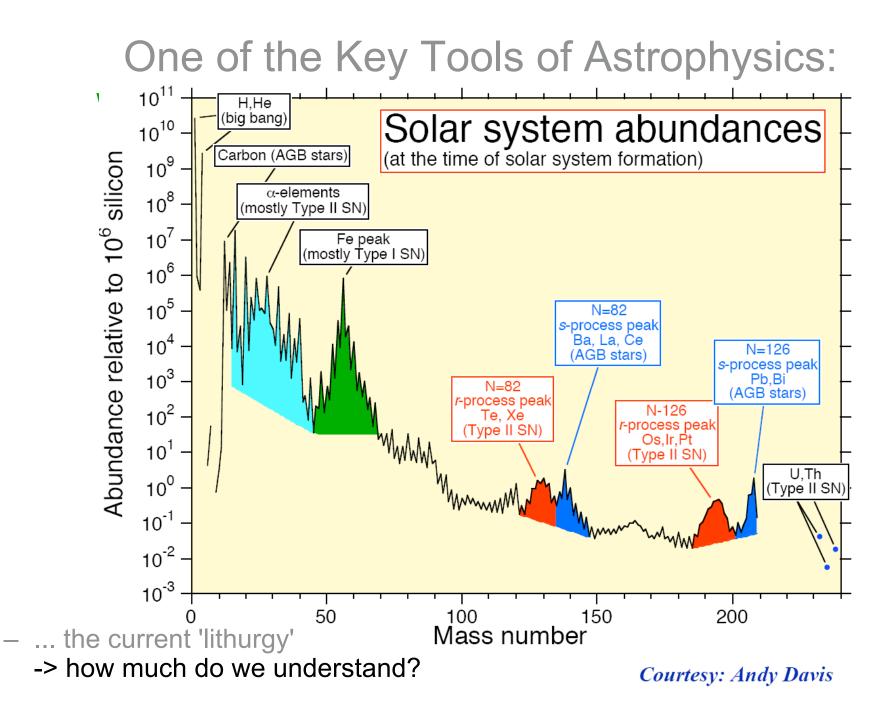
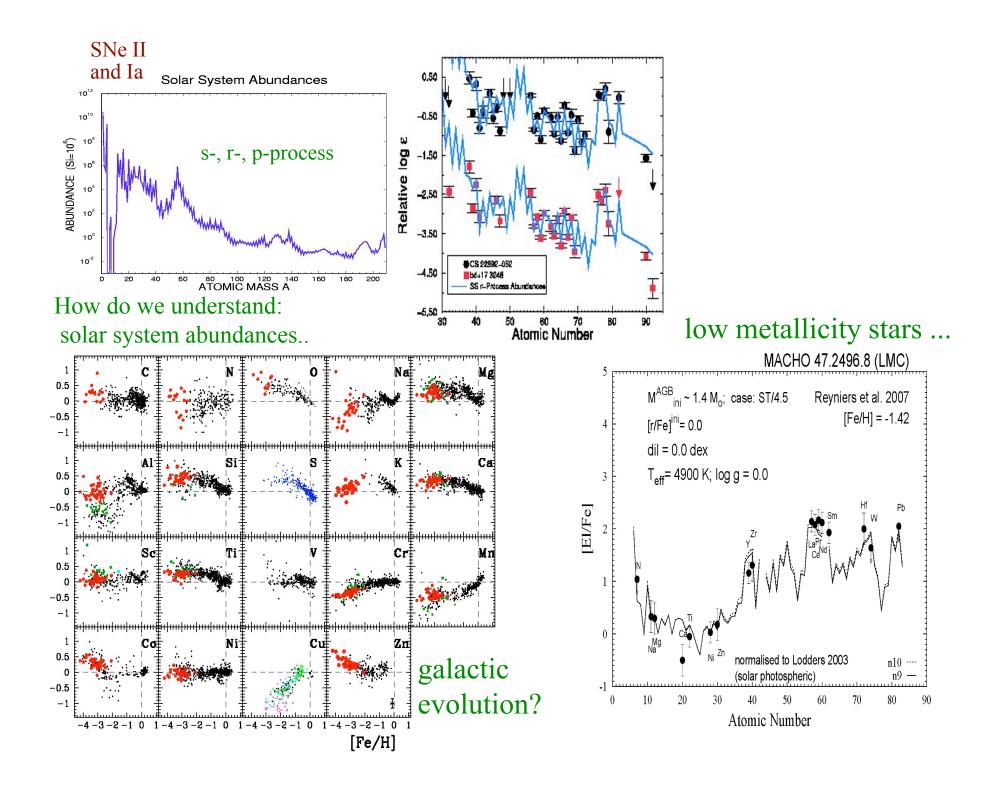

Nucleosynthesis

The Origin of the Elements

Rank	Ζ	Symbol	A	Nucleon Fraction	Source (process)
1	1	Н	1	7.057e-01	Big Bang
2	2	He	4	2.752e-01	Big Bang, CNO, pp
3	8	0	16	9.592e-03	Helium
4	6	С	12	3.032e-03	Helium
5	10	Ne	20	1.548e-03	Carbon
6	26	Fe	56	1.169e-03	e-process
7	7	N	14	1.105e-03	CNO
8	14	Si	28	6.530e-04	Oxygen
9	12	Mg	24	5.130e-04	Carbon
10	16	S	32	3.958e-04	Oxygen
11	10	Ne	22	2.076e-04	Helium
12	12	Mg	26	7.892e-05	Carbon
13	18	Ar	36	7.740e-05	Silicon, Oxygen
14	26	Fe	54	7.158e-05	e-process, Silicon
15	12	Mg	25	6.893e-05	Carbon
16	20	Ca	40	5.990e-05	Silicon, Oxygen
17	13	Al	27	5.798e-05	Carbon
18	28	Ni	58	4.915e-05	Silicon, e-process
19	6	С	13	3.683e-05	CNO
20	2	He	3	3.453e-05	Big Bang, pp
21	14	Si	29	3.448e-05	Carbon, Neon
22	11	Na	23	3.339e-05	Carbon
23	26	Fe	57	2.840e-05	e-process
24	14	Si	30	2.345e-05	Carbon, Neon
25	1	Н	2	2.317e-05	Big Bang

Brief Summary of Burning Stages (Major Reactions)


(all) photodisintegrations and capture reactions possible


 \Rightarrow thermal (chemical) equilibrium

Elemental Abundances

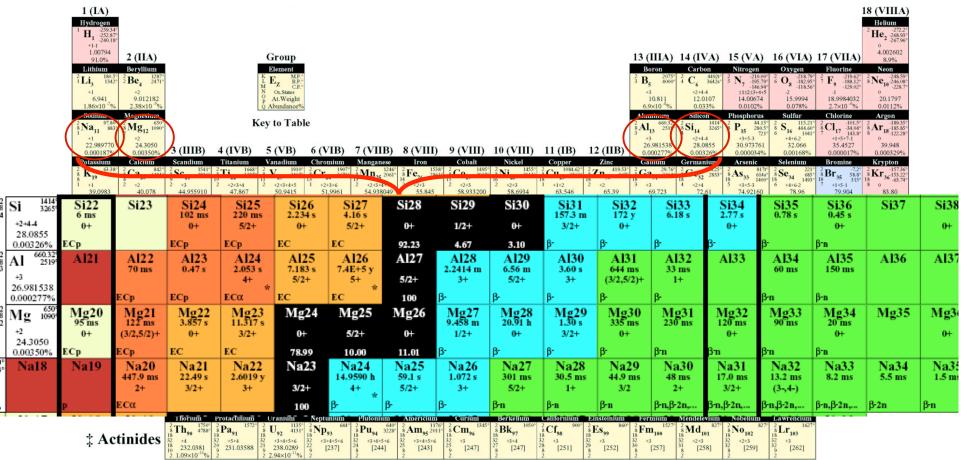
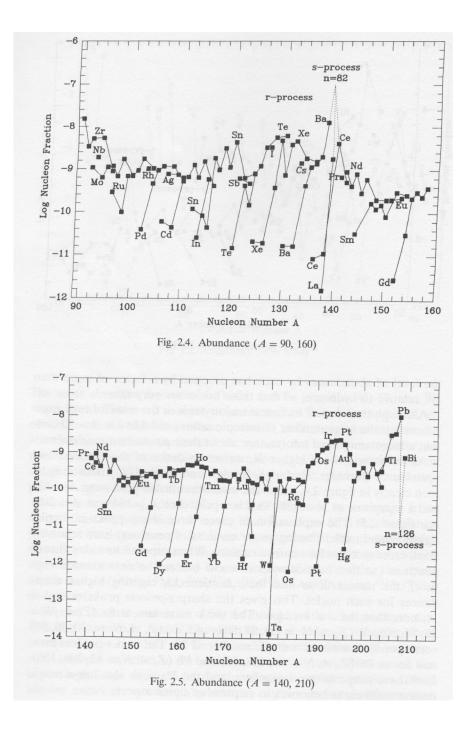
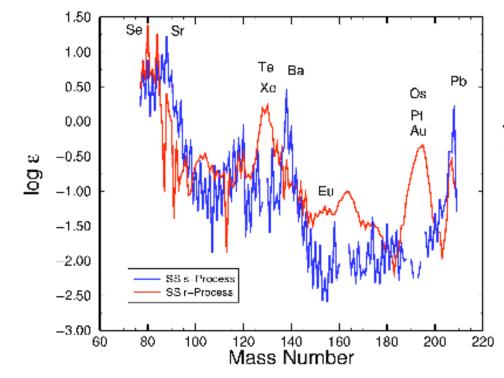

Z EI	EL	Solar System	Abundance in the Earth's Crust Sea		z	EI	Solar System	Abundance in the Earth's Crust Sea	
	-	(%)	(mg/kg)	(mg/L)	-	-	(%)	(mg/kg)	(mg/L)
1	н	91.0 23	1400	1.08×10 ⁵	47	Ag	1.58×10 ⁻⁹ 5	0.075	4×10 ⁻⁵
2	He	8.9 5	0.008	7×10 ⁻⁶	48	Cď	5.3×10 ⁻⁹ 3	0.15	1.1×10 ⁻⁴
3	Li	1.86×10 ⁻⁷ 17	20	0.18	49	In	6.0×10 ⁻¹⁰ 4	0.25	0.02
4	Be	2.38×10 ⁻⁹ 23	2.8	5.6×10 ⁻⁶	50	Sn	1.25×10 ⁻⁸ 12	2.3	4×10 ⁻⁶
5	в	6.9×10 ⁻⁸ 7	10	4.44	51	Sb	1.01×10 ⁻⁹ 18	0.2	2.4×10 ⁻⁴
6	č	0.033	200	28	52	Те	1.57×10 ⁻⁸ 16	0.001	
7	N	0.0102	19	0.5	53	1	2.9×10 ⁻⁹ 6	0.45	0.06
8	0	0.078 8	4.61×10 ⁵	8.57×10 ⁵	54	Xe	1.5×10 ⁻⁸ 3	3×10 ⁻⁵	5×10 ⁻⁵
9	F	2.7×10 ⁻⁶ 4	585	1.3	55	Cs	1.21×10 ⁻⁹ 7	3	3×10 ⁻⁴
0	Ne	0.0112 16	0.005	1.2×10 ⁻⁴	56	Ba	1.46×10 ⁻⁸ 9	425	0.013
1	Na	0.000187 13	2.36×104	1.08×10 ⁴	57	La	1.45×10 ⁻⁹ 3	39	3.4×10 ⁻⁶
2	Mg	0.00350 13	2.33×104	1290	58	Ce	3.70×10 ⁻⁹ 6	66.5	1.2×10 ⁻⁶
3	AI	0.000277 10	8.23×104	0.002	59	Pr	5.44×10 ⁻¹⁰ 13	9.2	6.4×10
4	Si	0.00326 14	2.82×10 ⁵	2.2	60	Nd	2.70×10 ⁻⁹ 4	41.5	2.8×10 ⁻⁶
5	Р	3.4×10 ⁻⁵ 3	1050	0.06	61	Pm	2.70/10 4	41.5	2.0410
6	S	0.00168 22	350	905	62	Sm	8.42×10 ⁻¹⁰ 11	7.05	4.5×10 ⁻¹
7	CI	1.7×10 ⁻⁵ 3	145	1.94×10 ⁴	63	Eu	3.17×10 ⁻¹⁰ 5	2.0	1.3×10
8	Ar	0.000329 20	3.5	0.45	64	Gd	1.076×10 ⁻⁹ 15	6.2	7×10 ⁻⁷
9	ĸ	1.23×10 ⁻⁵ 9	2.09×10 ⁴	399	65	Tb	1.97×10 ⁻¹⁰ 4	1.2	1.4×10
0	Ca	0.000199 14	4.15×104	412	66	Dy	1.286×10 ⁻⁹ 18	5.2	9.1×10
1	Sc	1.12×10 ⁻⁷ 10	22	6×10 ⁻⁷	67	Ho	2.90×10 ⁻¹⁰ 7	1.3	2.2×10
2	Ti	7.8×10 ⁻⁶ 4	5650	0.001	68	Er	8.18×10 ⁻¹⁰ 11	3.5	8.7×10
3	v	9.6×10 ⁻⁷ 5	120	0.0025	69	Tm	1.23×10 ⁻¹⁰ 3	0.52	1.7×10
4	Cr	4.4×10 ⁻⁵ 3	102	3×10 ⁻⁴	70	Yb	8.08×10 ⁻¹⁰ 13	3.2	8.2×10
5	Mn	3.1×10 ⁻⁵ 3	950	2×10 ⁻⁴	71	Lu	1.197×10 ⁻¹⁰ 16	0.8	1.5×10
6	Fe	0.00294 8	5.63×104	0.002	72	Hf	5.02×10 ⁻¹⁰ 10	3.0	7×10 ⁻⁶
7	Co	7.3×10 ⁻⁶ 5	25	2×10 ⁻⁵				2.0	2×10 ⁻⁶
8	Ni	0.000161 8	84	5.6×10 ⁻⁴	73	Та			
9	Cu	1.70×10 ⁻⁶ 19	60	2.5×10 ⁻⁴	74	w	4.34×10 ⁻¹⁰ 22	1.25	1×10 ⁻⁴
0	Zn	4.11×10 ⁻⁶ 18	70	0.0049	75	Re	1.69×10 ⁻¹⁰ 16	7×10 ⁻⁴	4×10 ⁻⁶
1	Ga	1.23×10 ⁻⁷ 8	19	3×10 ⁻⁵	76	Os	2.20×10 ⁻⁹ 14	0.0015	
2	Ge	3.9×10 ⁻⁷ 4	1.5	5×10 ⁻⁵	77	Ir	2.16×10 ⁻⁹ 13	0.001	
3	As	2.1×10 ⁻⁸ 3	1.8	0.0037	78	Pt	4.4×10 ⁻⁹ 3	0.005	
4	Se	2.03×10 ⁻⁷ 13	0.05	2×10 ⁻⁴	79	Au	6.1×10 ⁻¹⁰ 9	0.004	4×10 ⁻⁶
5	Br	3.8×10 ⁻⁸ 7	2.4	67.3	80	Hg	1.11×10 ⁻⁹ 13	0.085	3×10 ⁻⁵
6	Kr	1.5×10 ⁻⁷ 3	1×10 ⁻⁴	2.1×10 ⁻⁴	81	TI	6.0×10 ⁻¹⁰ 6	0.85	1.9×10 ⁴
7	Rb	2.31×10 ⁻⁸ 15	90	0.12	82	Pb	1.03×10 ⁻⁸ 8	14	3×10 ⁻⁵
8	Sr	7.7×10 ⁻⁸ 6	370	7.9	83	Bi	4.7×10 ⁻¹⁰ 4	0.0085	2×10 ⁻⁵
9	Y	1.51×10 ⁻⁸ 9	33	1.3×10 ⁻⁵	84	Po		2×10 ⁻¹⁰	1.5×10 ⁻¹
0	Zr	3.72×10 ⁻⁸ 24	165	3×10 ⁻⁵	85	At		1 1 1 1 2	
1	Nb	2.28×10 ⁻⁹ 3	20	1×10 ⁻⁵	86	Rn		4×10 ⁻¹³	6×10 ⁻¹⁶
2	Mo	8.3×10 ⁻⁹ 5	1.2	0.01	87	Fr		0.407	0.0.40
3	TC	0.0×10 * 5	1.2	0.01	88	Ra		9×10 ⁻⁷	8.9×10
4	Ru	6.1×10 ⁻⁹ 3	0.001	7×10 ⁻⁷	89	Ac	1.00.10:10 -	5.5×10 ⁻¹⁰	1.108
5	Bh	1.12×10 ⁻⁹ 9	0.001	1010	90	Th	1.09×10 ⁻¹⁰ 6	9.6	1×10 ⁻⁶
6	Pd	4.5×10 ⁻⁹ 3	0.015		91	Pa	0.04 40:11	1.4×10 ⁻⁶	5×10 ⁻¹¹
			0.010		92	U	2.94×10 ⁻¹¹ 25	2.7	0.0032

Table 2. Elemental Abundances

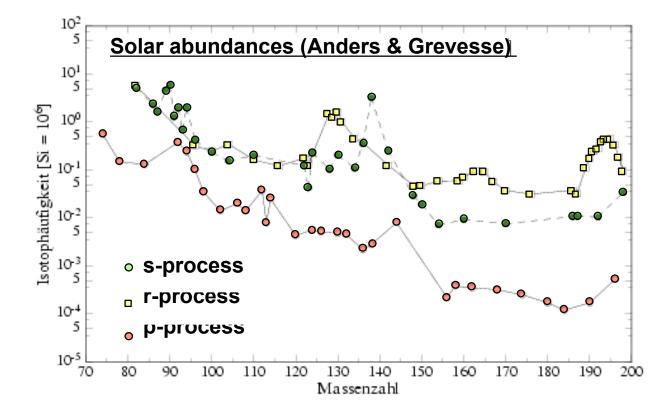

From Atomic to Nuclear Physics


- Cosmic Nucleosynthesis Produces New **Isotopes**
 - Diagnostics of Nuclear Fusion Reactions
 → Thermodynamic Variables in Hot (GK) Sites

s- and r-processes

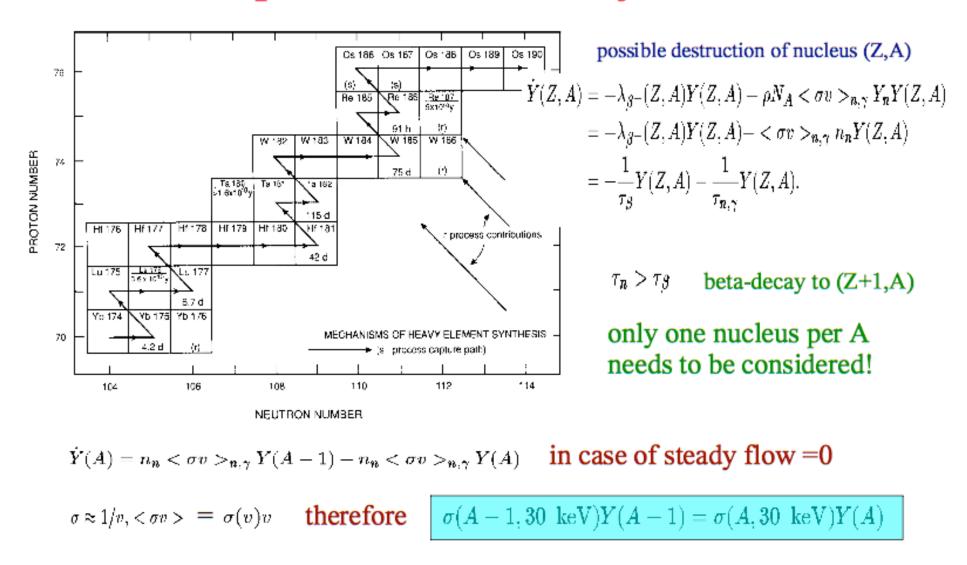
The Origin of the Heaviest Elements

s- and r-process Decomposition

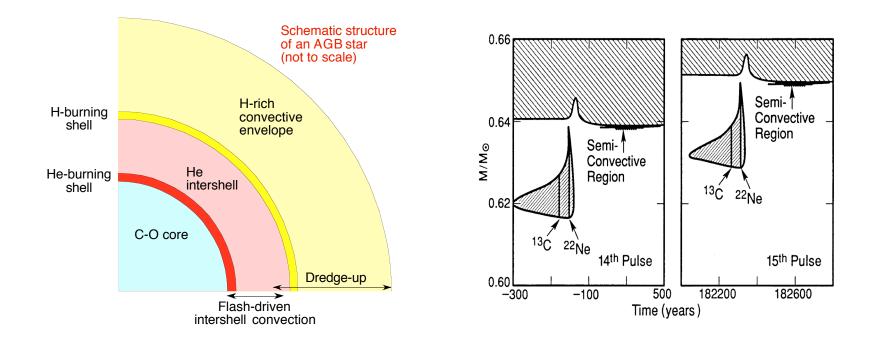


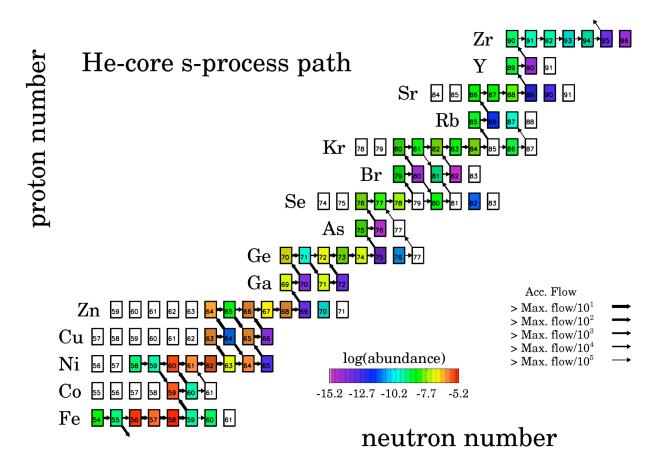
$$\begin{split} \dot{Y}(Z,A) &= -\lambda_{\beta^{-}}(Z,A)Y(Z,A) - \rho N_{A} < \sigma v >_{n,\gamma} Y_{n}Y(Z,A) \\ &= -\lambda_{\beta^{-}}(Z,A)Y(Z,A) - \langle \sigma v >_{n,\gamma} n_{n}Y(Z,A) \\ &= -\frac{1}{\tau_{\beta}}Y(Z,A) - \frac{1}{\tau_{n,\gamma}}Y(Z,A). \end{split}$$

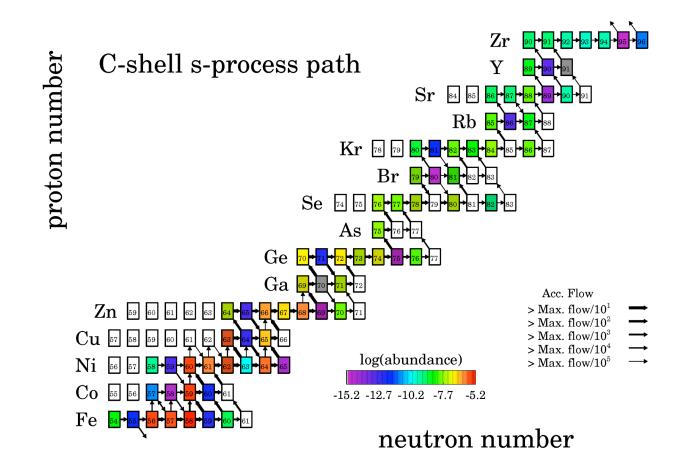
which timescale is shorter? neutron capture inverse proportional to n_n !


Heavy Elements are made by slow and rapid neutron capture events

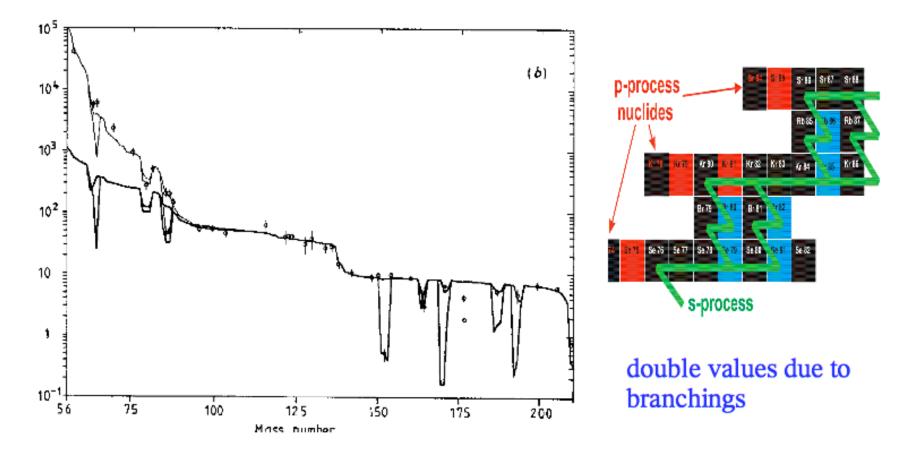
The Heavy Elements




s-process and steady flow



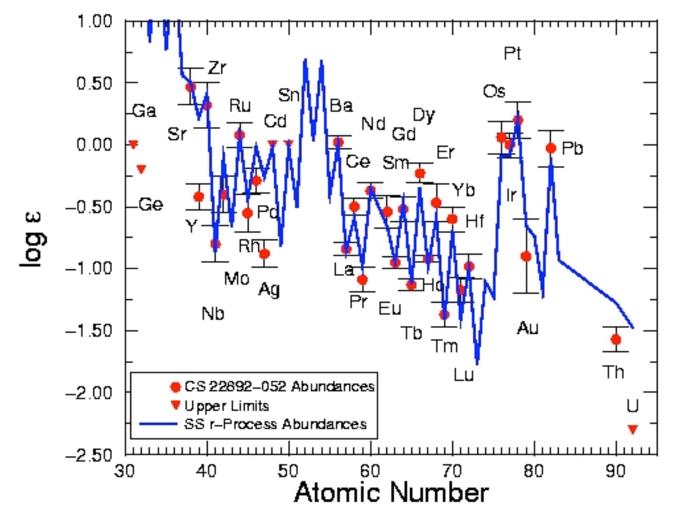
in low and intermediate mass stars the H- and He-shells are located at small distances. They do not burn in a constant fashion. If the H-burning zone is on, it creates He fuel. After sufficient He is produced in an unburned He-rich zone (leading to sufficient densities and temperatures), He is ignited. The burning is not stable, as the amount of energy created in a shallow zone is not sufficient to lift the overlaying H-shell which would cause expansion + cooling, i.e. steady burning. Instead He-burning, being dependent on the density squared burnes almost explosively (flash), causing then a stronger expansion which even stops H-burning in the H-shell. This behavior repeats in recurrent flashes. H is mixed into the unburned He fuel.


s-process reaction paths in core He and C-burning

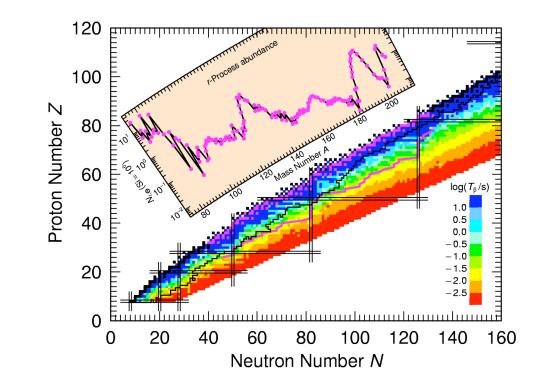
higher temperatures and neutrons densities lead to different branchings (The et al. 2007)

The sigma*N-curve

a complete steady flow is not given, but in between magic numbers (where the neutron capture cross sections are small) almost attained!

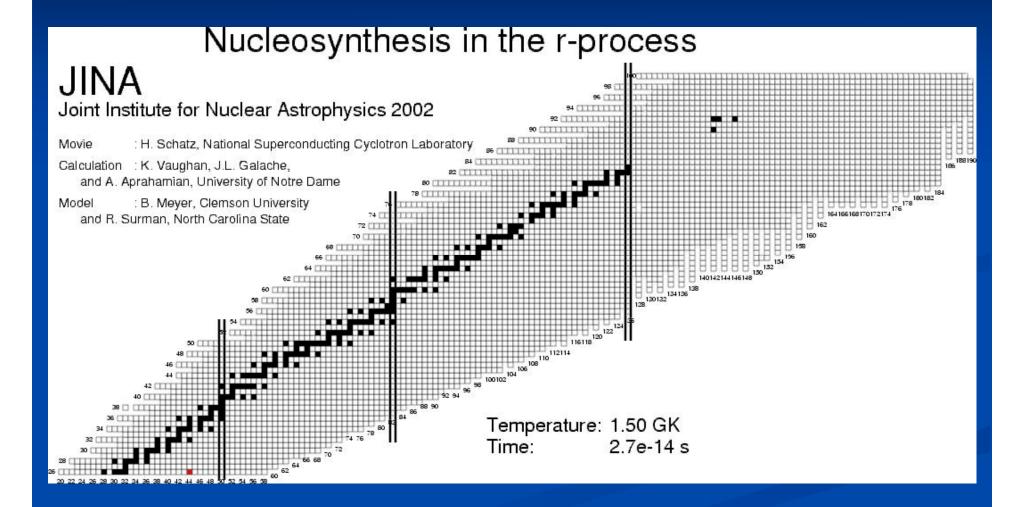

r-process

Site?


Readdressing Chemical Evolution in Galaxies as a function of metallicity:

CS22892-052: A pure r-process star at [Fe/H]=-3.1

(Cowan et al. 2005)



High neutron densities lead to nuclei far from stability

Nuclear Reactions to be considered: (n, γ) , (γ, n) (β, xn) , (β, f) , (n, f), inelastic ν -scattering, (ν_e, e^-)

Transmutation by Rapid Neutron Addition

