Extrasolar Planets

- Methods of detection
- Characterization
- Theoretical ideas
- Future prospects

Methods of detection

Pulsar timing

Planetary motion around pulsar causes periodic pulsar displacement around the center of mass by $\sim a (M_p / M_{NS}) \sim 10^{-3}$ light-seconds for Earth-like planet ($M_p \sim 10^{28}$ g) at a = 1 AU from the neutron star ($M_{NS} \sim 1.4 M_{Sun}$) – well within current detection capabilities.

m sin i degeneracy (broken in PSR 1257+12 by planetary interaction)

Recently confirmed to have a giant planet in a wide eccentric orbit.

First discovered extrasolar system:

PSR 1257+12	(Wolszczan and Frail 1992)
-------------	----------------------------

	Α	B	С
Mass, M_Earth	0.015	3.4	2.8
Eccentricity	0.0	0.018	0.026
Period, days	25.3	66.5	98.2
Sem. axis, AU	0.19	0.36	0.47

Similar to Solar System

Similar to nearby EGP systems.

Radial Velocity Variations

Planetary motion moves star around with velocity $v_{orb}(M_p/M_*)$. Jupiter-mass planet at 1 AU causes stellar motion with velocity 30 m/s.

Searching for periodic Doppler shifts can detect planet (like companion in spectroscopic binary).

- Method suffers from m sin i degeneracy
- Velocity noise can be pushed down to 1-2 m/s
- Up to now the most successful technique more than 400 planets detected
- First detection 51 Peg (Mayor & Queloz 1995)

Butler et al 2004

Radial velocity

- Stars orbit COM
- Starlight is Doppler shifted
- Shift is tiny: use spectral lines
- Big planets close to the star give biggest RVs
- You measure v sini & P giving M_p sini & a
- Has discovered more than ~400 planets, current precision: ~1 m/s.

Planetary Transits

Jupiter-size planet passing in front of the star causes stellar flux drop (eclipse) by $\sim (R_p / R_*)^2 \sim 10^{-2}$ for ~ hours.

Transit probability $\sim R_* / a \sim 10^{-2}$ for a = 1 AU

- Combined with RV data gives mass (sin i =1)
- The only method which gives planetary size
- Expect signal also in reflected light

First transit detection in previously known planetary system HD 209458

> 110 planets detected (before Kepler!)

More than 20 transit searches are underway

Allow us to measure planetary density

Transiting Planets

Secondary Eclipse

See thermal radiation and reflected light from planet disappear and reappear

Transit See stellar flux decrease (function of wavelength)

Orbital Phase Variations

See cyclical variations in brightness of planet

figure taken from H. Knutson

Methods of detection

Microlensing

Gravitational lensing by binary systems leads to easily recognizable pattern of magnification.

Light curve fitting yields system parameters and may be used for planet searches.

- Cannot repeat observation
- Usually distance is unknown
- Stellar brightness unimportant

OGLE 2003-BLG-235/MOA 2003-BLG-53 (first planet detection by microlensing)

Planetary mass

Stellar mass

Semimajor axis

Distance to the system

 $M_{p} \approx 2 M_{J}$ $M_{*} \approx 0.36 M_{Sun}$ $a \approx 3 AU$ $D \approx 5 kpc$

Astrometry

Jupiter-mass planet at 1 AU moves its star around by $\sim a(M_p/M_*) \sim 10^{-3}a$ which for a = 1 AU at 10 pc results in 100 µas displacement on the sky.

 Sensitive to massive and distant planets – requires long time baseline

 In combination with RV data breaks m sin i degeneracy and determines mass and orbit orientation (similar to observations of stars near the Sgr A*)

• Requires exquisite astrometric accuracy.

Astrometric displacement of the Sun due to Jupiter as seen from 10 parsecs.

Earth-mass Planets?

Radial-velocity and Astrometric techniques

Direct detection

Planets (especially young ones) are rather bright in the infrared. If wellseparated from the main star, they can be imaged directly.

Will have common proper motion with the parent star.

GQ Lupi (Neuhauser et al 2005)

• Parent star: 0.7 M_sun, 2 million years old, 140 pc away

Planet: has common proper motion, 100
AU away from the star

• **Properties:** effective temperature 2000 K, radius of about 1.2 R_Jup

 Mass: at this age and luminosity can have mass 1 - 42 M_Jup, depending on the model

Can be a high-mass planet or a brown-dwarf

HR 8799bcd

 $\begin{array}{c} M_{b} \sim 7 M_{I} \\ M_{c} \sim 10 M_{J} \\ M_{d} \sim 10 M_{J} \end{array}$

D = 24, 38, 68 AU

Future Prospects

Kepler

Space-based Photometer (0.95-m aperture) Photometric One-Sigma Noise <2x10-5 Monitor 150,000 main-sequence stars for planets. Mission lifetime of ~4 years.

Transits of terrestrial planets:

- About 50 planets if most have R~1.0 Re,

Modulation of the reflected light from giant inner planets:

- About 870 planets with periods less than one week.

Transits of giant planets:

- About 135 inner-orbit planet detections along with albedos for about 100 of them.

TPF

(Terrestrial Planet Finder)

Two complementary space observatories: a visible-light coronagraph and a mid-infrared formation-flying interferometer.

TPF coronagraph TPF interferometer

Goals:

- Survey nearby stars looking for terrestrial-size planets in the "habitable zone".

- Follow up brightest candidates with spectroscopy, looking for atmospheric signatures, habitability or life itself.

- Will detect and characterize Earth-like planets around as many as 150 stars up to 15 pc away.

Planetary Prospects Increase planetary census

- Direct imaging:
 - Young, massive planets now
 - TPF needed for Earth-like
- Spectra
 - atmospheric abundances
 - biomarkers (O_2 , H_2O , O_3)

© European Southern Obser

ESO PR Photo 26a/04 (10 September 2004)

