HAYASHI LIMIT

Let us consider a simple ”"model atmosphere” of a star. The equation of hydrostatic equilibrium and
the definition of optical depth are
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and may be combined to write
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Assuming k = const we may integrate this equation to obtain
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where the subscript 7 = 2/3 indicates that we evaluate the particular quantity at the photosphere.
Let us consider a cool star with the negative hydrogen ion H~ dominating opacity in the atmosphere.

When temperature is low we may neglect radiation pressure in the atmosphere. Adopting
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we may write the equation (s2.26) as
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which may be rearranged to have
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We know that a star with the H ™ opacity in the atmosphere becomes convective below optical depth
7 =0.775, i.e. very close to the photosphere. Let us suppose that the convection extends all the way
to the stellar center, and let us ignore here all complications due to hydrogen and helium ionization.
Convective star is adiabatic, and if it is made of a perfect gas with the equation of state (s2.27) then
it is a polytrope with an index n = 1.5. Therefore, we expect a polytropic relation all the way from
the photosphere down to the center, and we have
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Combining equations (s2.29) and (s2.30) we obtain
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Let us make an approximation that convection begins at the photosphere, i.e. at T' = Tc¢s, and let
us replace stellar radius with the combination of effective temperature and luminosity according to
L= 47rR20T4ff :
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To the right of the Hayashi limit no stars in a hydrostatic equilibrium can exist.
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Ignition Mass for Low-Mass Stars

Low mass stars are supported by gas pressure, while radiation pressure is unimportant. Electron
gas may be partly degenerate. Numerical models demonstrate that very low mass stars, with M <
0.3Mg, are fully convective, and may be very well approximated with n = 1.5 polytropes. We shall
approximate the non.-rel. equation of state with the following formula
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where k/H = 0.825 x 10% [erg g 'K '], K1 = 0.991 x 1013;4(:5/3 [erg g ~°/3cm?]. Algebraic
approximation to the stellar structure equations gives
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Combining the last two equations we obtain
Mt (ko 2 toss . (KT M2 MO/
which may be written as
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Fully degenerate, the stellar radius satisfies a polytropic ( n = 1.5 ) mass-radius relation:
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where R,,i, is the minimum radius that a star with a mass M may have. This relation is recovered
from the equation (Ims.4) when we replace the square bracket with [1 — (R /R)?]. In the limit
when degeneracy is negligible we should have
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where T, is the central temperature of an n = 1.5 polytrope with pressure provided by non-degenerate
gas. Combining the two limiting cases with the equation (Ims.4) we may write it as
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The central temperature reaches its maximum where dT,./dR =0 for R=R, ,_, i.e.
RT'mam = 21/2Rmin7 (1m88)
and the corresponding maximum central temperature is
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Schonberg-Chandrasekhar Limit

After core hydrogen burning, trguasi-isothermal helium coregrows by the accumulation
of helium ashes from the hydrogen burning shell surroundingiowever, the core can
maintain itself in hydrostatic equilbrium only if the masistbe helium core is below the
so-called“Schonberg-Chandrasekhar" limit. If it exceeds this limit, the core starts to
contract orkKelvin-Helmholtz timescales, inaugurating the next phase of stellar evmiuti
We can derive the SC critical mass by using the Virial theoreith the core boundary
pressure retained and assuming an ideal gas, finding themuaaxisurface pressure the
core can sustain (calculated in terms of core quantitiedgutating the surface pressure
due to the weight of the overlying envelope, and then sethiege two pressures equal. A
rearrangement of the resulting equation yields the ratihefritical core mass to the total
stellar mass (as long as this ratio is small) in terms of thammaolecular weights in the
envelope and core. The derivation proceeds as follows:

We state thé&/irial theorem:
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wherev, = 2 (pﬁ;{;p) kT, and the subscript stands for “core." We will assume that ~

3¢ Then, we solve for,, and takeiP./dM,, and set it to zero. The result, written for
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Plugging this radius into eq. (sc.1) and solving forwe have
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The pressure at the surface of the core due to the envelopghigi
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We assume that »* >~ R*/2, wherer is the outer radius of the star andis the total mass
of the star. The pressure on the core due to the envelope, can be written in terms of
the mass density(....,), temperaturex(.), and envelope mean molecular mass.(), and
if we assume that. ..., ~ 2%, we find (solving forr)
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Plugging this into the eq. (sc.2) for the pressure, we find
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Setting the two pressures equal (note thas in both expressions), we find
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Doing this a bit more rigorously yields a coefficient87 not much different. If..,,, ~ 0.63
andp. ~ 1.34, we find thatl ~ 0.08 (~8%). This is the Sobnberg-Chandrasekhar ratio.
Note that the subsequent KH collapse of the core leadséd-doound objectwith central
pressures much larger than the pressure in the hydrogemaigushell. As we will state
again, “once an isothermal core becomes self-gravitatirgmains self-gravitating forever,
even if a new nuclear fuel ignites in the core, and the cor@i®nger isothermal.”
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