
HAYASHI LIMIT

Let us consider a simple ”model atmosphere” of a star. The equation of hydrostatic equilibrium and
the definition of optical depth are

dP
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= −gρ,

dτ

dr
= −κρ, (s2.24)

and may be combined to write
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κ
. (s2.25)

Assuming κ = const we may integrate this equation to obtain
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, (s2.26)

where the subscript τ = 2/3 indicates that we evaluate the particular quantity at the photosphere.
Let us consider a cool star with the negative hydrogen ion H− dominating opacity in the atmosphere.
When temperature is low we may neglect radiation pressure in the atmosphere. Adopting

P =
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ρT, κ = κ0ρ

0.5T 7.7, κ0 = 10−25Z0.5, (s2.27)

we may write the equation (s2.26) as
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which may be rearranged to have
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We know that a star with the H− opacity in the atmosphere becomes convective below optical depth
τ = 0.775, i.e. very close to the photosphere. Let us suppose that the convection extends all the way
to the stellar center, and let us ignore here all complications due to hydrogen and helium ionization.
Convective star is adiabatic, and if it is made of a perfect gas with the equation of state (s2.27) then
it is a polytrope with an index n = 1.5. Therefore, we expect a polytropic relation all the way from
the photosphere down to the center, and we have
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Combining equations (s2.29) and (s2.30) we obtain
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Let us make an approximation that convection begins at the photosphere, i.e. at T = Teff , and let
us replace stellar radius with the combination of effective temperature and luminosity according to
L = 4πR2σT 4

eff :
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, (s2.32b)

To the right of the Hayashi limit no stars in a hydrostatic equilibrium can exist.
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Ignition Mass for Low-Mass Stars

Low mass stars are supported by gas pressure, while radiation pressure is unimportant. Electron
gas may be partly degenerate. Numerical models demonstrate that very low mass stars, with M <
0.3M⊙ are fully convective, and may be very well approximated with n = 1.5 polytropes. We shall
approximate the non.-rel. equation of state with the following formula
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, (lms.1)

where k/H = 0.825 × 108 [ erg g−1 K−1], K1 = 0.991 × 1013µ
−5/3

e [ erg g−5/3 cm 2]. Algebraic
approximation to the stellar structure equations gives
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. (lms.2)

Combining the last two equations we obtain
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which may be written as
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Fully degenerate, the stellar radius satisfies a polytropic ( n = 1.5 ) mass-radius relation:
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where Rmin is the minimum radius that a star with a mass M may have. This relation is recovered
from the equation (lms.4) when we replace the square bracket with [1 − (Rmin/R)2]. In the limit
when degeneracy is negligible we should have
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where Tc is the central temperature of an n = 1.5 polytrope with pressure provided by non-degenerate
gas. Combining the two limiting cases with the equation (lms.4) we may write it as
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The central temperature reaches its maximum where dTc/dR = 0 for R = R
T max

, i.e.

R
T max

= 21/2Rmin, (lms.8)

and the corresponding maximum central temperature is
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Schönberg-Chandrasekhar Limit

After core hydrogen burning, thequasi-isothermal helium coregrows by the accumulation
of helium ashes from the hydrogen burning shell surroundingit. However, the core can
maintain itself in hydrostatic equilbrium only if the mass of the helium core is below the
so-called“Schönberg-Chandrasekhar" limit. If it exceeds this limit, the core starts to
contract onKelvin-Helmholtz timescales, inaugurating the next phase of stellar evolution.
We can derive the SC critical mass by using the Virial theoremwith the core boundary
pressure retained and assuming an ideal gas, finding the maximum surface pressure the
core can sustain (calculated in terms of core quantities), calculating the surface pressure
due to the weight of the overlying envelope, and then settingthese two pressures equal. A
rearrangement of the resulting equation yields the ratio ofthe critical core mass to the total
stellar mass (as long as this ratio is small) in terms of the mean molecular weights in the
envelope and core. The derivation proceeds as follows:
We state theVirial theorem :

4πR3

cPc − 2Uc = Ωc , (sc.1)

whereUc = 3

2
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kTc and the subscriptc stands for “core." We will assume thatΩc ∼
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c
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. Then, we solve forPc, and takedPc/dMc, and set it to zero. The result, written for

Rc, is
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.

Plugging this radius into eq. (sc.1) and solving forPc, we have
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.

The pressure at the surface of the core due to the envelope weight is
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We assume that< r4 >∼ R4/2, whereR is the outer radius of the star andM is the total mass
of the star. The pressure on the core due to the envelope,Pc,env, can be written in terms of
the mass density (ρc,env), temperature (Tc), and envelope mean molecular mass (µenv), and
if we assume thatρc,env ∼

3M
4πR3 , we find (solving forR)

R ∼
µenvmpGM

3kTc
.

Plugging this into the eq. (sc.2) for the pressure, we find
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(
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)4

.

Setting the two pressures equal (note thatTc is in both expressions), we find

Mc

M
∼ 0.54

(

µenv

µc

)2

.

Doing this a bit more rigorously yields a coefficient of0.37, not much different. Ifµenv ∼ 0.63
andµc ∼ 1.34, we find thatMc

M ∼ 0.08 (∼8%). This is the Scḧonberg-Chandrasekhar ratio.
Note that the subsequent KH collapse of the core leads to aself-bound objectwith central
pressures much larger than the pressure in the hydrogen-burning shell. As we will state
again, “once an isothermal core becomes self-gravitating,it remains self-gravitating forever,
even if a new nuclear fuel ignites in the core, and the core is no longer isothermal."
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