficient D.  Simple 
scaling indicates: 

 
2

     or      LL Dt t
D

∼∼  (18) 

Suppose this refers to sugar deposited at the bottom of a coffee cup.  For a cup 
height of 5 cm, the time for sugar to become uniformly mixed through the cup by 
molecular diffusion is, from Eq. 18, of the order of 30 days!  Clearly, molecular 
diffusion is a very slow process.  The mechanism to produce full mixing quickly 
is known to all:  Stir the coffee to produce advection and turbulence, which results 
in uniform mixing in a few seconds.  If molecular diffusion were the only process 
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acting to diffuse the plume shown in Figure 1 (i.e. if the channel flow were 
laminar), it would maintain it’s identity as a thin streak with negligible mixing for 
very long distances from the source. 

An important property of mixing is the relationship that exists between the 
variance of the spatial concentration distribution in a diffusing cloud in various 
situations to the diffusion coefficient.  In Section 4, solutions to the advective-
diffusion equation are presented for constant diffusion coefficients.  In each case 
the concentration distribution is a Gaussian function proportional to 

( )2exp / 4r Dt− , where r is the distance from the centerline.  The standard 

deviation of the concentration distribution, σ (which is also a measure of the 
characteristic width of a plume) is therefore: 

 2Dtσ =  

which is consistent with the scaling of Eq. 18.  It follows that 

 
21

2
d D
dt
σ =  (19) 

This result will be used later in the chapter when modeling the eddy diffusivity 
due to turbulent mixing. 

3.2  Mixing In Turbulent Flows 
So how does turbulence result in such rapid mixing?  Consider a patch of 

material in a turbulent flow, as shown in Figure 6.  Within the turbulent flow is a 
wide range of length scales, or eddy sizes, (Figure 5) ranging from the integral 
scale down to the Kolmogorov scale.  Eddies that are smaller than the patch size 
continually distort it resulting in steep concentration gradients, which are then 
smoothed by molecular diffusion.  The role of eddies that are larger than the patch 
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Figure 6.  Schematic depiction of a patch diffusing in a turbulent flow.
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size is to translate the entire patch without contributing to its mixing.  The mixing 
process is therefore due to distortion, stretching, and convolution of the original 
patch whereby the original volume is distributed irregularly over a larger volume, 
so that the concentration, averaged over some finite volume, decreases.  In the 
absence of molecular diffusion, however, such a process would not reduce actual 
peak concentrations at a point; the reduction of these peaks is therefore very 
dependent on molecular diffusion. 

3.3  Conservation Equations 
We can derive a conservation equation for turbulent flows from the 

advective-diffusion equation by decomposing the velocity and concentration into 
the sum of their mean and fluctuating parts and then time-averaging the result.  
This is similar to the process whereby the evolution equations were derived in 
Section 2.4.  Thus: 

 c c c′= +  (20) 

where c  is the time-averaged concentration  and c′  the instantaneous fluctuation, 
or deviation, from the mean.  On substituting this into Eq. 17, along with the 
velocity decompositions, (Eq. 2), and time-averaging the result, we obtain: 

 
2

2j j
j j j

c c cu D u c
t x x x

∂ ∂ ∂ ∂ ′ ′+ = −
∂ ∂ ∂ ∂

 (21) 

As before, the time-averaged transport equation is similar to the instantaneous 

equation (Eq. 17) with the addition of the j
j

u c
x
∂ ′ ′

∂
 term, which physically 

corresponds to the transport of c by turbulent fluctuations.  The x-component of 
the terms on the right-hand side of Eq. 21 can be written: 

 cD u c
x x

∂ ∂ ′ ′− ∂ ∂ 
 

from which it can be seen that both terms in the parentheses represent mass 
transport.  The first is the transport due to molecular diffusion (Fick’s law, Eq. 
15), and the second is a turbulent flux that arises due to the correlation between 

u′  and c′ .  Because D is usually a very small quantity, cu c D
x

∂′ ′
∂

*  and the 

molecular transport term is neglected compared to the turbulent flux.  Note, 
however, that molecular diffusion is still an important mechanism for mixing at 
the smallest scales, as discussed in Section 3.2.  
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It is usual to drop the bar terms at this point, so , and , etc.c c u u= = , and Eq. 21 
then becomes: 

 ' ' ' ' ' 'c c c cu v w u c v c w c
t x y z x y z

∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + = − − −
∂ ∂ ∂ ∂ ∂ ∂ ∂

 (22) 

Again, this equation cannot be solved because three new unknown quantities have 
been introduced, specifically iu c′ ′ .  This is the “closure problem” again; in other 
words, the mathematical problem is not closed because there are more unknowns 
than equations.  To circumvent this problem, the unknown quantities are often 
modeled, at least for common engineering problems, with eddy diffusivity 
coefficients, iε , defined as : 

                x y z
c c cu c v c w c
x y z

ε ε ε∂ ∂ ∂′ ′ ′ ′ ′ ′= − = − = −
∂ ∂ ∂

 (23)  

Equation 23 assumes that the diffusion process is Fickian, i.e. the turbulent mass 
transport is proportional to the mean concentration gradient.  While this simple 
model can be effective, the coefficients are strongly flow dependent, vary within 
the flow field, and are not known a priori.  As a result, estimation of eddy 
diffusivity coefficients often relies on empirical data. 

As already stated, the turbulent transport is much greater than the 
molecular transport, i.e. i Dε * .  With this assumption, Eq. 22 becomes: 

 x y z
c c c c c c cu v w
t x y z x x y y z z

ε ε ε ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   + + + = + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    
 (24) 

This equation is the most usual starting point for water and air quality models 
(with the possible addition of terms to account for creation and loss of species due 
to chemical or biological processes).  The assumptions made in deriving it should 
be kept in mind, however.   

When using Eq. 24, obvious question are: what are the values of the eddy 
diffusion coefficients in any particular situation, and how do they depend on any 
reasonably obtained or measured mean properties of the flow?  It should be 
reiterated that these coefficients are properties of the flow, and cannot therefore 
be found in any standard tables or handbooks of fluid properties. 

3.4 Estimation of Eddy Diffusion Coefficients. 
G. I. Taylor published one of the most important results in turbulent 

diffusion theory, which provides a link between the eddy diffusion coefficients 
and turbulent flow properties, in 1921.  To illustrate his theory, consider two 
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realizations of an experiment in which two particles are released into a turbulent 
flow, as sketched in Figure 7. 

Because the turbulent velocity fluctuations are irregular, the results of each trial 
differ.  On average, however, the particles wander apart from each other, and the 
rate at which they wander apart can be related to a diffusion coefficient.  This is 
easier to imagine by considering individual particles, released from the coordinate 
origin at different times, as shown in Figure 8.  The particle location after travel 
time T is: 

 
0

T

X udt= ∫
) )  

where u)  is the velocity of the particle as it travels (i.e. its Lagrangian velocity).  

The mean position of the particles, averaged over many releases in a stationary, 
homogeneous turbulent field, is clearly zero, i.e. the origin.  The variance of their 
displacements is not zero, however, and is given by: 

 

 

Figure 7.  Trajectories of two particles released into a
turbulent flow. 

Trial 1

Trial 2

 

Figure 8.  Possible trajectories of a particle released at the 
coordinate origin at various times into a turbulent flow. 

Trial 1 

Trial 2 
  

Trial 3 
 

Trial 4
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 2 2( ) 2
t t

L

o o

X t u R d dtτ
′

′= ∫∫!  (25) 

where LR  is the autocorrelation of the velocity: 

 2

( ) ( )( )L
u t u tR

u
ττ +=

!
 (26) 

and 2 ( ) ( )u u t u t′ ′=!  is the variance of the velocity fluctuations.  The 
autocorrelation is a measure of the memory of the flow, in other words how well 
correlated future velocities are with the current value. 

It would be expected that the shape of the autocorrelation function would 
have the form sketched in Figure 9.  It should tend to zero for long times, in other 
words, the particle eventually “forgets” its original velocity.  For short times, 
however, the velocity is strongly correlated with its original velocity. 

We can define a time scale LT  for this process by: 

 
0

L LT R dτ
∞

= ∫  (27) 

from which it can be seen that the area under the rectangle of width LT  is the same 
as that under the curve of LR .  LT  is known as the Lagrangian time scale of the 
flow, and it gives rise to a definition of a Lagrangian length scale: 

 L LL uT= !  (28) 

 

 

RL(τ) 

τ 

1

TL

Figure 9.  Autocorrelation function. 
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For times less than LT  and distances smaller than LL , the velocities are generally 
well correlated and LR  approaches one.  The Lagrangian length scale is closely 
related to the integral length scale, # , because the length over which the flow is 
well correlated corresponds to the size of the largest eddies. 

We are interested in two limiting cases: very long times and very short 
times compared to LT .  For long times, (i.e. Lt T* ) Eq. 25 becomes: 

 2 2( ) 2  + constantLX t u T t= !  

On differentiating this expression with respect to time, we obtain: 

 
2

21 ( )
2 L

d X t u T
dt

= !  (29) 

The standard deviation of the displacement, 2( )X t , therefore increases in 
proportion to 1/ 2t  because the distance traveled is analogous to a random walk, 
that is, uncorrelated steps.  By analogy to Eq. 19, the left hand side of Eq. 29 can 
be taken as a diffusion coefficient, therefore: 

 2
L Lu T uLε ! !∼ ∼  (30) 

Taylor did not give a diffusion coefficient in his original analysis; also, Eq. 30 is 
only valid for travel times longer than TL.  An important consequence for this case 
is that the eddy diffusion coefficient is constant, as given by Eq. 30. 

In the other limit of short travel times (i.e. Lt T$ ), the autocorrelation is 
very close to one ( 1LR ≈ ).  Eq. 25 then becomes: 

 2 2 2( )X t u t= !  

so the standard deviation of the displacements increases in proportion to t because 
of complete correlation between steps.  On differentiation, this becomes: 

 
2

21 ( ) 1
2 2

d X t u t
dt

ε = = !  (31) 

The diffusion coefficient is therefore not constant for short travel times; it 
increases in proportion to time because the particle displacements are highly 
correlated and the standard deviation of the displacement increases linearly. 

For practical problems, it is more convenient to discuss the variation of the 
diffusion coefficient with patch or cloud size.  Over a time LT , a particle travels 
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an rms distance LuT! .  But LuT!  is the Lagrangian length scale LL  (Eq. 28), so in 
other words the size of the diffusing cloud, L, should be much larger than the 
Lagrangian length scale, LL  for Eq. 30 to apply and for the diffusion coefficient 
to be constant.  For smaller clouds, i.e. L < LL , the diffusion coefficient increases 
with cloud size, and for very small clouds, Eq. 31 applies. 

This result implies that the diffusion coefficient increases with cloud size 
while the cloud size is smaller than LL .  This phenomenon is known as relative 
diffusion – in other words, the magnitude of the diffusion coefficient is relative to 
the cloud size.  When the patch size lies within the inertial subrange, Batchelor 
(1952) shows that the rate of increase of the mean square separation of the 
particles is: 

 
2 2 / 3

1/ 3 2d s s
dt

ε  ∝    (32) 

where s is the separation between particles.  This leads to the celebrated “4/3 
power law” for diffusion: 

 4 / 3Lε α=  (33) 

where α is a constant depending on the energy dissipation rate, and L is a measure 
of the cloud size.  A similar result was first obtained by Richardson (1926) in 
conjunction with atmospheric diffusion.  Equation 33 is frequently used for open 
water and atmospheric diffusion problems. 

Observations of diffusing dye patches in the open ocean show 
considerable scatter when compared to Eq. 33.  Some results are shown in Figure 
10.  The experiments can be approximately bracketed with 0.01 < α < 0.002 
cm2/3/s (see Fischer et al., 1979, Figure 3.5), ε in cm2/s, and L in cm. 

log(ε)

log(L)

ε=0.01L4/3

ε=0.002L4/3

Figure 10.  Relative diffusion in the ocean.
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4.  SOLUTIONS TO THE ADVECTIVE-DIFFUSION EQUATION 

4.1  Introduction 
In this section, we present solutions to the advective-diffusion equation 

(Eq. 17) for several simple boundary and initial conditions.  These solutions, 
while idealized, provide insight into the basic transport mechanism and provide a 
means for understanding situations that are more complex.  Solutions provided 
here are referenced in future sections regarding specific flow applications. 

4.2  Continuous Line Source In Two-Dimensions, Constant Diffusion 
Coefficient 

Consider a steady release of contaminated fluid from a line source into a 
steady uniform flow with ( ),0,0u U=)  as shown in Figure 11.  The objective is to 

predict the concentration distribution in the x-y plane.  This configuration models, 
for example, a continuous release into a deep river from a long multiport diffuser.  
The mass flow rate from the source per unit length along the z-axis is m+  (e.g. the 
units of m+  are kg/m/s).  As the transport due to diffusion is significantly greater 
in the y-direction than in the x-direction, due to the steeper concentration 
gradients in the y-direction, the governing equation reduces to: 

 
2

2

c cu D
x y

∂ ∂=
∂ ∂

 

Applying the transformation x Ut=  yields the simple one-dimensional diffusion 
equation: 

 
2

2

c cD
t y

∂ ∂=
∂ ∂

 

 

 

U 

y

x
Line 
source

c(x,y) 

Figure 11.  Diffusion from a continuous 
line source. 
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Let us first consider solutions to this equation by means of dimensional analysis.  
The downstream mean concentration is given by: 

 ( ), , / ,c f y t m U D= +  

where /m U+  is the amount of mass of the contaminant “picked up” by the passing 
flow at the source.  The concentration at any point in the field must be 
proportional to the contaminant mass flowrate divided by some characteristic 
length.  Equation 18 defines a characteristic length, proportional to the distance 
that the contaminant diffuses in time t, Dt .  Thus,  

 ( ),
4 4
m yc y t f

U Dt Dtπ
 =  
 

+
 

where we have added arbitrary constants to make the solution mathematically 
more convenient.  Inserting this functional form into the governing equation and 
defining a similarity variable, / 4y Dtη = , yields an ordinary differential 
equation whose solution is: 

 ( )
2

, exp
44

m yc y t
DtU Dtπ

 
= − 

 

+
 

Finally, transforming back into spatial coordinates, /t x U= , we obtain: 

 ( )
2

, exp
44 /

m y Uc x y
DxU Dx Uπ

 
= − 

 

+
 (34) 

The solution at several distances from the line source is sketched on Figure 11.  
As the contaminant advects downstream in the x-direction, diffusion acts to 
spread the contaminant in the y-direction and decrease the centerline value in 
proportion to x-1/2. 

4.3  Continuous Point Source, Constant Diffusion Coefficient 
Consider now a variation of the previous example in which a point source 

is exchanged for the line source (Figure 12).  Among other examples, this 
configuration corresponds approximately to release from a smokestack into a 
crossflow.  Define m+  as the mass flow rate from the source (whose units are now 
kg/s).  Again, the velocity field is uniform flow in the x-direction, ( ),0,0u U=) .  
The solution is analogous to the previous example except the contaminant spreads 
in the z-direction as well as the y-direction.  The solution is: 
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 ( ) ( )2 2

, , exp
4 4

y z Umc x y z
Dx Dxπ

 +
 = −
 
 

+
 (35) 

The concentration distributions at several distances downstream are sketched on 
Figure 12.  The centerline concentration decreases more rapidly than for the line 
source as the distribution spreads in both the z- and y-directions; it decreases in 
proportion to x-1. 

In each of these examples it was assumed that the streamwise diffusion 
was negligible compared to the cross-stream diffusion.  Close to the source, this 
assumption is not valid.  Thus, the solutions discussed above are only valid for 

2 /x D U* . 

4.4  Continuous Line Source of Finite Length - Variable Diffusion Coefficient 
This situation arises when sewage or other wastewaters are discharged 

from outfalls with fairly long diffusers into essentially unbounded waters such as 
a wide estuary or coastal waters (Roberts, 1996) as sketched in Figure 13.  For 
this case, the advective-diffusion equation, Eq. 24, can be formulated as:   

 y
c cu kc
x y y

ε ∂ ∂ ∂= − ∂ ∂ ∂ 
 (36) 

where we have assumed steady-state conditions and neglected diffusion in the x- 
and z-directions.  Also, because bacterial decay is important for sewage 
discharges, we have included a decay term, -kc, which corresponds to a first-order 
decay process with k the decay constant.  For zero decay, i.e. a conservative 
substance, the following solutions still apply with k set equal to zero.  

U 

y

x
Point 
source 

c(x,y,z)

z 

Figure 12.  Diffusion from a continuous point source. 
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Solutions to Eq. 36 for various assumptions about the variation of the diffusion 
coefficient yε  were obtained by Brooks (1960).  He defined the wastewater field 
width, w, in terms of the second moment of the concentration distribution, σ : 

 

2

2

( , )

12 12

( , )

y c x y dy

w

c x y dy

σ

∞

−∞
∞

−∞

= =
∫

∫
 (37) 

so that w, and therefore yε , are functions of x only.  Assuming that yε  follows the 
“4/3 law”, Eq. 33, Brooks obtained the solution to Eq. 36 as: 

 ( )
/ 2 2

0

00
/ 2

( , ) exp
42

o

o

w
kt

w

y yc ec x y dy
tt επε

−

−

 ′− ′= − ′′   ∫  (38) 

where t = x/U and /t x U′ ′=  and x′  satisfies the equation: 

 
4 / 3

0 o

dx w
dx w

ε
ε

′  
= =  

 
 

where wo is the length of the diffuser.  Of particular interest is the centerline 
(maximum), concentration, mc .  This is obtained by putting y = 0 into Eq. 38, 
yielding: 

w
U 

y 

x 

Line 
source

Wastefield

c(x,y) 

Figure 13.  Diffusion from a continuous line source of finite length. 

c 0 
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where β is 12εo/Uwo and 
2

0

2( ) yerf e dy
η

η
π

−= ∫  is the standard error function.  For 

large distances from the source, i.e. 1
o

x
w

β * , Eq. 39 can be approximated by: 
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The variation of the wastewater field width is given by: 

 
3/ 2

21
3o o

w x
w w

β 
= + 
 

 (41) 

The implications of this solution will be discussed further in Section 6.2. 

5.  EXAMPLE:  POINT SOURCE DIFFUSION 
To illustrate the complexities and effects of turbulent diffusion, we 

consider a relatively well-defined situation:  the diffusion from a small source in a 
turbulent shear flow.  This is the case shown in Figure 1, which is an iso-
kinetically released plume in a smooth bed, open-channel flow.  The idealized 
mean concentration field for a constant diffusion coefficient is given by Eq. 35.   

The instantaneous concentration field is much more complex, however.  
Using planar laser-induced fluorescence (PLIF), detailed spatial measurements of 
the instantaneous tracer concentration within the plume were obtained.  (For 
details of the methodology and further results, see Webster et al., 1999, and 
Rahman et al., 2000).  A typical instantaneous concentration distribution is shown 
in Figure 14. 

It is clear that the concentration distribution is extremely patchy, with 
isolated pockets of high concentration that have steep gradients at their edges.  In 
between the patches are large expanses with zero concentration.  By averaging 
over many images similar to that shown in Figure 14, the time-averaged 
concentration field can be obtained, as shown in Figure 15.  This distribution 
varies smoothly in space with moderate spatial concentration gradients, in 
contrast to the patchy instantaneous distribution. 
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A comparison of Figures 14 and 15 (note the different vertical scales) 
shows the peak concentration values on the centerline to be around an order of 
magnitude greater than the time-averaged values.  Presumably, this ratio would be 
even higher off the plume axis, where time-averaged values decrease, but peaks 
can still be comparable to centerline values.  It should be noted that peak values 
are very dependant on the sample size; peak values increase with decreasing 
sample size until the smallest concentration scale, the Batchelor scale, is reached.  
For this case, the Batchelor scale is about 0.02 mm (Section 2.2) and the sample 
size about 1 mm, so the actual peaks could be much higher than those shown in 
Figure 14, and the peak to time-average ratios even higher. 

Figure 14.  Instantaneous concentration distribution in a plane 
on the centerline of a plume in an open channel flow. 

 
Figure 15.  Time-averaged concentration distribution in a plane on 

the centerline of a plume in an open-channel flow. 
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The time-average and standard deviation of the concentration fluctuations 
along the plume centerline are shown in Figure 16.  The time-averaged 
concentration decreases very rapidly with distance.  This can be thought of in 
kinematic terms as the spreading of a fixed mass of tracer over an increasing 
volume by the action of the various eddy sizes.  Initially, the time-average value 
decreases more rapidly than 1x−  (see Eq. 35), which indicates a relative diffusion 
regime.  Between x/d = 2 and 5, the time-averaged concentration decreases 
approximately in proportion to 1x− , which agrees with Eq. 35 and implies a 
constant diffusion coefficient.  Beyond x/d = 5, the rate of dilution slows, which 
suggests that the plume mixing may be influenced by the free surface and bed. 

The standard deviation of the concentration fluctuations is greater than the 
time-average values along the centerline because, as seen in Figure 14, the 
concentration field consists of very large, but brief, spikes of concentration 
resulting in large fluctuations about the mean.  The equations discussed 
previously (for example, Equation 24) only apply to time-averaged values and 
cannot predict the evolution of the concentration fluctuations.  The behavior of 
these fluctuations is now receiving increasing attention, with additional 
measurements and further attempts to model them.  A conservation equation for 
concentration fluctuations can be derived in a similar manner to that of turbulent 
kinetic energy (Eq. 14).  For the idealized case of a steady point source, the 
equation is (Pasquill and Smith, 1983): 

 
2

2 22c c cu w c v c w c v c S
x z y z y
′    ∂ ∂ ∂ ∂ ∂′ ′ ′ ′ ′ ′ ′ ′= − + − + −   ∂ ∂ ∂ ∂ ∂   

 (42) 

where S is the rate of reduction of the mean square fluctuations by molecular 
diffusion.  Equation 42 makes the usual assumptions that gradients in the x-
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Figure 16.  Variation of concentration properties along 
centerline of a plume in an open-channel flow. 
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direction can be neglected compared to those in the y and z directions.  Because of 
the usual closure problems, Eq. 42 cannot be solved directly.  Some solutions, 
with certain assumptions, are given by Csanady (1967ab).  Gifford (1959) 
proposed a model for atmospheric diffusion in which the plume is represented as 
discs in a plane normal to the mean wind speed.   

Several studies have been reported in which concentration fluctuations 
were measured.  The motivation for these studies includes pollution transport, 
boundary layer meteorology, and chemical plume tracking.  Measurements of 
chemical plumes released into turbulent boundary layers in the laboratory 
(Fackrell and Robins, 1982; Nakamura, 1987; Bara et al., 1992; and Yee et al., 
1993) and field (Gifford, 1960; Murlis and Jones, 1981; Jones, 1983; Murlis, 
1986; Hanna and Insley, 1989; and Mylne et al., 1996) show highly intermittent 
concentration time-records.  The intermittency is a result of the filamentous and 
unpredictable nature of the plume as illustrated in Figure 1.  Measurements have 
typically consisted of time records of temperature or concentration at individual 
points in the flow, which have been analyzed to meet the specific focus of the 
study.  For instance, Yee et al. (1993) attempted to match standard PDF shapes to 
their concentration record, while Murlis (1996) examined the importance of burst 
duration and intermittency to moth plume tracking.  The new experimental 
techniques, for example PLIF, are now being applied to measure the spatial 
variation of instantaneous concentration distributions for the first time.  These 
data should provide new insight into the instantaneous plume structure and enable 
more rigorous testing of models of the mixing and dilution processes. 

6.  APPLICATIONS 
6.1 Rivers 

A common civil and environmental application of turbulent diffusion 
theory is prediction of the mixing of pollutants in rivers and streams.  Because of 
the importance of this topic, it has been extensively researched over many years. 

Consider first the idealized case of mixing of a continuous discharge from 
a point source in a straight, rectangular channel of constant cross-section as 
shown in Figure 17.  For steady-state conditions, longitudinal diffusion is small 

compared to longitudinal advection, i.e. x
c cu

x x x
ε∂ ∂ ∂ 
 ∂ ∂ ∂ 

$ .  The mean transverse 

and vertical velocities, v and w, are zero so the advective-diffusion equation, Eq. 
24, reduces to: 

 y z
c c cu
x y y z z

ε ε ∂ ∂ ∂ ∂ ∂ = +   ∂ ∂ ∂ ∂ ∂  
 (43) 
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in which yε  and zε  are the transverse and vertical diffusion coefficients.  The 
problem is now reduced to determination of yε  and zε  and their dependency on 
the turbulence characteristics of the flow. 

Turbulence in open-channel flows has been extensively studied.  The 
measurements of turbulence intensity shown in Figure 18 are typical.  This is the 
same data shown in Figure 4b replotted in normalized form as / *u u!  where u* is 
the friction velocity, defined as * /ou τ ρ= , where oτ  is the wall shear stress, 
and ρ  the water density.  It can be seen that u!  is of the same order as *u . 
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Figure 17.  Diffusion from a point source into a straight, rectangular channel.
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The largest length scales, or eddy sizes, of the turbulence in an open 
channel flow are smaller than, but some multiple of, the channel depth, d.  A 
typical value is around half the channel depth.  Thus, when the plume size 
becomes comparable to the depth, the diffusion coefficients are constant and Eq. 
30 applies.  Applying *u u! ∼  and LL d∼  to Eq. 30 we obtain: 

 *      and     *y zdu duε ε∼ ∼  (44) 

Both the eddy length scales and the turbulence intensity vary over the depth, 
therefore, the vertical diffusion coefficient, zε , also varies with depth.  The 
variation of zε  with depth can be obtained by means of the “Reynolds analogy” 
whereby it is assumed that the mass diffusion coefficients are the same as the 
momentum diffusion coefficients.  Using this assumption and a logarithmic 
velocity profile, Elder (1959) obtained the following expression for the depth-
averaged value of zε for wide, open-channel flows: 

 0.067 *z duε =  (45) 

and this result has been experimentally confirmed in a flume by Jobson and Sayre 
(1970). 

If the channel is narrow relative to the depth, then the channel walls can 
affect the turbulence and transverse diffusion coefficient, yε .  A more general 
statement of Eq. 44 for transverse mixing is then: 

 
*

y Wf
du d
ε  =  

 
 (46) 

where W is the channel width.  Many experiments have been reported to evaluate 
the effect of W/d.  The experiments performed up to 1979 are summarized in 
Fischer et al. (1979), which show the value of *y duε  to range between 0.1 and 
0.2 with no systematic dependence on W/d.  Based on these results, Fischer et al. 
(1979) recommended use of the formula 0.15 * 50%y duε = ± ; in other words, 
there is the possibility of an error of ±50% when using this formula. 

More recent experiments have looked more carefully at the role of channel 
width and also the friction factor on lateral turbulent diffusion.  Webel and 
Schatzman (1984) reported that if the flow is fully rough and W/d ≥ 5 the walls 
exert no influence.  For this case, Eq. 46 becomes (Webel and Schatzman, 1984): 

 0.13
*

y

du
ε

=  (47) 
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As W/d decreases below about five, the wall effect causes the value of *y duε  to 
increase.  Discharges in the wall region, which extends for a distance of about 
2.5d from the wall, experience a higher diffusion coefficient than releases in the 
center of the channel.  They also find that diffusion dominates lateral mixing for 
straight laboratory channels.  These findings were confirmed in Nokes and Wood 
(1988) in which it was suggested that * 0.134y duε =  is a lower bound for lateral 
diffusion when the chief mixing mechanism is turbulence generated at the channel 
floor.  This value applies for wide channels, and becomes independent of the 
friction factor, f, for f > 0.055.  Nokes and Wood (1988) found the diffusion 
coefficient to be independent of the channel width when W/d > 8  

Natural streams differ from these ideal channels in at least three major 
ways.  First is that the cross-section may vary irregularly, second the channel will 
probably meander and not be straight, and third there may be large sidewall 
irregularities.  The effect of these on vertical mixing is not known, and we know 
of no experiments in which vertical mixing has been measured in the field.  It is 
usual to assume that Eq. 45 also applies to natural channels.  As will be shown 
later, vertical mixing in rivers is usually quite rapid compared with transverse 
mixing and precise quantification of the rate of vertical mixing is not usually 
important. 

Bends and sidewall irregularities generally increase the rate of transverse 
mixing.  A previous summary of much field data on mixing in rivers (see Fischer 
et al. (1979), table 5.2), shows that *y duε  ranges between about 0.3 and 0.8 for 
reasonably straight channels.  Most rivers fall in the range 0.4 to 0.8, and Fischer 
et al. (1979) recommends using: 

 0.6 50%
*

y

du
ε

= ±  (48) 

in the absence of any better information or field measurements.  This equation is 
quite useful in that it contains only hydraulic parameters that can be fairly readily 
estimated for any particular river.  

A bend in a river causes secondary circulations due to centrifugal forces, 
as shown in Figure 19.  Such circulations would clearly considerably increase the 
rate of lateral mixing, which is now due to both advection and turbulent diffusion.  
If experimental results are parameterized as turbulent diffusion, the apparent 
diffusion coefficient increases markedly if the river is sharply curving.  In a 
stretch of the Missouri River which included a 90º and a 180º bend, Yotsukura 
and Sayre (1976) found * 3.4y duε ≈ .  Similarly high values of *y duε  between 
3.0 and 4.9 were also reported in a very sinuous section of the Ogeechee River by 
Pernik (1985), and in field tests on the Mississippi River (Dematracopoulos and 
Stefan, 1983) values between 0.24 and 4.65 were observed.  The large transverse 
coefficients reported by Holly and Nerat (1983) suggest that secondary currents 
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can play an important role in transverse mixing, and that the secondary 
circulations must be accounted for explicitly.  A classification scheme, which can 
be used to indicate whether secondary currents will be strong enough to induce 
additional transverse transport, was presented by Almquist and Holley (1985). 

It can be seen that our ability to predict diffusion coefficients is quite 
limited.  If reliable knowledge of the value of yε  is needed in a particular case, it 
will be necessary to perform a field experiment to measure it directly. 

In order to apply Eqs. 45, 47, and 48, to rivers or any open channel flow, 
knowledge of *u  is necessary.  Various empirical equations can be used to 
estimate *u , including: 

 ( )1/ 2* hu gR S=  (49) 

 1/ 6* 3.1 hu nUR−=     [SI units only] (50) 

where g is the acceleration due to gravity, Rh is the hydraulic radius equal to the 
cross-sectional area divided by the wetted perimeter, S is the river slope, and n is 
the Manning coefficient.  If the river slope is not known, Eq. 50 must be used.  
These equations pose yet another problem:  what is the value of n? 

Manning's coefficient, n, is a type of roughness parameter and its 
estimation for rivers is probably more of an art than a science.  Some guidance is 
given, however, by books such as Chow (1950) in which values of n for various 
rivers are quoted.  For natural streams the values range from about 0.025 for clean 
and straight sections up to 0.15 for very weedy and vegetated reaches.  Streams 
wider than about 30 m have somewhat smaller n values.  Flood plains can have 
very high n values, up to 0.2, especially if covered with heavy strands of trees.  
Other excellent sources of information on n values are Barnes (1967) and 
Arcement and Schneider (1984).  Both these publications contain color 
photographs of rivers and their computed n values.  It may be possible to find a 
river in these publications similar to the one of interest. 

 

Figure 19.  Secondary circulation in river bends.
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The implications of the results quoted above for mixing in typical rivers 
can be illustrated by means of an example.  Let us consider first the rates with 
which materials mix vertically and transversely.  The time, t, required for an 
effluent to mix a distance L with a diffusion coefficient ε is given by Eq. 18: 

2 /t L ε∼ .  Thus, the ratio of the time required to mix transversely across the river, 
yt , to that required to mix vertically, zt , is: 

 ( )
( )

2

2
y

z y z

t W d
t ε ε

=  (51) 

To make this definite, suppose we have a channel with dimensions 30 m wide by 
1 m deep.  According to Eqs. 45 and 48, 10y zε ε ≈ , so Eq. 51 becomes: 

90y zt t ∼ .  Thus, material mixes over the depth much quicker than it mixes 
across the width.  This is a fairly typical result, and we usually go one step further 
to assume that vertical mixing is instantaneous compared to horizontal.  Because 
of this relatively rapid vertical mixing, it will often be found that there is little 
variation in properties such as temperature over the depth of a river. 

Consider, for example, the discharge from a point source in the middle of 
a river.  Assuming the vertical mixing to be instantaneous is equivalent to 
replacing the source by a line source extending over the depth of the river.  The 
problem is then two-dimensional, and when the plume size becomes comparable 
to the river depth the diffusion coefficient becomes constant, so Eq. 43 becomes: 
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Note that we have changed our notation slightly so that c is the time-averaged 
value and U  is now the average river velocity equal to Q/A where Q is the river 
discharge and A the cross-sectional area.  The solution to this equation for a 
steady release into a steady, uniform current is (Eq. 34): 
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for an infinitely wide river, where m+  is the mass flow rate of pollutant.  The 
maximum concentration occurs on the plume centerline (y = 0), and the 
concentration distribution about the maximum is a Gaussian, or normal, 
distribution.  The plume width, w, is usually defined as four standard deviations of 
the Gaussian distribution, which is: 

 ( )1/ 2
4 2 yw x Uε=   (54) 
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So the plume grows in proportion to x1/2 downstream and therefore reaches the 
banks, i.e. w = W, at a distance 1x  downstream given by: 

 
2

1 32 y

UWx
ε

=  (55) 

Beyond this distance, Eq. 53 no longer applies as the effects of the banks must be 
considered.  The rather lengthy analytical solution for this case is given in Fischer 
et al. (1979) (Eq. 5.9).  We rarely need the equation in this full form, however, as 
we are mostly concerned with the variation of maximum concentration, bank 
concentration, and the distance for uniform mixing.  It is shown in Fischer et al. 
(1979) that these can be expressed in non-dimensional form as in Figure 20.  The 
non-dimensional distance is 2

yx x UWε′ = and concentration is expressed as 
/ oc c  where oc  is the far-field concentration when the effluent is well-mixed over 

the river cross-section; it is given by oc m UdW= + . 

Theoretically, the distance at which the plume becomes uniformly mixed 
over the river cross-section is infinite.  Figure 20 shows, however, that for a 
dimensionless downstream distance x' greater than about 0.1, the concentration 
varies by less than 5% of the mean over the cross-section.  Taking this to define 
the length, cL , required for "complete mixing" we obtain: 
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Figure 20.  Downstream variation in tracer concentration resulting from 
a continuous point source into a river of uniform depth and velocity.
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for a centerline discharge.  A comparison of Eqs. 55 and 56 shows that the 
distance for complete mixing is about three times the distance at which the plume 
first reaches the banks. 

If the discharge is at one of the banks, the distance required for complete 
mixing increases.  This distance can be obtained by replacing W in Eq. 56 by 2W: 
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In other words, a side-discharge requires four times the distance for complete 
mixing than does a centerline discharge.  (Assuming the lateral diffusion 
coefficient is constant across the channel.  In actuality, it is somewhat higher near 
the banks, so the ratio will be somewhat less than four times).  Clearly, however, 
if it is necessary to discharge effluent from an open-ended pipe more rapid mixing 
will be accomplished by placing the discharge in the center of the river. 

What are these distances for mixing in typical rivers?  Suppose we have a 
discharge of effluent in the middle of a river flowing with an average speed U of 
0.4 m/s that is 300 m wide and 3 m deep.  The hydraulic radius, hR , is 2.9 m.  
Assuming the Manning coefficient is 0.04, Eq. 50 gives the shear velocity, *u  = 
0.042 m/s.  Note that the shear velocity is roughly one tenth of the mean velocity, 
a fairly typical result.  The diffusion coefficients are, from Eqs. 45 and 48, zε  ≈ 
0.0084 m2/s, and yε  ≈ 0.076 m2/s.  For a bottom discharge, the distance required 
for the effluent to be mixed over the depth can be crudely estimated by replacing 
W with d and yε  with zε  in Eq. 57.  The result implies that the effluent will be 
well-mixed vertically about 170 m downstream of the injection point. 

The distance 1x  at which the plume reaches the river banks can be 
estimated from Eq. 55.  Substituting the values above, we obtain 1x  ≈ 14,800 m or 
about 15 km!  The distance for uniform mixing from Eq. 56 is cL  ≈ 47,400 m or 
47 km.  Clearly, these distances are very much greater than the distance for 
vertical mixing, justifying our assumption of two-dimensionality or very rapid 
vertical mixing. 

These distances are probably surprisingly large to someone approaching 
the subject for the first time.  The downstream distance where the plume reaches 
the banks is about fifty river widths, i.e. the plume remains slender for long 
distances downstream.  A photograph of just such a case is given in Fischer et al. 
(1979), p. 115.  Of course, in a real river, bends, cross-sectional changes, or other 
obstructions, could speed up the mixing.  Nevertheless, this example shows that 
caution should be used in applying one-dimensional models right from the source, 
or in assuming very rapid cross-sectional mixing.  It also shows the value of a 
multiport diffuser across the river that can cause this mixing to occur very rapidly. 
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The solution, Eq. 53, to the advective-diffusion equation, Eq. 24, is one of 
the simplest possibilities, and is given mainly for illustrative purposes.  It is not 
possible in this review to give other solutions, but Holley and Jirka (1986), Ch. 5, 
provide solutions to other one-, two-, and three-dimensional problems. 

Another method of analyzing diffusion in rivers is the ray method of 
Smith (1981).  The depth topography can have a strong influence on lateral 
spreading, and use of the ray method shows that contaminant concentration is 
greatest in shallow water and towards the outside of bends. 

6.2  Estuaries and Coastal Waters 
Diffusion in estuaries and coastal waters has a number of applications, 

including prediction of mixing of wastewater discharges from sewage treatment 
plants, thermal effluent from power plants, and accidentally released oil spills. 

For shallow waters, it is often assumed that the equation for open 
channels, Eq. 48 applies.  This seems reasonable for cases where the turbulence is 
predominantly generated by bottom shear.  For deeper waters other formulations 
are usually used.  For a fairy small source in the initial stages of growth, Csanady 
(1973) recommends a constant diffusion coefficient 20.1  m /s.ε ≈  For longer 
travel times or for larger source sizes, diffusion coefficients can be much larger, 
and the size of the source can significantly affect the rate at which it diffuses.  
Equation 39 is often used to model this situation.  This solution assumes a line 
source of finite length and a variable diffusion coefficient that varies as the 4/3 
power of plume size.  Diffusion is two-dimensional, i.e. in the lateral direction 
only.  Because the presence of density stratification inhibits vertical diffusion, this 
is a reasonable, and conservative, assumption.  The dilution can be expressed as a 
far-field dilution /f o mS c c=  where oc  is the initial concentration of some tracer 
(assumed uniform along the line source), and mc  is the maximum (centerline) 
concentration at some distance from the source.  Rearranging Eq. 39 for a 
conservative constituent, i.e. k = 0: 
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Equation 58 shows that the far field dilution depends only on the travel time, t.  It 
is useful for examining the role of turbulent diffusion for diffusers of various 
lengths.  Some computed values of the far-field dilution fS  assuming an upper 
value for α of 0.01 cm2/3/s, are given in Table 1. 

It can be seen that, whereas dilution by oceanic turbulence can be quite 
effective for short diffusers, it is relatively minor for long diffusers.  The physical 
interpretation of this result is that the time needed for the centerline concentration 
to be reduced is the time required for eddies at the plume edges to "bite" into it.  
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For a wide field produced by a long diffuser, the eddies have farther to go so it 
takes them longer to get to the centerline.  The rate of decay is much smaller than 
for a small point source, for example, Figure 15. 

 Far field dilution, Sf 

Travel time, t (hr)  Diffuser length, L (m) 

 35 700 

1 2.4 1.0 
3 7.4 1.4 

10 35.5 3.2 
20 95.9 6.9 

Table 1.  Far field dilutions for diffusers of various lengths. 
 

6.3  Chemical Plume Tracking 
Many aquatic and terrestrial animals rely on sensory cues to track 

turbulent odor plumes in order to locate food and mates.  It is not practical for 
animals, such as blue crabs, to use the time-averaged concentration because they 
do not monitor the plume at a particular location long enough to obtain converged 
statistics (Elkinton et al., 1984, Moore and Atema, 1991).  Thus, these animals 
must be using instantaneous observations of the odor plume to make tracking 
decisions.  In this section, we discuss the usefulness of a sensory cue, namely 
bilateral comparison, available to animals such as blue crabs in a turbulent odor 
plume (Webster et al., 2001). 

Animals, such as blue crabs and lobsters, have chemosensors on their 
appendages, which are separated horizontally.  Several investigators have 
hypothesized that animals may be using bilateral comparison of these 
chemosensors to orient toward the source location (e.g. Reeder and Ache, 1980, 
Atema, 1996).  To assess the usefulness of bilateral comparison, we evaluate the 
plume data presented in Section 5.  Figure 21a shows the spatial correlation 
between the instantaneous centerline concentration, co, and the instantaneous 
concentration at distance y from the centerline, cy.  The correlation is identically 
one at the centerline and decreases rapidly with increased spacing because the 
dimensions of dye filaments are smaller than the sensor spacing.  The area under 
the correlation curve increases dramatically as the plume grows downstream. 

This trend can be quantified by defining an integral spanwise length scale, 
L, calculated from the area under the correlation curve.  As shown in figure 21b, 
this integral length scale increases with distance from the source.  A searcher with 
sensors separated by a distance larger than the integral length scale, L, can better 
assess the instantaneous gradients and therefore identify the plume centerline 
more easily.  In other words, with sensor spacing greater than the integral length 
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scale, L, the searcher has sufficient spatial contrast to adjust toward the centerline 
of the plume from instantaneous measurements.  With smaller sensor spacing, the 
contrast is insufficient to make useful decisions based on the instantaneous 
concentration field.  Since the plume is growing downstream, there is an 
advantage to animals that can continually maintain sensor spacing greater than L 
by either moving an appendage or having a broad array of sensors.  This 
conclusion is consistent with Weissburg (2000), who defined the spatial 
integration factor (SIF) as the dimensionless ratio of the sensor spacing to the 
plume width and suggested that a large SIF allows the detection of a plume edge. 

7.  OTHER MODELING TECHNIQUES 
7.1 Random Walk 

The analytical solutions presented in Sections 4 and 6, while being very 
useful in providing insight into turbulent diffusion processes, are quite limited in 
practice.  They only apply for flows with uniform and steady velocity, uniform 
diffusion coefficient, and simple geometries.  They can also only predict mean 
concentration distributions.  For real water quality problems, numerical, 
computer-based solutions are usually used.  These fall into two main types.   

First is numerical solution of the advective-diffusion equation, Eq. 24.  
Decay or production of species due to chemical, biological, or other processes can 
be readily incorporated (for example, the biological decay term in Eq. 36), and 
multiple species and their chemical interactions can also be added.  A separate 
hydrodynamic model is needed which is solved first to obtain the velocity field; 
this velocity field is then provided as input to the water quality model.  An 
example of this procedure for coastal waters is given by Connolly et al. (1999). 

The second major type is particle tracking, or random-walk models.  In 
these models, mass is represented by discrete particles; at each timestep, the 
displacement of the particle follows a “random-walk.”  Following the description 
of Feynman et al. (1963) we can imagine a particle moving such that there is no 
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correlation between the directions of two consecutive steps.  In each timestep the 
particle moves a distance that is random with a Gaussian distribution and an 
average value L.  After N steps, the rms distance traveled is proportional to the 
square root of the number of steps: 

 rms
NR L N=  

As N is synonymous with time, this result is consistent with the observation in 
Section 3.1 that the distance diffused is proportional to t1/2.  This result is useful in 
relation to the eddy diffusivity model for times longer than the Lagrangian time 
scale, Eq. 30.  In a flowing fluid, the displacement consists of an advective, 
deterministic, component and an independent random component.  Again, the 
deterministic component must be supplied by a separate hydrodynamic model. 

Random walk models have been extensively used in groundwater 
problems, and are now being increasingly used in surface water problems.  We 
cannot review them in detail here, but they have been applied to rivers (Jeng and 
Holley, 1986, Pearce et al. 1990), to estuaries and coastal waters (Chin and 
Roberts, 1985, Dimou and Adams, 1994), and to the atmosphere (Luhar and 
Britter, 1992, Luhar and Sawford, 1995).  Many more examples can be found in 
the literature. 

8.  FUTURE RESEARCH ISSUES 
Probably the biggest research advance in recent years has been the rapid 

development of experimental instrumentation and computers.  The rapid 
development of computers is familiar to all; their increasing power has led to their 
widespread use to solve diffusion problems of increasing complexity.  The range 
of problems that can be solved continues to grow, but full solutions of the 
turbulent equations over the entire range of length scales in practical flows is still 
not in sight. 

Perhaps less familiar is the rapid development of experimental techniques 
and instrumentation for both laboratory and field experiments.  In the laboratory, 
the use of LIF is particularly useful, for example, the techniques that led up to 
Figures 14, 15, and 16.  These optical techniques allow measurement with non-
intrusive optical techniques of one million points or more simultaneously, at rates 
of 60 Hz or greater.  Vast amounts of tracer concentration data can therefore be 
obtained.  These can be combined with PIV techniques, which allow similar 
whole-field measurements of instantaneous velocity.  The measurements of 
instantaneous concentration and velocity allow computation of mean values, but 
also many other properties, for example, their fluctuations, spatial correlations, 
and fluxes (Webster et al., 2001).  These instrumentation advances result, in turn, 
from rapid advances in CCD sensors, image processing and acquisition, mass 
storage, and increasing computer power.  These will undoubtedly continue in the 
future and should prove especially useful in conjunction with the development of 
mathematical turbulence models. 
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At the same time, field instrumentation has also rapidly developed.  It is 
now possible to perform real-time monitoring of mixing in water environments 
with submersible fluorometers combined with packages that also measure 
currents, turbulence, and other properties (Petrenko et al., 1998, Roldao et al., 
2000). 

Demands on turbulence diffusion theory are now coming from new areas.  
For example, prediction of how animals or robots can seek the source of a 
turbulent chemical odor plume (Weissburg and Zimmer-Faust, 1994), and 
prediction of peak exposures of animals and organisms to contaminants.  These 
require knowledge of characteristics that are not usually sought, for example, 
peak concentrations, probability density functions of concentration fluctuations, 
burst length and structure, and intermittency. 

9.  CONCLUSIONS 
Turbulent diffusion is a complex process that is very efficient at mixing 

pollutants in the natural environment thereby reducing the concentrations of 
potentially harmful contaminants to safe levels.  Despite many years of research, 
it is still poorly understood, and can only be rather crudely predicted in many 
cases.  In this chapter, we have given an introductory overview of the most 
important features of turbulence relevant to turbulent diffusion, and the processes 
whereby it occurs.  We presented the equations for species conservation, and gave 
their solutions and examples in simple cases.  Mathematical modeling techniques 
were briefly introduced for more complex situations. 

Demands for more reliable predictions, and predictions of quantities that 
have received little attention in the past are now increasing.  These are driven by 
increasing environmental awareness, more stringent environmental standards, and 
application of diffusion theory in new areas.  These lead to the need to quantify 
and predict, for example, instantaneous peak concentrations, intermittency of 
concentration fluctuations, the durations of concentration bursts, their onset 
slopes, and many other characteristics. 

One of the most exciting areas of diffusion research is the rapid 
development of instrumentation techniques in the laboratory and field.  These 
have improved our ability to measure concentration fields enormously over the 
past ten years or so.  The challenge now is to incorporate these new data into 
improved understanding and improved mathematical models of turbulent 
diffusion. 
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