

[Skip to main content](#)

[arXiv.org](#) > [astro-ph](#) > arXiv:0707.3514

quick links

- [Login](#)
- [Help Pages](#)
- [About](#)

Astrophysics

arXiv:[0707.3514](#) (astro-ph)

[Submitted on 24 Jul 2007 ([v1](#)), last revised 24 Jul 2007 (this version, v2)]

Theory of Star Formation

[Christopher F. McKee](#), [Eve C. Ostriker](#)

[Download PDF](#)

We review current understanding of star formation, outlining an overall theoretical framework and the observations that motivate it. A conception of star formation has emerged in which turbulence plays a dual role, both creating overdensities to initiate gravitational contraction or collapse, and countering the effects of gravity in these overdense regions. The key dynamical processes involved in star formation -- turbulence, magnetic fields, and self-gravity -- are highly nonlinear and multidimensional. Physical arguments are used to identify and explain the features and scalings involved in star formation, and results from numerical simulations are used to quantify these effects. We divide star formation into large-scale and small-scale regimes and review each in turn. Large scales range from galaxies to giant molecular clouds (GMCs) and their substructures. Important problems include how GMCs form and evolve, what determines the star formation rate (SFR), and what determines the initial mass function (IMF). Small scales range from dense cores to the protostellar systems they beget. We discuss formation of both low- and high-mass stars, including ongoing accretion. The development of winds and outflows is increasingly well understood, as are the mechanisms governing angular momentum transport in disks. Although outstanding questions remain, the framework is now in place to build a comprehensive theory of star formation that will be tested by the next generation of telescopes.

Comments: 120 pages, to appear in ARAA. No changes from v1 text; permission statement added

Subjects: **Astrophysics (astro-ph)**

Journal reference: Ann.Rev.Astron.Astrophys.45:565-687,2007

DOI: [10.1146/annurev.astro.45.051806.110602](https://doi.org/10.1146/annurev.astro.45.051806.110602)

Submission history

From: Eve C. Ostriker [[view email](#)]

[v1] Tue, 24 Jul 2007 15:30:43 UTC (181 KB)

[v2] Tue, 24 Jul 2007 21:45:04 UTC (181 KB)

About arXivLabs

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? [Learn more about arXivLabs](#) and [how to get involved](#).

Bibliographic Tools

Bibliographic and Citation Tools

Bibliographic Explorer Toggle

Bibliographic Explorer ([What is the Explorer?](#))

Code

Code Associated with this Article

arXiv Links to Code Toggle

arXiv Links to Code ([What is Links to Code?](#))

This paper has not been found in the Papers with Code database. If you are one of the registered authors of this paper, you can link your code on your [arxiv user page](#)

Recommenders

Recommenders and Search Tools

Core recommender toggle

CORE Recommender ([What is CORE?](#))

[Which authors of this paper are endorsers?](#) | [Disable MathJax](#) ([What is MathJax?](#))