

Helioseismology

Figure 1: Doppler image of the solar disk, taken by the Michelson Doppler Solar and Heliospheric Observatory [1].

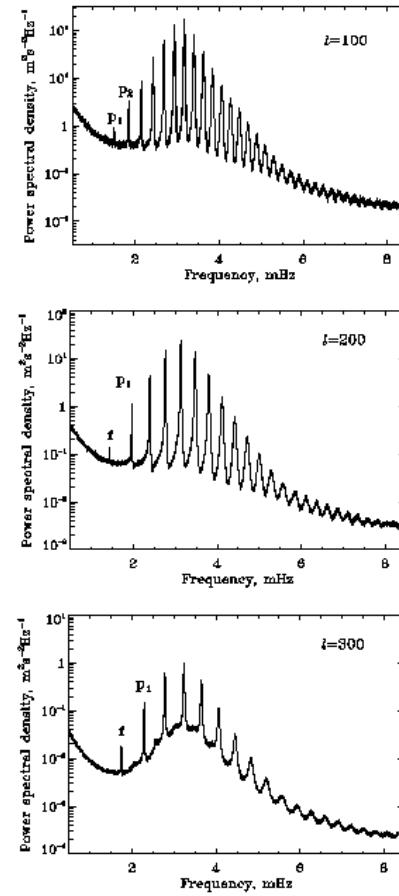


Figure 2: Temporal power spectra from MDI/SOHO at selected values of spherical-harmonic degree l [1]. Note $3.33 \text{ mHz} = 1 \text{ cycle}/(5 \text{ min})$.

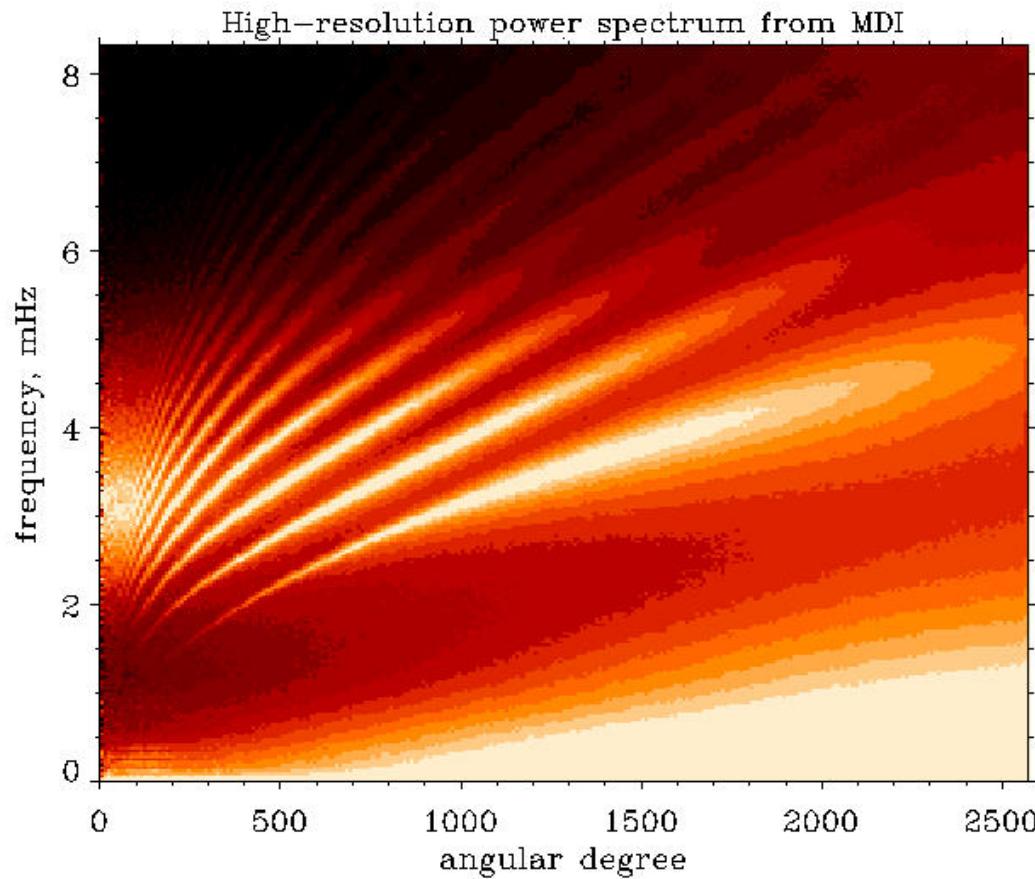


Figure 3: Observed power vs. frequency and l . Each ridge line corresponds to a particular n . [1].

Perturbation around spherical star:

$\rho + \frac{1}{2}$ modes $\Psi(r, \theta, \phi, t) = \frac{\delta \Psi}{\sqrt{\rho}} = e^{-i\omega t} Y_{lm}(\theta, \phi) R(r)$

Sound!

$$\frac{1}{r^2} \frac{d}{dr} r^2 \left[\frac{dR}{dr} \right] + \left[\frac{\omega^2 - \omega_c^2}{c_s^2} - \frac{l(l+1)}{r^2} \right] R = 0$$

$$k_h^2 = k_{h_e}^2 = \frac{l(l+1)}{r^2}$$

$$k_r^2 \quad \omega_c^2 \sim \frac{c_s}{2H} \text{ (near surface)}$$

cutoff!!
waveguide

$$\frac{\omega^2 - \omega_c^2}{c_s^2} - k_h^2 = k_r^2$$

$$\frac{\omega^2}{c_s^2} = \underbrace{k_r^2 + k_h^2}_{k^2} + \frac{\omega_c^2}{c_s^2}$$

Dispersion relation
"Sound"

$$c_s = \sqrt{\frac{\rho}{\rho}}$$

$$k^2 = \frac{\omega^2 - \omega_c^2}{c_s^2}$$

waveguide cutoff

$$\omega_c \sim 4 \times 10^3 \frac{\text{rad}}{\text{s}}$$

(25 min)

Helioseismology: p, f, & g modes Several 10^6 frequencies

f modes: 3-12 minutes \rightarrow "5-minute" oscillations

$$\xi \sim 3000 \mu\text{Hz} \quad V_{n,l,m} \sim 3 \text{ cm/s} \xrightarrow{\text{superposition}} \sim 1 \text{ cm/s}$$

Measure Doppler shift or intensity variations

SDO, GONG, GOLF, SOTTO, ...

$$\text{Rotator} = 440 \text{ Hz} \\ (\text{splitting}) \quad \uparrow$$

Quantum numbers: n , l , m Eigenmodes + Eigenfrequencies

g modes:

$$\text{Brunt: } N^2 = -g \left[\frac{\gamma-1}{\gamma} \frac{d \ln \rho}{dr} - \frac{d \ln T}{dx} \right] \sim \frac{g}{H} (\nabla - \nabla_a)$$

$$[H = \frac{dr}{d \ln \rho}]$$

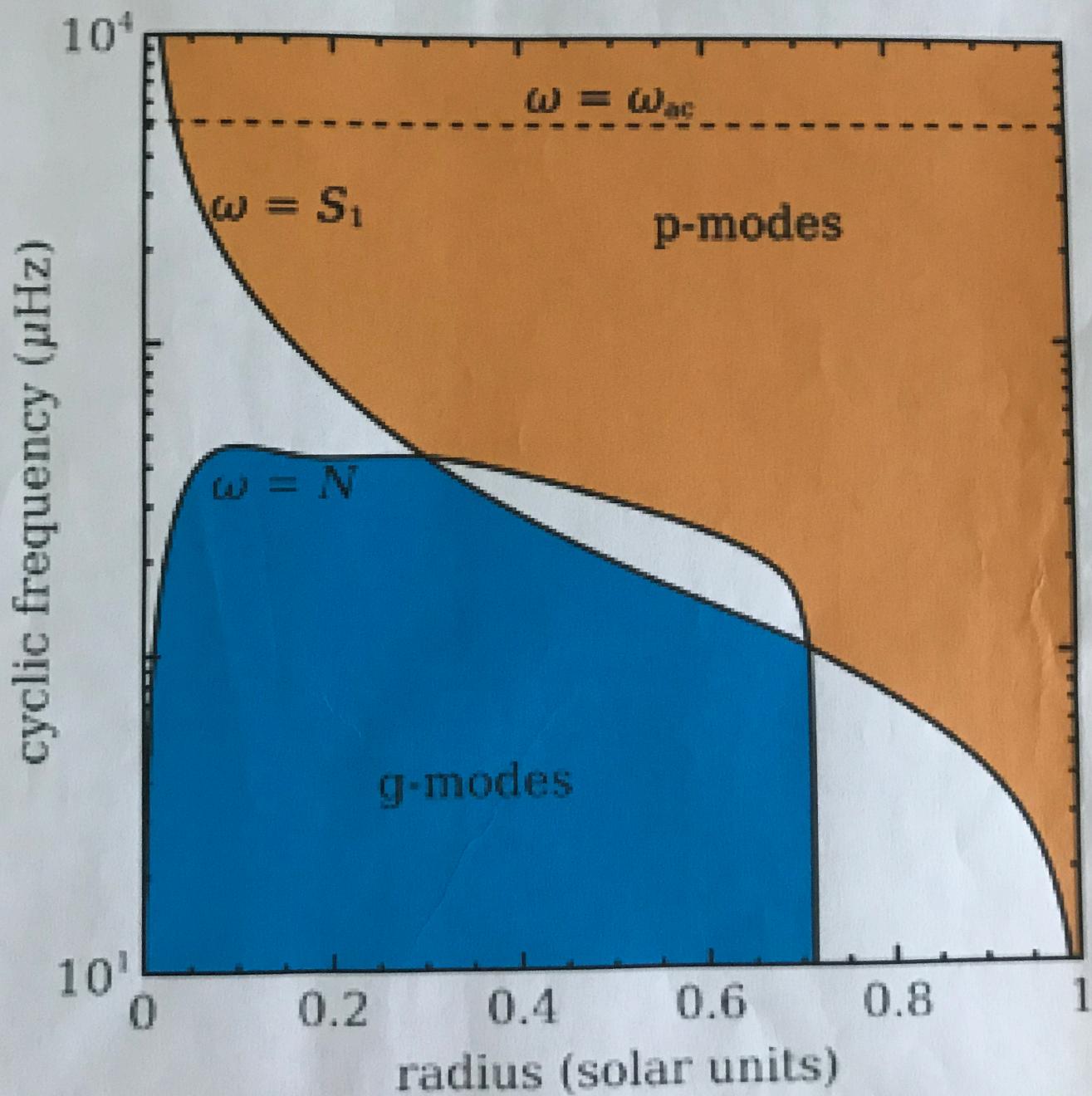
$$k_r^2 \sim \frac{\omega^2}{c_s^2} \left(1 - \frac{c_s^2}{\omega^2} \frac{l(l+1)}{r^2} \right) \left(1 - \frac{N^2}{\omega^2} \right) > 0$$

$$\sim \frac{\omega^2}{c_s^2} \left(1 - \frac{S_r^2}{\omega^2} \right) \left(1 - \frac{N^2}{\omega^2} \right) \quad [S_r^2 = c_s^2 \frac{l(l+1)}{r^2}]$$

f modes: $\left\{ \begin{array}{l} \omega > S_r \\ \omega > N \end{array} \right\}$

Otherwise $k_r \rightarrow$
evanescent

g modes: $\left\{ \begin{array}{l} \omega < S_r \\ \omega < N \end{array} \right\}$



$$(\text{Frequency}) \quad f \sim \left(n + \frac{\ell}{2}\right) \frac{c_s}{2R_0} \quad ; \quad \text{p-modes} \quad (\ell \gg 1)$$

↓ Sound travel time⁻¹

$$(\text{Period}) \quad P \sim \frac{N_0}{\sqrt{\ell(\ell+1)}} \left(n + \frac{\ell}{2}\right) ; \quad g\text{-modes}$$

$$\text{Rotation:} \quad \Delta f \sim m \Sigma (1 - c_{\ell,n}) \quad ; \quad N_0 \sim 2\pi \int N \frac{dr}{r}$$

* g-modes: $f < N$, decrease with n

* p-modes: $f > \omega_c$, increase with n, ℓ

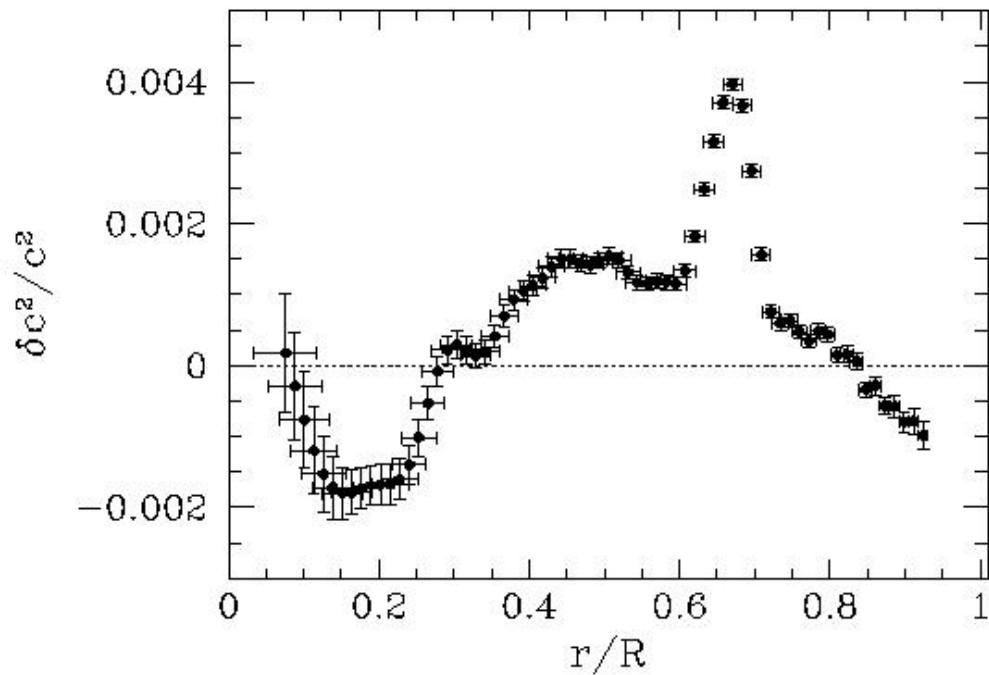


Figure 4: Deviations between sound speed predicted by solar model and sound speed by inversion of helioseismological data [1, 10].

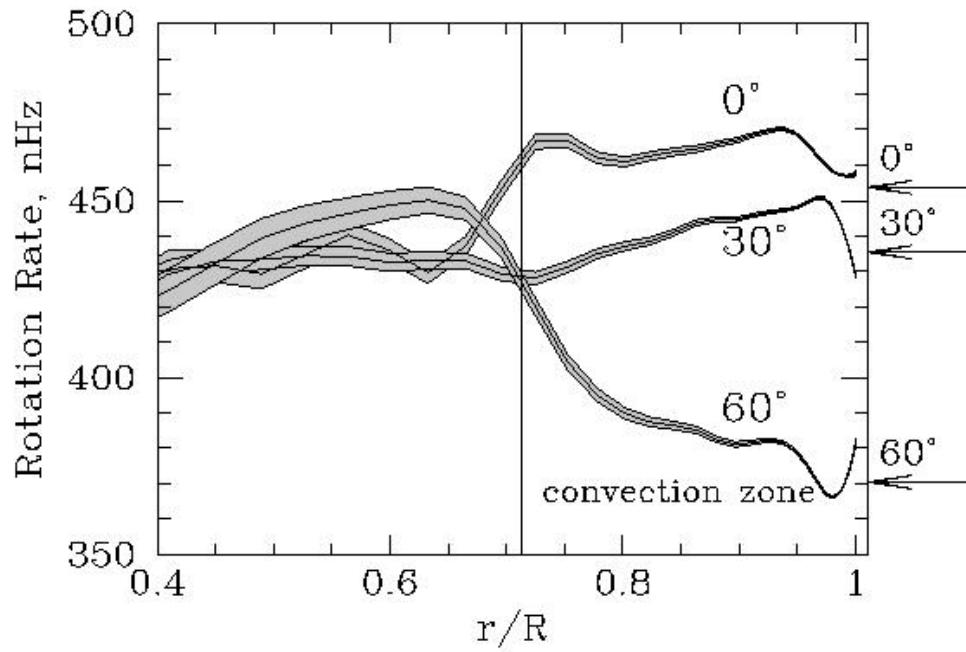
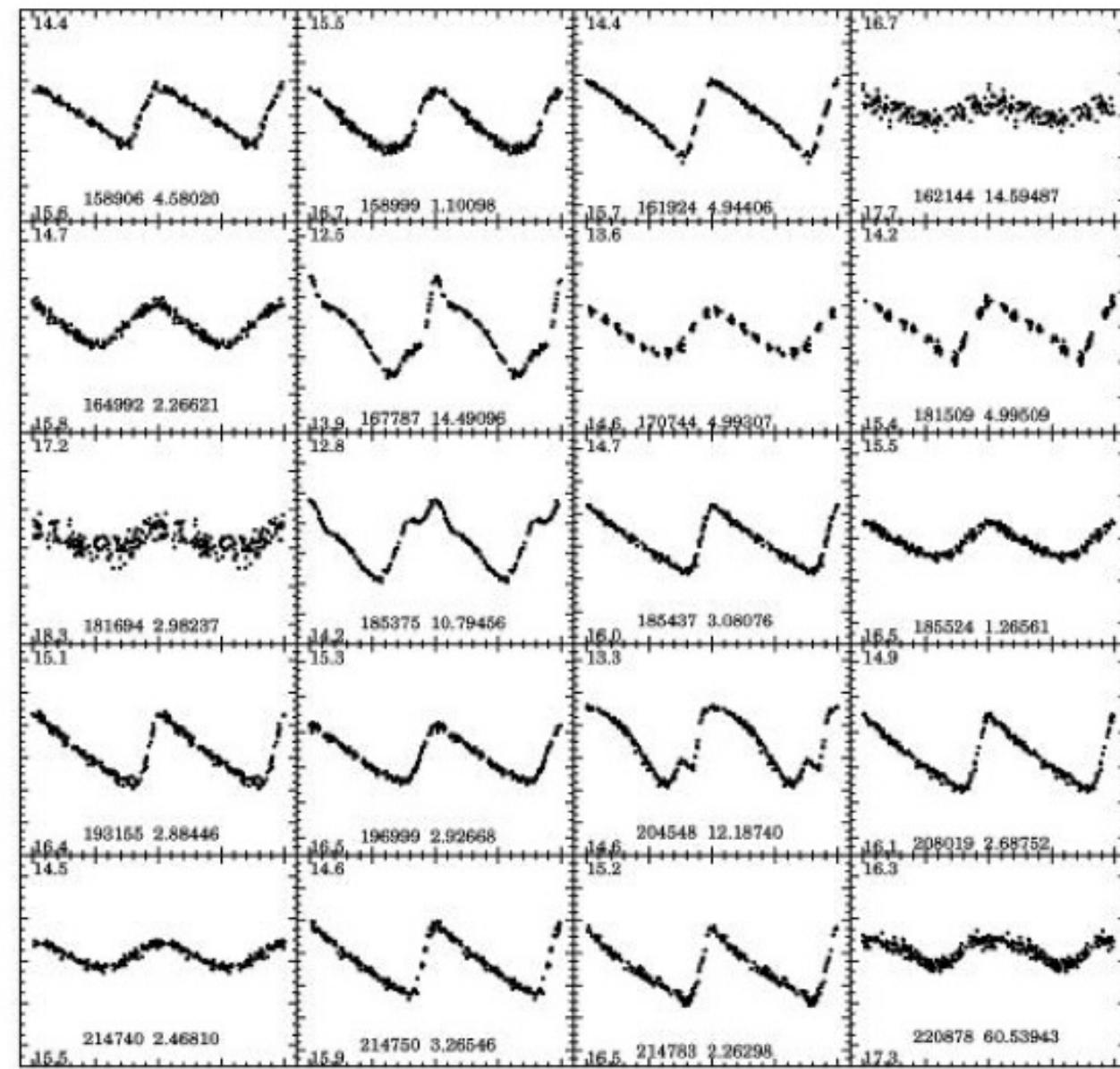
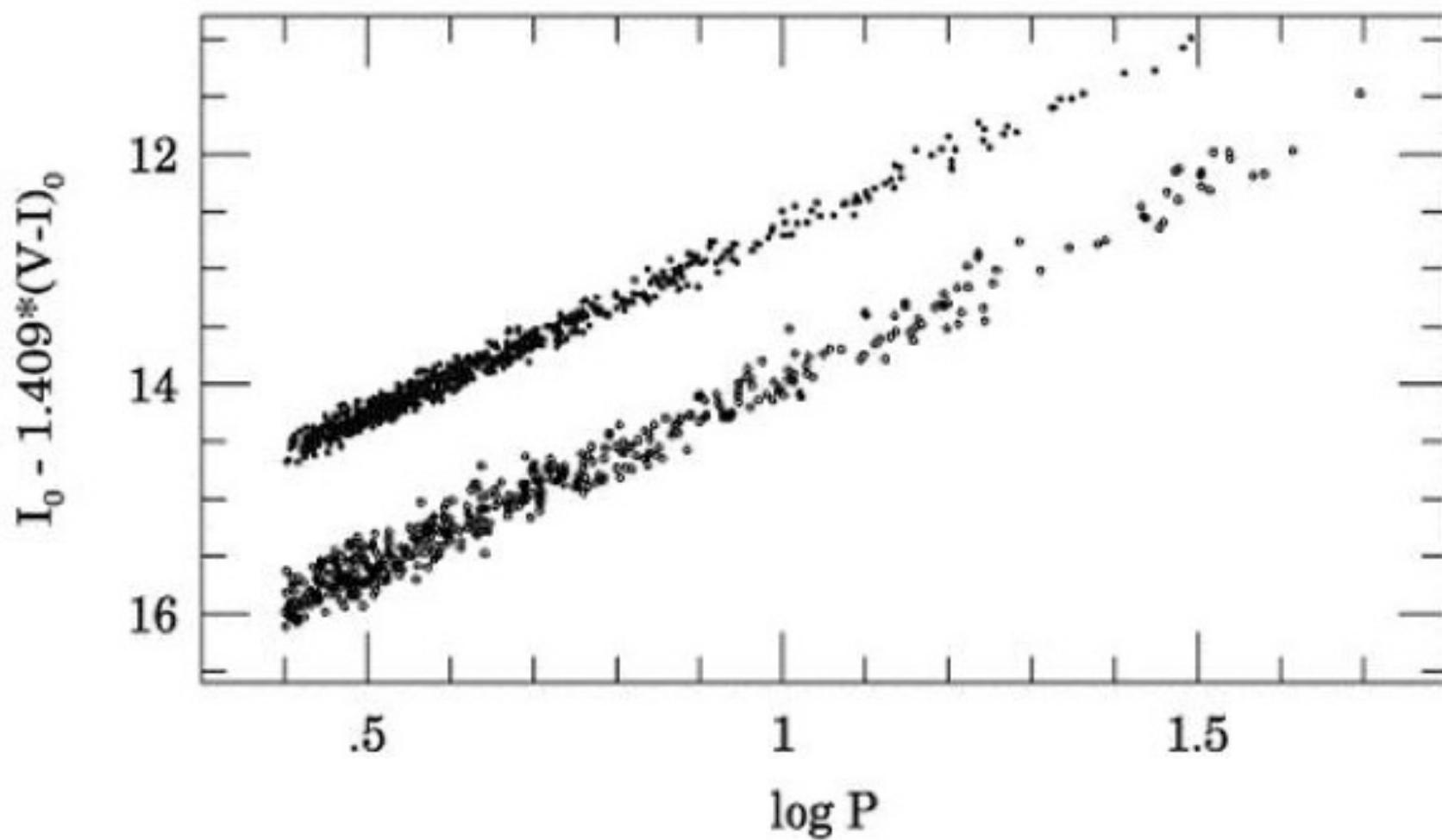


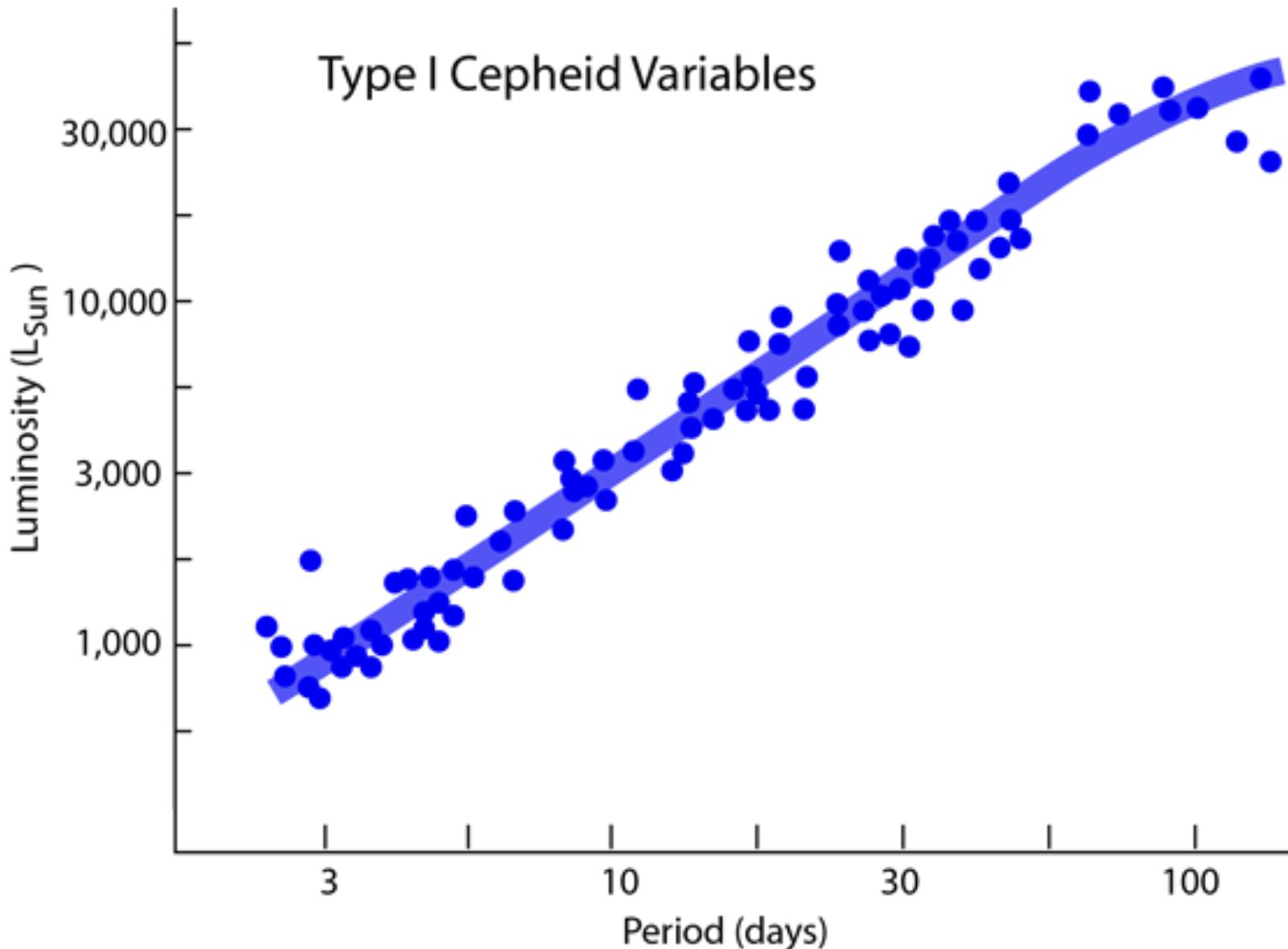
Figure 5: Internal angular velocity at three solar latitudes[1, 11]. Note: 400 nHz = 1 cycle/(30 d).

Simple Theory of Stellar Pulsation

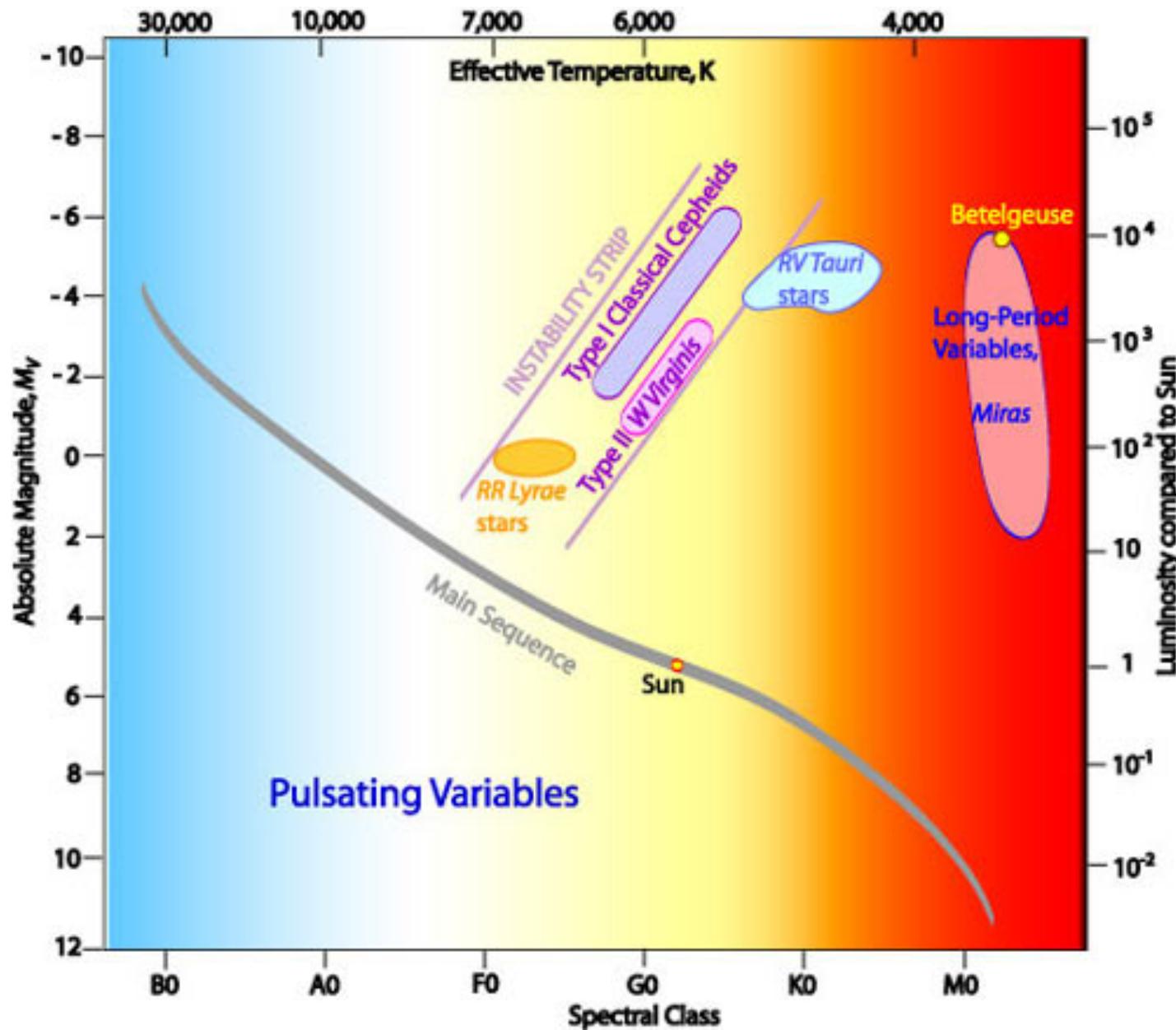




Classical Cepheids



Instability Strip



- Equation of hydrodynamics
- Energy equation: perturbed $\Rightarrow \frac{d(\delta p)}{dt} - \gamma_1 \frac{p}{\rho} \frac{d\delta p}{dt} =$

$$\left[\frac{1}{\rho} \frac{d\omega \vec{F}}{dt} = \frac{\partial L}{\partial M} \right] \quad (\gamma_1 - 1) \rho \delta \left(\epsilon_n - \frac{1}{\rho} \frac{d\omega \vec{F}}{dt} \right)$$

* Assume adiabatic to get frequencies + eigenmodes, then explore sources + sinks of heat. ($= 0$ if adiabatic)

$$\begin{aligned} \frac{\delta \epsilon_n}{\epsilon_n} &= \frac{\delta p}{\rho} + \nu \frac{\partial T}{T} \quad (\epsilon_n \propto \rho T^\nu) \\ &= \left[1 + \nu(\gamma_1 - 1) \right] \frac{\delta p}{\rho} \quad ; \quad \gamma_1 - 1 = \frac{\partial \ln T}{\partial \ln \rho} \Big|_S \\ &= \left(\frac{1}{\gamma_1 - 1} + \nu \right) \frac{\delta p}{\rho} \end{aligned}$$

$$\frac{dE}{dT} = \int_0^M \delta T \frac{d\delta S}{dt} dM \quad ; \quad \text{Work} = \int \frac{dE}{dT} dt = \int p dV$$

Nuclear $\Rightarrow \int_0^M \frac{\delta T}{T} \delta \epsilon_n dM = \int_0^M dM \epsilon_n \left(\frac{\epsilon_T + \epsilon_p}{\gamma_1 - 1} \right) \left(\frac{\delta T}{T} \right)^2$

Flux $\Rightarrow - \int_0^M \frac{\delta T}{T} \delta \left(\frac{1}{\rho} \frac{d\omega \vec{F}}{dt} \right) dM = \int_0^M dM \frac{dL}{dM} \left(K_T + \frac{K_p}{\gamma_1 - 1} \right) \left(\frac{\delta T}{T} \right)^2$

\uparrow Luminosity $K_T = \frac{\partial \ln K}{\partial \ln T} \Big|_\nu$

$$K_p = \frac{\partial \ln K}{\partial \ln \rho} \Big|_T$$

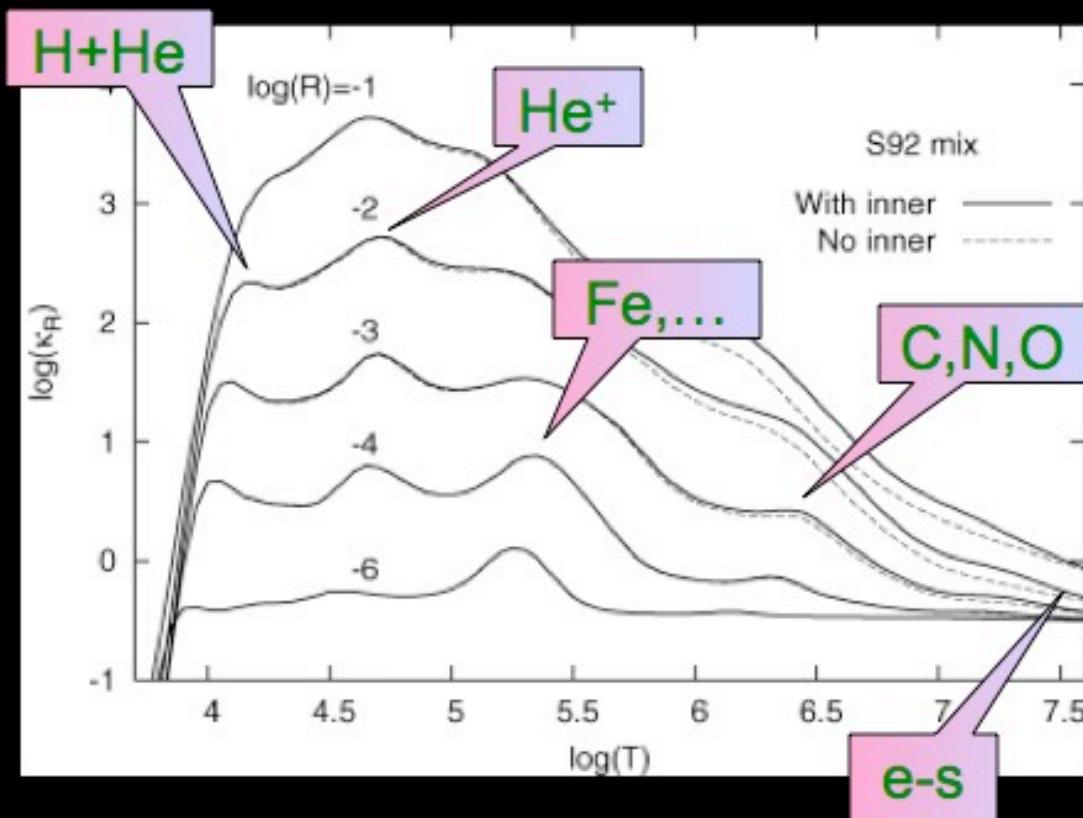
Simple Theory of Stellar Pulsation



6.6 what do real opacities look like?

In regions where specific atoms are ionized, opacity - due to bound-free transitions - has a local maximum.

$$\kappa = \kappa(\rho, T, X_i)$$



If $\frac{d}{dr} \left(K_T + \frac{K_P}{P_3 - 1} \right) > 0 \Rightarrow$ driving region
 \Rightarrow pulsation

"Kappa Mechanism"
 (valve mechanism)

$$\left(\epsilon_T + \frac{\epsilon_P}{P_3 - 1} \right) > 0$$

Epsilon Mechanism

- Heat engine

- Ionization zones of $H + He (He^+, He)$
 in outer layers of stars

e.g. \Rightarrow Classical Cepheids (He^+ ionization zone)
Instability strip on HR diagram

B-Cephei (B stars on MS; $7-20 M_\odot$)
 radial + non-radial modes
 opacity peak near $2 \times 10^5 K$ of Fe ionization zone

(8 Doradus; 55 Ceti) RH Lyræ (Horizontal branch stars; A-F)
 $[He \text{ opacity bump}]$ $(M \approx 0.057 \left(\frac{L}{L_\odot} \right)^{0.6} \text{ days})$ (giant)

Instability strip $5500 K < T_{eff} < 7500 K$
 convection reaches the region
 ion zones too close to surface

RH Lyræs: $T_{eff} \sim (6 \pm 1) \times 10^3 K$
 $(T_{eff} = \text{const.}) \quad L \sim R^2 \quad ; \quad P \sim \left(\frac{M}{R^3} \right)^{\frac{1}{2}}$
 $\Rightarrow P \sim L^{\frac{3}{4}} M^{-\frac{1}{2}}$ (actually $\propto L^{0.9}$)
 for Cepheids

Cooling of White Dwarfs

White Dwarf Cooling: Simple Model

Atmos.: radiative \Rightarrow match to degenerate core \Rightarrow assume core is isothermal $\Rightarrow C_V = \text{const.}$

$$L = -MC_V \frac{dT_c}{dt} ; \quad \frac{dT}{dr} = -\frac{3k\rho/c}{4\pi r^2 (4\pi T^3)} L ; \quad \frac{dP}{dr} = -\frac{GM\rho}{r^2}$$

P is atmosphere \rightarrow ideal gas $= \frac{P R_G T}{\mu}$ R_G = "gas constant"

$$\frac{\frac{dT}{dr}}{\frac{dP}{dr}} = \frac{dT}{dP} = \left[\frac{3k\rho \mu L}{4\pi (4\pi c) R_G} \right] \frac{P}{T^{15/2}} ; \quad K = k_B P / T^{7/2}$$

$$\text{Non-deg. - deg. boundary: } K_1 (\rho \gamma_e)^{5/3} \sim \rho \gamma_e R_G T \\ \rightarrow \rho_e \sim 2 T^{5/2}$$

$$\rho = \rho_e + \rho_i \sim \frac{\mu_e}{\mu} \rho_e \sim 2 \frac{\mu_e}{\mu} T^{5/2}$$

$$\Rightarrow L \sim 4 \times 10^3 T_c^{7/2} \frac{M}{M_\odot}$$

$$\frac{dT_c}{dt} = -1.6 \times 10^{-34} T_c^{7/2} \Rightarrow T_c \sim 2.3 \times 10^{10} \left(\frac{t}{1 \text{ yr}} \right)^{3/5}$$

$$\Rightarrow L \sim 1.86 \times 10^{10} \left(\frac{M}{M_\odot} \right) \left(\frac{t}{1 \text{ yr}} \right)^{-7/5}$$

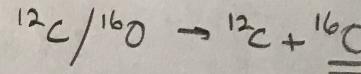
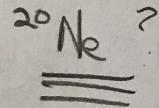
$$L = 4\pi R^2 \sigma T_e^4 \Rightarrow T_e \propto t^{-7/20} \quad [R \sim \text{const.}]$$

Extensions: Convective atmosphere

Debye cooling theory: $T \leq T_{\text{Debye}}$ $C_V \sim T_c^3$

Crystallization: Latent Heat

Phase separation: gravitational settling (energy source)



Note: gravitational settling + thermal evolution:

* White Dwarfs

* Jupiter/Saturn H_2/He immiscibility
 $^{20}\text{Ne} (!?)$

* Earth core formation: Fe + siderophile

Tremblay et al. 2019 (Nature)

